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Abstract—Quality-of-service (QoS)-enabled publish/subscribe
(pub/sub) middleware provides powerful support for large-scale
data dissemination. It is hard, however, to maintain specified
QoS properties (such as reliability and latency) in dynamic
environments (such as disaster relief operations or power grids).
For example, managing QoS manually is not feasible in large-
scale dynamic systems due to (1) slow human response times, (2)
the complexity of managing multiple interrelated QoS settings,
and (3) the scale of the systems being managed.

Machine learning techniques provide a promising approach to
maintaining QoS properties of QoS-enabled pub/sub middleware
in large-scale dynamic environments. These techniques include
decision trees, neural networks, and linear logistic regression
classifiers that can be trained on existing data to interpolate
and extrapolate for new data. By training the machine learning
techniques with system performance metrics in a wide variety of
configurations, changes to middleware mechanisms (e.g., associ-
ations of publishers and subscribers to transport protocols) can
be driven by machine learning to maintain specified QoS.

This paper describes research we are conducting on highly con-
figurable QoS-enabled middleware, adaptive transport protocols,
and machine learning techniques. The goal of our approach is to
maintain specified QoS as the environment and configuration
of large-scale systems changes dynamically. Our preliminary
research shows that decision trees and neural networks provide
strong initial classification of the best protocols to use. The deci-
sions trees’ results answer questions about which measurements
and variables are most important when considering the optimal
network configurations from a reliability and latency standpoint.

I. INTRODUCTION

Emerging trends and challenges. The number and
type of distributed systems that utilize publish/subscribe
(pub/sub) technologies have grown due to the advantages
of performance, cost, and scale as compared to single
computers [7], [9]. Examples of pub/sub middleware in-
clude Web Services Brokered Notification (www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wsn), the Java Mes-
sage Service (JMS) (java.sun.com/products/jms), the CORBA
Event Service (www.omg.org/technology/documents/formal/
event_service.htm), and the Data Distribution Service (DDS)
(www.omg.org/spec/DDS). These technologies support data
propagation throughout a system using an anonymous sub-
scription model that decouples event suppliers and consumers.

Pub/sub middleware is used in a wide spectrum of large-
scale application domains, ranging from shipboard computing
environments to grid computing. The middleware supports
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policies that affect the end-to-end QoS of the system. Common
policies across different middleware include persistence (i.e.,
saving data for current subscribers), durability (i.e., saving data
for subsequent subscribers), and grouped data transfer (i.e.,
transmitting a group of data atomically).

While tunable policies provide fine-grained control of sys-
tem QoS, several challenges emerge when developing pub/sub
systems deployed in large-scale dynamic environments. Mid-
dleware mechanisms used to ensure certain QoS properties for
a given environment configuration may not be applicable for
a different environment configuration. For example, a simple
unicast protocol, such as UDP, may provide adequate latency
QoS when a publisher sends to a small number of subscribers.
UDP could incur too much latency, however, when used for
a large number of subscribers due to the publisher needing to
send to each individual subscriber.

Challenges also arise when managing multiple QoS policies
that interact with each other. For example, a system might
specify low latency QoS and reliability QoS, which can
affect latency due to data loss discovery and recovery. Certain
transport protocols, such as UDP, provide low overhead but no
end-to-end reliability. Other protocols, such as TCP, provide
reliability but unbounded latencies due to acknowledgment-
based retransmissions. Still other protocols, such as lateral
error correction (LEC) protocols [1], balance reliability and
low latency, but only provide benefits over other protocols
for specific environment configurations. Determining when to
modify parameters of a particular transport protocol or switch
from one transport protocol to another is hard. Moreover,
human intervention might not be responsive enough for the
timeliness requirements of the system. The problem of timely
response is exacerbated by increasing the scale of the system,
e.g., increasing the number of publishers or subscribers.

