
Journal of Systems Architecture xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Supporting component-based failover units in middleware for distributed
real-time and embedded systems q

Friedhelm Wolf, Jaiganesh Balasubramanian 1, Sumant Tambe, Aniruddha Gokhale ⇑, Douglas C. Schmidt
Department of EECS, Vanderbilt University, Nashville, TN 37235, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 November 2009
Received in revised form 20 May 2010
Accepted 22 July 2010
Available online xxxx

Keywords:
Component-based systems
Real-time and fault-tolerance
Failover units
1383-7621/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.sysarc.2010.07.006

q This work was supported in part by NSF CAREE
opinions, findings, and conclusions or recommendatio
are those of the author(s) and do not necessarily refl
Science Foundation.
⇑ Corresponding author. Tel.: +1 615 322 8754.

E-mail addresses: fwolf@dre.vanderbilt.edu (F. Wo
Balasubramanian), sutambe@dre.vanderbilt.edu (S. T
t.edu, gokhale@dre.vanderbilt.edu (A. Gokhale), d.s
Schmidt).

1 Author has since graduated and is working for Zirc

Please cite this article in press as: F. Wolf et al.
tems, J. Syst. Architect. (2010), doi:10.1016/j.sy
Although component middleware is increasingly used to develop distributed, real-time and embedded
(DRE) systems, it poses new fault-tolerance challenges, such as the need for efficient synchronization
of internal component state, failure correlation across groups of components, and configuration of
fault-tolerance properties at the component granularity level. This paper makes three contributions to
R&D on component-based fault-tolerance. First, it describes the COmponent Replication based on Failover
Units (CORFU) component middleware, which provides fail-stop behavior and fault correlation across
groups of components treated as an atomic unit in DRE systems. Second, it describes how CORFU’s Com-
ponents with HEterogeneous State Synchronization (CHESS) module provides mechanisms for real-time
aware state transfer and synchronization in CORFU. Third, we empirically evaluate the client failover and
group shutdown capabilities of CORFU and its CHESS module and compare/contrast it with existing
object-oriented fault-tolerance methods. Our results show that component middleware (1) has accept-
able fault-tolerance performance for DRE systems, (2) allows timely recovery while considering failure
location, size, and functional topology of the group, and finally (3) eases the burden of application devel-
opment by providing middleware support for fault-tolerance at the component level.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction abstraction than traditional objects in object-oriented program-
Ensuring the fault-tolerance for mission-critical distributed
real-time and embedded (DRE) systems, such as air traffic manage-
ment, total ship computing environments, and fractionated space-
craft, is essential to meet end-to-end system requirements. Fault-
tolerance in the context of DRE systems is defined as the property
that masks failures of servers from clients by transparently redi-
recting clients to backups of servers that have a consistent state
as the failed server. Moreover, for DRE systems, this redirection
must be achieved in a timely manner so that response time of cli-
ents is maintained. A recent study [1] indicates that many system
crashes and downtime stem from undependable components and
that fault-tolerance mechanisms fail to work correctly.

Software for DRE systems increasingly uses component middle-
ware [2–5], which is middleware that support the component pro-
gramming model [6,7]. A component provides a higher level of
ll rights reserved.

R Award CNS 0845789. Any
ns expressed in this material
ect the views of the National

lf), jai@dre.vanderbilt.edu (J.
ambe), a.gokhale@vanderbil-
chmidt@vanderbilt.edu (D.C.

on Computing, NJ, USA.

, Supporting component-based
sarc.2010.07.006
ming by providing capabilities to encapsulate the application
‘‘business” logic, as well as the means of grouping related inter-
faces to offer a service family. Individual components can be
assembled together to form applications.

Component middleware helps to reduce application develop-
ment time and effort [5] by enabling the rapid realization of
large-scale applications by procuring third-party components. It
also enables the packaging and assembly of components into reus-
able units of functionality that can be deployed in the target dis-
tributed environment. Despite these advantages, however,
component-based DRE systems incur the following fault-tolerance
challenges compared to DRE systems that use distributed object
computing and operate at the granularity of individual objects:

1. Support for failover and recovery of a group of components.
Although DRE system functionality may be obtained rapidly
by assembling a group of components procured from multiple
providers, supporting fault-tolerance for this overall functional-
ity requires treating the group of components as a single unit of
failure and recovery.
For example, an automated target recognition (ATR) application
may comprise a group of components that together provide the
ATR capabilities. Since the group of components together serve
a single request (i.e., target recognition in this case), they share
a common state of the client.
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006
mailto:fwolf@dre.vanderbilt.edu
mailto:jai@dre.vanderbilt.edu
mailto:sutambe@dre.vanderbilt.edu
mailto:a.gokhale@vanderbilt.edu
mailto:a.gokhale@vanderbilt.edu
mailto:gokhale@dre.vanderbilt.edu
mailto:d.schmidt@vanderbilt.edu
http://dx.doi.org/10.1016/j.sysarc.2010.07.006
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc
http://dx.doi.org/10.1016/j.sysarc.2010.07.006

2 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
For example, a real-time analytic stock application may consist
of a group of interacting components that together provide the
analytic capabilities. Since the group of components together
serve a single request (i.e., stock analytics in this case), they
share a common state of the client request. As a result, a failure
of even a single component from the group should result in a
failover to a backup group of components.
Unfortunately, contemporary component middleware, such as
Lightweight CORBA Component Model (LwCCM) [8], do not pro-
vide group-based failover semantics out-of-the-box. What is
needed, therefore, is first-class support for the notion of a failov-
er group, which is a logical grouping of components that are
treated as an atomic unit for failure detection and recovery.

2. Efficient state dissemination mechanisms for a failover group. DRE
systems have to maintain a wide variety of application state
ranging from scalar types (e.g., int, float) to complex types
(e.g., large structures and sequences). To provide fault-tolerance
using passive replication [9], middleware must provide mecha-
nisms to disseminate this state to application replicas in a
timely manner. Moreover, depending on the size, timing
requirements, and degree of replication different communica-
tion mechanisms are needed to provide optimal performance.
The small-sized state of applications with high reliability
requirements should typically be transferred through synchro-
nous, point-to-point protocols with error correction capabili-
ties. Conversely, large-sized state (particularly when
transmitted to a large number of replicas) needs efficient proto-
cols, such as group communication protocols and multicast
messages. Directly encoding the type of communication mech-
anism into the applications’ implementation results in a tight
coupling between business logic and transport mechanism,
and therefore complicates development and adaptation of the
application.

3. Resource-aware deployment and configuration. The benefits
gained by using component abstractions (e.g., reduced applica-
tion developer effort) are often nullified by inefficient use of
DRE system resources, such as memory, CPU, and network
bandwidth. In particular, without first-class support to manage
the semantics of a failover group, it becomes tedious and error-
prone to deploy failover groups and their replicas such that
resources are utilized efficiently. Similar problems arise in con-
figuring fault-tolerance properties in the middleware for these
failover groups.

Achieving fault-tolerant DRE systems involves moving from
point solutions for specific scenarios towards solutions that inte-
grate all aspects of fault-tolerance (detection, recovery and state
consistency) through well-understood models, metrics, develop-
ment processes and tools. This paper makes three contributions
to address the three challenges described above and provides a
component middleware-based fault-tolerance solution that sup-
ports the fault-tolerance aspects presented above.

1. First-class support for group failover and recovery based on the
COmponent Replication based on Failover Units (CORFU) compo-
nent middleware. CORFU supports fault-tolerance of compo-
nent-based DRE systems that use passive replication, where
backup replicas take over processing quickly when a failure
occurs. CORFU implements algorithms that provide efficient
fail-stop behavior of component groups. Rather than reactively
providing failover capabilities for each component in a group as
they fail sequentially, CORFU restores system operation by acti-
vating a fresh group of components while discarding the faulty
group in a single logical execution step. Failover operations can
thus be more deterministic since they deal directly with the ori-
ginal error and do not propagate errors.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
2. First-class support for real-time state dissemination among the
group based on CORFU’s Components with HEterogeneous State
Synchronization (CHESS) module. CHESS provides mechanisms
for state dissemination in passively replicated failover groups
managed by CORFU. State can change through client invoca-
tions, other system events, or timed signals. CHESS synchro-
nizes the internal states of replicas—particularly replicas of
failover groups. It also makes state synchronization as transpar-
ent to developers as possible, while providing the flexibility to
handle varying internal state types (such as scalar types, struc-
tures of scalar types, and their sequences) and assuring timely
state transfers.

3. Resource-aware, automated deployment and configuration for
group semantics. CORFU adopts a static deployment approach
that captures the complete system structure and the placement
of components in a standardized XML format. CORFU uses this
declarative system metadata to optimize runtime behavior for
both individual components and groups of dependent compo-
nents. By capturing component dependencies in specific com-
ponent groups (called failover units), CORFU reduces error
reaction time at runtime and helps ensure timely response
required by DRE systems. CORFU also provides declarative
mechanisms that help automate the deployment and configura-
tion of components in DRE systems.