Solution approach → ADAptive Middleware And Net-
work Transports (ADAMANT). The remainder of this doc-
ument describes our ADAMANT approach to addressing the
challenges of maintaining QoS for large-scale systems in dy-
namic environments. ADAMANT integrates and enhances the
following technologies: (1) QoS-enabled pub/sub middleware,
(2) adaptive transport protocols, and (3) machine learning
to manage specified QoS within dynamic environments. By
utilizing the machine learning techniques trained on data
collected from multiple configurations, ADAMANT can adjust
the middleware mechanisms to provide the transport protocol
and parameter settings that maintains the specified QoS.
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II. MOTIVATING EXAMPLE

To motivate the need for integrating machine learning
techniques with QoS-enabled pub/sub middleware, this section
describes the research challenges associated with search and
rescue (SAR) operations. These operations help locate and
extract survivors in a large metropolitan area after a regional
catastrophe, such as a hurricane, earthquake, or tornado. SAR
operations can utilize unmanned aerial vehicles (UAVs), ex-
isting operational monitoring infrastructure (e.g., building or
traffic light mounted cameras intended for security or traffic
monitoring), and (temporary) datacenters to receive, process,
and transmit event stream data from sensors and monitors
to emergency vehicles that can be dispatched to areas where
survivors are identified.

Figure 1 shows an example SAR scenario where infrared
scans along with GPS coordinates are provided by UAVs and
video feeds are provided by existing infrastructure cameras.
These infrared scans and video feeds are then sent to a
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Fig. 1. Search and Rescue Motivating Example

datacenter, where they are processed by fusion applications to
detect survivors. Once a survivor is detected the application
can develop a three dimensional view and highly accurate
position information for rescue operations.

The following are key challenges that arise with SAR
operations in dynamic environments.

A. Challenge 1: Timely Adaptation to Dynamic Environments
Due to the dynamic environment inherent in the aftermath

of a disaster SAR operations must adjust in a timely manner
as the environment changes. If SAR operations cannot adjust
quickly enough they will fail to perform adequately given
a shift in resources. If resources are lost or withdrawn—or
demand for information increases—SAR operations must be
configured to accommodate these changes with appropriate
responsiveness to maintain a minimum level of service. If re-
sources increase or demand decreases, SAR operations should
take advantage of these as quickly as possible to provide higher
fidelity or more expansive coverage. Manual modification is
often too slow and error-prone to maintain QoS.

B. Challenge 2: Managing Interacting QoS Requirements
SAR operations must manage multiple QoS requirements

that interact with each other, e.g., data reliability so that

enough data is received to be useful and low latency for soft
realtime data so that infrared scans from UAVs or video from
cameras mounted atop traffic lights do not arrive after they
are needed. The streamed data must be received soon enough
so that successive dependent data can be used as well. For
example, MPEG I frame data must be received in a timely
manner so that successive dependent B and P frame data
can be used before the next I frame makes them obsolete.
Otherwise, not only is the data unnecessary, but sending and
processing the data has consumed limited resources.

C. Challenge 3: Scaling to Large Numbers of Receivers
For a regional or national disaster, a multitude of organiza-

tions would register interest not only in the individual video
and infrared scans for various applications, but also in the
fused data for the SAR operations. For example, fire detection
applications and power grid assessment applications can use
infrared scans to detect fires and working HVAC systems
respectively. Likewise, security monitoring and structural dam-
age applications can use video stream data to detect looting
and unsafe buildings respectively. Moreover, federal, state, and
local authorities would want to register interest in the fused
SAR data to monitor the status of current SAR operations.

D. Challenge 4: Specifying Standardized and Robust QoS
SAR applications should be developed with the focus on

application logic rather than on complex or custom formats
for specifying QoS. Time spent learning a customized or
complex format for QoS is time taken from developing the
SAR application itself. Moreover, learning a custom format
will not be applicable for other applications that use a different
QoS format. Application developers also need support for a
wide range of QoS to handle dynamic environments.

III. OVERVIEW OF RELATED WORK

This section analyzes related research efforts in light of the
challenges presented in Section II.

Support for adaptive middleware. The Mobility Support
Service (MSS) [3] provides a software layer on top of pub/sub
middleware to enable endhost mobility. The purpose of MSS
is to support the movement of clients between access points of
a system using pub/sub middleware. In this sense, MSS adapts
the pub/sub middleware used in a mobile environment. MSS
is solely focused on supporting mobility of pub/sub, however,
and therefore does not address Challenge 2 in Section II-B.
Moreover, MSS fails to address Challenge 4 in Section II-D
since it does not present a standardized and robust interface
for QoS.

Gridkit [5] is a middleware framework that supports recon-
figurability of applications dependent upon the condition of the
environment and the functionality of registered components.
Gridkit focuses on grid applications which are highly hetero-
geneous in nature. For example, these applications will run
on many types of computing devices and will operate across
different types of networks.

Gridkit focuses on reconfiguration for installing an applica-
tion and does not address Challenge 1 in Section II-A. Within
Gridkit no consideration is given to making timely adapta-
tions based on environment changing for a single application
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installation. Moreover, Gridkit fails to address Challenge 4 in
Section II-D as it provides no standardized QoS specification.

David and Ledoux have developed SAFRAN [4] to enable
applications to become context-aware themselves so that they
can adapt to their contexts. SAFRAN provides reactive adap-
tation policy infrastructure for components using an aspect-
oriented approach. However, SAFRAN is a component frame-
work that only provides development support of maintaining
specified QoS. The adaptive policies and component imple-
mentation are the responsibility of the application developer.
Moreover, SAFRAN does not specifically address Challenge 3
in Section II-C since it does not focus on scalability. Moreover,
SAFRAN does not address Challenge 4 in Section II-D since
it provides no standard QoS specification.

Machine learning in support of autonomic adaptation.
Vienne and Sourrouille [10] present the Dynamic Control
of Behavior based on Learning (DCBL) middleware that
incorporates reinforcement machine learning in support of
autonomic control for QoS management. However, DCBL
provides a customized QoS specification that does not address
Challenge 4 in Section II-D and DCBL focuses on single
computers rather than addressing scalable distributed systems,
as outlined with Challenge 3 in Section II-C.

Autonomic adaption of networks. The Autonomic Real-
time Multicast Distribution System (ARMDS) [2] is a frame-
work that focuses on decreasing excessive variance in service
quality for multicast data across the Internet. The framework
supports the autonomic adaptation of the network nodes form-
ing the multicast graph so that the consistency of service
delivery is enhanced. ARMDS does not address Challenge 2
in Section II-B, however, nor does it address Challenge 4 in
Section II-D.

IV. OVERVIEW OF ADAMANT

The ADAptive Middleware And Network Transports
(ADAMANT) is enhanced pub/sub middleware that adjusts
underlying transport protocols and associated parameter set-
tings to maintain specified QoS. ADAMANT addresses the
challenges presented in Section II to resolve gaps in related
work described in Section III by combining the following
techniques.
• Standard QoS-enabled pub/sub middleware addresses the

scalability of Challenge 3 in Section II-C by decoupling
data senders from data receivers. Applications interested in
published data can receive it any time without knowledge of
the data sender. Moreover, standard QoS-enabled middleware
addresses the QoS standardization of Challenge 4 in Sec-
tion II-D.
• Adaptive network transport protocols work to address

Challenge 1 in Section II-A and Challenge 2 in Section II-B by
providing the infrastructure flexibility to maintain interrelated
QoS even within dynamic environments. Adaptive network
transport protocols not only support fine grained control of
a protocol’s parameters, but also switching from one protocol
to another to provide the adaptation needed within dynamic
environments.
• Machine learning helps address Challenge 1 in Sec-

tion II-A and Challenge 2 in Section II-B by selecting in a

timely manner an appropriate transport protocol and protocol
parameters given specified QoS and a particular environ-
ment configuration. The machine learning will interpolate
and extrapolate its learning based on the current environment
configuration, which might not have been included in the
training.

Figure 2 shows how ADAMANT captures key metrics
into data files and classifies middleware behavior using the
WEKA 3 data mining software (www.cs.waikato.ac.nz/ml/
weka). Specifically, ADAMANT captures (1) data update
latency times (i.e., the time from when the data writer writes
the data to the time the data reader receives the data), (2)
the number of updates received compared to the number
of updates sent, and (3) network bandwidth usage statistics
(e.g., total bytes on the network and min/max/avg band-
width usage). Figure 2 also shows how we integrated and
enhanced the OpenDDS implementation (www.opendds.org)
of the OMG Data Distribution Service (DDS) standard (www.
omg.org/spec/DDS) with the Adaptive Network Transports
(ANT) framework, which supports various transport protocol
properties, such as NAK-based and ACK-based reliability and
flow control. ADAMANT leverages ANT to appropriately
modify transport protocols and parameters settings as needed
to maintain QoS.