This paper evaluates several capabilities of CORFU and its
CHESS module qualitatively and quantitatively. It presents qualita-
tive analysis that compares the effort involved in applying conven-
tional object-level fault-tolerance versus CORFU’s component-level
fault-tolerance. This analysis shows how CORFU improves effi-
ciency and reliability of system development by making fault-tol-
erance aspects orthogonal to application development. It also
presents experiments that quantify the latencies involved in a fai-
lover operation of component-based fault-tolerant applications
and the timing characteristics of the fail-stop behavior of CORFU
component groups both for stateless and stateful groups of
components.

The remainder of this paper is organized as follows: Section 2
uses a DRE system case study to motivate the need for component
middleware and dependency-based component groupings; Section
3 summarizes the structure and functionality of CORFU and its
CHESS state synchronization module; Section 4 analyzes experi-
mental results to evaluate the performance of CORFU during failov-
er of groups and the impact of CHESS in state synchronization;
Section 5 compares CORFU with related work; and Section 6 pre-
sents concluding remarks.
2. Motivating component group fault-tolerance via a case study

We use a representative DRE system from the domain of space
systems as a case study to highlight the need for component-based,
group failover and recovery requirements that are also QoS-en-
abled, i.e., aware of real-time performance requirements. This case
study has stringent requirements for real-time and fault-tolerant
behavior. To showcase the challenges confronting component-
based DRE systems, we focus on the Mission Control System
(MCS) being developed by the European Space Agency [10] to con-
trol satellites that perform missions, such as earth observation or
deep-space exploration.
2.1. Overview of the Mission Control System (MCS)

An MCS controls satellites and processes data they gather. It is
deployed in a central control station and communicates with a
network of ground stations that provide communication links to
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

Fig. 1. Component-based Mission Control System.

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 3
the satellites. Fig. 1 shows the structure of a component-based
MCS. Since the time windows for active connections to satellites
can be short due to their orbit and visibility to ground stations,
the availability of the MCS during such phases is crucial. The
MCS therefore uses redundant hardware and software. Each
entity is deployed twice and some are grouped into chains of func-
tionality, which are groups of components working together as a
unit.

For example, an MCS must be tailored to specific missions and
reconfigured for different mission phases. The Mission Planning Sys-
tem is responsible for configuring and observing the other system
entities based on the mission specific characteristics. Likewise,
the Telemetry Server analyzes telemetry data and preprocesses it
for the mission operators. The Archive stores telemetry data perma-
nently and is fed by the Telemetry Server. The Telecommand Server
is responsible for creating and sending new commands issued by
the mission operators.

These four entities form a task chain that provides the main
MCS functionality. To avoid single points of failure, this chain is
replicated. A primary chain is active during normal operation, as
shown in Fig. 1. If a fault occurs in the primary chain, the complete
chain must be passivated and a backup chain must assume opera-
tion through a warm-passive failover. All components of the back-
up chain are already deployed to assume responsibility as quickly
as possible.

The Network Interface System serves as a gateway from the
ground stations to the MCS through a wide area network. It uses
the space link extension protocol to process and transmit all mis-
sion relevant data to and from the MCS. The Network Interface Sys-
tem is not part of the MCS chain and is replicated separately.

2.2. Fault-tolerance requirements of the MCS case study

The MCS chain forms a unit of failover and recovery. Providing
replication and recovery semantics for component groups must
therefore support the following requirements:

Requirement 1: Fault isolation. In the MCS scenario the compo-
nents within one chain depend on each other. A
failure of one component must lead to the auto-
mated shutdown and failover of all components
within the same chain. If the Telemetry Server,
for example, crashes, all other components in
chain A should be deactivated and the four com-
ponents in chain B should resume operation.
MCS therefore needs timely detection of the fault
and correlation of this fault to the group as a
whole so that subsequent group-wide shutdown
and recovery actions can be initiated in real-time.
Section 3.3.1 describes how CORFU provides
timely detection of faults and correlates them to
group-wide semantics.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
Requirement 2: Ensure fail-stop behavior. After a fault has been iso-
lated by determining affected components, it is
necessary to regard these components as inconsis-
tent, which may carry transient faults. Subse-
quently, this chain must be shutdown to prevent
further propagation of the fault. All affected com-
ponents must therefore be stopped as soon as pos-
sible, i.e., the time from error detection to the
complete stop of all affected components must
be minimized. Section 3.3.2 describes CORFU’s
support for fail-stop semantics.
So the system state is not corrupted. In the exam-
ple of the telemetry server failing, the archive
might store data that is not correct and the Tele-
command Server might issue commands based
on telemetry data that is no longer valid.