OpenDDS is standards-based anonymous QoS-enabled
pub/sub middleware for exchanging data in event-based dis-
tributed systems. It provides a global data store in which
publishers and subscribers write and read data, respectively, so
applications can communicate by publishing information they
have and subscribing to information they need in a timely
manner. OpenDDS provides support for various transport
protocols including TCP, UDP, IP multicast, and reliable multi-
cast. OpenDDS also provides a pluggable transport framework
that allows integration of custom transport protocols within
OpenDDS. We chose the OpenDDS implementation due to
(1) its source code being freely available, which facilitates
modification and experimentation and (2) its pluggable trans-
port framework that allows us to integrate OpenDDS with the
ANT framework.

We chose the ANT framework due to its infrastructure
for composing transport protocols. ANT builds upon the
properties provided by the scalable reliable multicast-based
Ricochet transport protocol [1]. ANT also provides a modular
framework whereby protocol modules can be tuned, enhanced,
and replaced to maintain specified QoS.

We chose the Weka data mining software due to its user-
friendly interface, ease of use, robust analysis tools, and sup-
port for a wide range of machine learning techniques. These
techniques include decision trees, multilayer perceptrons, and
support vector machines. We input collected metrics and
configuration information for the environment and transport
protocol used into Weka. We are classifying and analyzing
the data using the various machine learning techniques to
determine which techniques provide the best guidance in
selecting a transport protocol for a given environment.

We are currently running experiments and collecting metrics
using the Emulab network testbed (www.emulab.net). Emulab
provides computing platforms and network resources that can



4

Pluggable Transport 
Framework

UDP IP
Multicast

TCP

ppppppppppppp
rameworkkkkkkkkkkk

ANT

RicochetModule

IPMulticastModule

NakModule

AckModule

FlowControlModule

Reliable
Multicast

Metrics
data files

. ..

Offline
classifier and
ML analyzer

Key: Data flow

Transport Protocol Plugin

Fig. 2. Current Research Prototype

be easily configured with the desired computing platform, OS,
network topology, and network traffic shaping. Moreover, Em-
ulab provides facilities to capture network bandwidth usage.

Table I outlines the points of variability for the Emulab ex-
periments. The NAKcast timeout period configures the amount
of time that elapses before a receiver notifies the sender of
lost packets. The Ricochet R value determines the number
of packets received by an individual receiver before error
correction data is sent to other receivers. The Ricochet C value
determines the number of receivers to which an individual
receiver sends error correction data. Table II outlines the data
that is being collected to classify and evaluate middleware
performance. The ReLate2 value as defined in our current
research [6] is a metric that evaluates both packet latency and
reliability as determined by the number of packets received by
an application.

Point of Variability Values
# of data receivers 3 - 25
Frequency of sending data 10Hz, 25 Hz, 50 Hz, 100Hz
% end-host network loss 0 to 5 %
Processor speed 850 MHz, 3 GHz
Network speed 100 Mb/s, 1 Gb/s
Protocols used NAKcast, Ricochet
NAKcast timeout 0.5, 0.1, 0.05, 0.025 seconds
Ricochet R value 4, 8
Ricochet C value 3, 6

TABLE I
Emulab Experiment Variables

V. EMPIRICAL EVALUATIONS OF MACHINE LEARNING

TECHNIQUES FOR ADAMANT

The section presents analysis of the experimental data for
purposes of machine learning, an overview of the machine
learning techniques evaluated, and analysis of results from the
learning techniques.

A. Subsampling the Data
Since we are concerned with reliability and latency we

focused on the ReLate2 values to provide relevant data re-
duction. For a given environment configuration we selected

Metrics Units
Number of data updates received integer
Latency of data updates microseconds
Std. deviation of latency microseconds
Maximum network bandwidth usage bytes/sec
Minimum network bandwidth usage bytes/sec
Average network bandwidth usage bytes/sec
Network bandwidth usage bytes
ReLate2 value integer

TABLE II
Metrics Captured from Experiments

the transport protocol and parameter settings with the lowest
ReLate2 value. Using the values for the ReLate2 metric as
an indicator of quality, the reduced data set can represent
the best transport and parameterizations. For a set of 5 runs
for each experimental setup with varying transport protocols
and parameter settings, 5 examples are left when including
only the data from the protocol and parameters that produced
the lowest ReLate2 value for that run. Across all experiment
configurations, roughly 150 examples are preserved.

With this transformation, machine learning can start to
select the most appropriate transport protocol and parameters
settings. The transformed data will accurately identify a proto-
col that currently produced the best ReLate2 values. Looking
from the other direction, it will identify when a class and
parameterization will offer the best ReLate2 values, given a
set of measurements in the network.