Requirement 3: Service recovery. When components of the primary
chain fail and are deactivated, all components in
the backup chain must be promoted to serve as
the primary, and process incoming requests.
Although the MCS scenario presented here only
contains one backup failover unit (and thus only
one backup replica per component), the mecha-
nism generally must account for any number of
backups. With more than one backup, however,
the system could have components failing over
to replicas in different chains, thereby causing
performance problems or even malfunctions due
to the way components are deployed on a given
infrastructure.
To achieve successful failover it is necessary to
synchronize the promotion of backup compo-
nents. In passive replication this involves ensuring
that the correct backup replicas become prima-
ries. To ensure consistent system state after failov-
er the middleware must ensure that all backups
that become primaries belong to the same failover
group. Section 3.3.3 describes how CORFU pro-
vides support for group-wide failure recovery.

Requirement 4: State dissemination. As the MCS scenario uses pas-
sive replication, state dissemination mechanisms
must be provided to keep the state of the replica
components consistent with that of the primary
component. Moreover, state dissemination over-
head should not adversely affect the client’s
response time. This indicates that as the size of
the application state and number of replicas
increase, reliable group communication based
mechanisms must be favored over reliable point-
to-point (multiple unicast) communication. Sec-
tion 3.3.1 describes how CORFU supports mecha-
nisms for timely and consistent transfer of state
to replicas.

2.3. DRE system and deployment model

The MCS is being developed using the Lightweight CORBA Com-
ponent Model (LwCCM) [11] and it is deployed using the OMG
LwCCM deployment and configuration (D&C) specification [12].
The LwCCM D&C specification comprises two parts: (1) a manage-
ment model that defines the roles of the various actors and (2) a
data model that defines the metadata format for the deployment
and configuration properties of the DRE components that are used
by the actors in deploying and configuring the components. The
central entity in the management model of the LwCCM D&C spec
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

4 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
is the ExecutionManager, which is responsible for instantiating
DomainApplications as defined in deployment plans.

A deployment plan is part of the data model of the LwCCM D&C
specification. It contains information about component implemen-
tations and corresponding instances present in the system. The
deployment plan captures component inter-dependencies through
connections between their ports. It also contain configuration
properties that allow tailoring of components to the specific
deployment. Each deployment plan is handled by a DomainApplica-
tionManager that provides the administration interface to start and
stop the application. A component server hosts containers and pro-
vides the runtime process context for the components.
3. The structure and functionality of CORFU

Addressing the fault-tolerance and timeliness requirements of
DRE systems described in Section 2.2 requires innovative solutions
that can leverage and integrate with the middleware platforms
used by DRE systems. This section describes how the structure
and functionality of CORFU provides DRE systems with passive
replication of a group of components treated as a logical failover
unit [13], which contains a set of components that have dependen-
cies with respect to failure propagation. Failover units allow for
failure reaction times suitable for DRE systems by terminating a
group of components with a single logical execution step, rather
than reacting on slow failure propagations.

CORFU’s layered architecture is shown in Fig. 2. This architec-
ture enables CORFU to provide sophisticated fault-tolerance capa-
Fig. 2. CORFU layere

Fig. 3. The FLARe middl

Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
bilities, including support for component group replication and
failover. Each layer of fault-tolerance functionality is provided
along four fundamental dimensions of fault-tolerance, including
(1) replica grouping, which defines the replicas that form one logi-
cal entity for group failover, recovery, and synchronization of inter-
nal state, (2) error detection, which detects and reports failures to
initiate failover operations for the group, (3) failover mechanism,
which redirects processing of client requests in case of a detected
failure, and (4) state dissemination, for maintaining the state of rep-
licas consistent with the primary.

The rest of this section describes how CORFU’s layered architec-
ture provides these four dimensions of fault-tolerance, starting at
the lowest layer working up through the layers.
3.1. Architectural foundation of CORFU: fault-tolerance for individual
objects

CORFU’s lowest layer of support for fault-tolerance at the level
of individual objects is based on our earlier work on FLARe [14],
which is a middleware framework that achieves real-time fault-
tolerance through passive replication of distributed objects, as
shown in Fig. 3. FLARe is based on the CORBA architecture and pro-
vides lightweight fault-tolerance for CORBA objects (i.e., not
LwCCM components). We base CORFU on FLARe for the following
reasons that make it suitable for DRE systems: (1) FLARe uses pas-
sive replication and allows failover mechanisms that are suitable
for resource constrained DRE systems and (2) its adaptive and pre-
dictable failure recovery mechanisms provide algorithms and
d architecture.

eware architecture.

failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 5
mechanisms to assure real-time performance even in the presence
of failures.

FLARe supports the four dimensions of fault-tolerance outlined
above as follows:

1. Replica grouping. The primary entity for replica grouping is the
ReplicationManager (Label A in Fig. 3), which is a standalone
server that registers all existing replicas of a DRE system. Rep-
licas representing one logical object are registered with the
ReplicationManager by the server application using a shared
replica object ID string. The ReplicationManager builds a list
of replica object references per object ID, which is known as
the RankList.
A RankList defines the order in which replicas are activated in
case of their predecessors failing. This mechanism allows FLARe
to change the order at system runtime based on monitored load
on hosts. The replica object ID is added to each fault-tolerant
object reference on the server side through an IORInterceptor
that allows modifications of Interoperable Object References
(IORs).

2. Error detection. FLARe detects errors in two ways. Clients detect
errors based on CORBA exceptions that occur when establishing
or using a connection. The ClientRequestInterceptor (Label C in
Fig. 3) gets notified and can analyze which exception was
thrown. If the exception indicates a server failure, a failover is
initiated (as described next). The ReplicationManager obtains
information about failed hosts and failed processes through
the HostMonitor applications that run on each host.
A host failure is detected by receiving heart-beat messages from
the HostMonitors. If a message is not received within a given
time, a host failure is assumed. Each server application on a host
registers with the local HostMonitor, which then observes the
liveliness of the process through a TCP/IP connection. If the
connection is closed without previous deregistration of
the application, a process failure is assumed and reported to
the ReplicationManager.

3. Failover mechanism. Failovers are performed transparently on
the client. For this purpose, a ClientFailoverManager (Label B in
Fig. 3) contains a RedirectionAgent that is updated periodically
and proactively with failover and redirection targets by the
ReplicationManager as it tracks group membership and load
changes.
The ClientRequestInterceptor is a part of the ClientFailoverMan-
ager and is registered with CORBA’s object request broker.
Whenever a connection to a server object fails, the request is
forwarded automatically to a backup replica. The client applica-
tion contains a RedirectionAgent that receives and stores up-to-
date RankLists from the ReplicationManager on a regular basis.
In case of a connection error, the request interceptor communi-
cates with the redirection agent to obtain the next known refer-
ence to a server replica. A failover can thus be performed in a
decentralized manner in every client without the need to com-
municate with the central ReplicationManager during failover,
thereby enhancing FLARe’s scalability and preventing the Repli-
cationManager from becoming a bottleneck.

4. State dissemination. With every application, FLARe provides a
StateTransferAgent (Label D in Fig. 3) to allow server objects
within one group to synchronize their application states. To
minimize impact on client-perceived response times, the State-
TransferAgent supports two strategies of state dissemination.
First, point-to-point communication like in FLARe using CORBA
and second, group communication using anonymous publish-
subscribe substrate. Unlike FLARe, however, CORFU hides the
complexity of using these strategies by exposing only a choice
to be made by the application developers using declarative
metadata.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
3.2. First-class support for component-level fault-tolerance

The next layer in CORFU’s architecture provides fault-tolerance
to individual components. This layer adds no new fault-tolerance
capability, but instead raises the level of fault-tolerance abstrac-
tion provided by FLARe to encompass components rather than (just)
objects. The four dimensions of CORFU fault-tolerance supported at
this layer include the following:

1. Replica grouping. Since components can consist of several
objects, replica objects must be grouped according to which
object they represent and by the component to which they
belong. CORFU’s component server helps automate the regis-
tration of replicas within the FLARe infrastructure. The com-
ponent server will create as many names as there are
objects implementing a component, using the component
name as a prefix of the replica object ID name. This design
allows grouping the replicas according to their component
and also preserving the object ID scheme of the basic FLARe
mechanism.

2. Error detection. The component server not only automatically
initializes the ClientRequestInterceptor that detects connection
failures as described earlier, but also automatically starts a
thread for communication with the local HostMonitor. It also
establishes the necessary connection to the HostMonitor,
thereby ensuring that each fault-tolerant component server is
monitored automatically.