B. Learning Techniques Used
To explore the topic of which protocols responds best

under different circumstances, three different techniques were
used on the transformed data set. All three algorithms were
run using 10 fold cross validation, which partitions the data
into separate training and testing sets. The selected learning
technique is trained on the training set and evaluated with the
testing set.

The number of folds (i.e., 10 in our case) represents the
number of times the data is partitioned into different training
and testing sets where the testing sets are mutually exclusive.
The accuracy results are then averaged out over all folds,
which helps provide greater coverage and avoids over-fitting
of the classifier. Since the remaining data points from the
transformations are not necessarily evenly distributed among
the different experiment variables, cross fold validation is the
best approach to maximizing data coverage while maintaining
an unbiased accuracy [8].

The first learning technique we investigated is a decision
tree (DT). This algorithm attempts to create a tree where a
set of decisions leads down to a leaf node that can accurately
classify a new example. A DT will attempt to produce the
shortest and smallest tree possible while maintaining accuracy
by looking for features that best split the data as completely
as possible and use them closer to the root. DTs are designed
for data sets with more than a binary set of classes, such as
ours, where there are more than two possible classifications
of an appropriate transport protocol and parameter settings.

The second technique we investigated is an Artificial Neural
Network (ANN). An algorithm originally developed in the
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mid-80s, ANNs work well on sets with a small number of
features and can produce accurate classifiers with medium
sized data sets. ANNs can be used to craft a very precise clas-
sifier that can be fast to utilize. The learning produced when
using ANNs are not as accessible as a DT since, however, the
weights for the different classes from the back-propagation are
difficult to transform into higher level abstractions for human
comprehension.

The third technique we investigated is a Linear Logistic
Regression Classifier (LLRC). LLRC uses a weighting of
the features to produce a value that is converted into the
correct class. LLRC is the most straightforward of the three
approaches. The results from LLRC has increased compre-
hensibility as compared to ANNs as the weights have more
meaning in this classifier along with the ability to optimize
the classification for speed.

C. Analysis of Results
Applying the three techniques presented above on the re-

duced data set of 150 examples, we see clear differences in
the results. The DT produced the best base accuracy of the
tree at 87% and the worst area under the curve (AUC) score
at .925, which is another measure of accuracy that removes the
bias of false positives. The ANN produced an accuracy that
was lower at 85.3%, but provided the highest AUC at .966.
LLRC posted the lowest accuracy at 80% but also a higher
AUC than DT at .935.

These results indicate that ANNs are the most robust clas-
sifier, but DTs post a higher base accuracy. In particular, DTs
show their ability to over-fit the data too easily, whereas ANNs
are more likely to stand up better in a real application. We are
collecting more data to explore this assessment. LLRC appears
to provide the worst results with the lowest base accuracy and
only slightly better AUC than DTs.

While it appears one might choose ANNs for an application
at the moment and LLRC is thus the least useful, the results
from DTs answer and raise interesting questions. Due to the
nature of DTs, one can look at the implications the tree finds
about the features. As seen in Figure 3, the tree utilizes a
relatively few features, i.e., the amount of bandwidth used in
bytes, the controlled variable of packet loss, and the controlled
variable of number of receivers in the environment. While
some of the controlled variables are utilized, the most impor-
tant discriminator of the measured variables is the bandwidth
usage.

These results motivate us to understand applications not
just in terms of receivers and how likely applications will
drop packets, but also how much the application utilizes the
network. DT gives us a sense of how the experiments also may
need to change. Classifying NAKCast using a DT produces a
fairly complicated subtree. This complexity would seem to
indicate that more coverage through additional experiments is
needed to try and find a more simplified subtree. Moreover,
more data coverage is also needed to gain greater confidence
that the other subtree is as simple as it appears.

VI. CONCLUDING REMARKS

Developers of large-scale QoS-enabled pub/sub middleware
and applications face a number of challenges in dynamic envi-

Fig. 3. Initial Decision Tree

ronments. To address these challenges ADAMANT integrates
and enhances QoS-enabled pub/sub middleware with adaptive
transport protocols and machine learning. This combination of
technologies provides a basis for maintaining specified QoS
even in dynamic environments. Our initial research shows
that artificial neural networks are the most robust machine
learning technique evaluated. We are continuing our research
to determine the optimal technique for ADAMANT.
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