3. Failover mechanism. CORFU automates server- and client-side
initialization of FLARe’s mechanisms for failover, including the
redirection agent on the client-side that allows all component
servers to automatically receive the rank lists from the Replica-
tionManager. On the server all IORInterceptors are automati-
cally registered and transparently modify IORs to contain the
replica object ID necessary for failover operations.

4. State dissemination. State dissemination process in CORFU is
divided in two distinct steps: state extraction and state transfer.
For state extraction, CORFU exposes FLARe’s StateTransferAgent
to components.

The interfaces for state transfer between replicated components
are described in [15], which are integrated into the component
container and into required component interfaces.

For state transfer, CORFU not only provides FLARe’s point-to-
point communication using CORBA but also supports anonymous
publish-subscribe communication using Data Distribution
Service (DDS) [16]. CORFU provides XML annotations in the
deployment plan to allow application developers to choose the
transport mechanism they desire. Section 3.3.4 describes this
mechanism in detail.

3.3. First-class support for fault-tolerant component groups

The topmost layer in CORFU is responsible for providing fault-
tolerance to groups of components that are designated as failover
units. This capability is a significant contribution of CORFU and is
explained below in accordance with the four dimensions of fault-
tolerance described earlier.

3.3.1. Replica grouping for component groups
Challenge: The challenge of managing replicas of component

groups results from the need to group dependent components
into entities that expose fail-stop behavior as a whole and pro-
vide the basis for fail overs. Meeting this challenge is hard since
the component-based DRE system description given by a
deployment plan is flat lacking support for component hierar-
chies or fault-tolerance related properties. Likewise, the LwCCM
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

6 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
runtime management interfaces do not support operations on
groups of components or support fault-tolerance configuration.
Addressing these limitations while remaining compliant to the
standard is necessary since it ensures that the standard LwCCM
programming model and existing application code is not
impacted.

Solution ? failover units managed by a FaultCorrelationManag-
er: Adding support for failover units involves two steps: (1) extend
LwCCM D&C metadata format to support the notion of failover
units in a way that does not violate the standard and (2) at the run-
time level, maintain logical failover units in the management ser-
vice. At the D&C level, CORFU realizes each failover unit as a
separate deployment plan. Additional standard compliant proper-
ties are added to the D&C descriptors in the form of infoProperties,
which indicate the ID of the failover unit and its rank in the list of
failover targets. These additions enable CORFU to seamlessly use
existing D&C actors to start and shutdown a failover unit when
necessary.

The runtime aspects of failover units are realized by a
management service called the FaultCorrelationManager, which
manages failover units belonging to a system. To integrate the
FaultCorrelationManager into the existing D&C infrastructure,
the Decorator pattern [17] is applied. The FaultCorrelationMan-
ager implements the ExecutionManager interface and can there-
fore be accessed by any service that uses the ExecutionManager
interface. The resulting deployment system structure is depicted
in Fig. 4.

The benefit of CORFU’s FaultCorrelationManager design is that
for a client (i.e., the PlanLauncher) it is indistinguishable whether
it interacts with the ExecutionManager directly or with a FaultCor-
relationManager. The FaultCorrelationManager will forward all re-
quests to the ExecutionManager, but will also perform additional
actions based on the failover unit info-properties prior to delegat-
ing to the ExecutionManager. Moreover, the FaultCorrelationMan-
ager design ensures that all computation-intensive operations are
performed at system start-up, which optimizes reaction times after
a system is activated.
3.3.2. Efficient error detection at component group level
Challenge: If any component of a failover unit fails, the entire

component group must fail and the recovery must be triggered
quickly. The challenge for error detection is that failover units
can be large. Despite the size, it is necessary that errors be detected
quickly and correlated with the failover unit semantics since other-
wise it may adversely impact the QoS requirements of DRE
systems.

Solution ? a fast fault correlation algorithm: CORFU relies on
the underlying FLARe layer to detect a fault in a single object,
and hence in a single component. CORFU provides a fast fault cor-
relation algorithm to correlate these detected errors with the fai-
lover unit so that shutdown operations for the unit can be
initiated. Algorithm 1 depicts the fault correlation algorithm.
Fig. 4. FaultCorrelationManager integration into the D&C infrastructure.

Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
Algorithm 1: FAILURE-REACTION (h,F)

Input: host name h

Input: list of failed object ids F

Data: Component Instance Map I

Data: Node Map N

Data: DomainApplicationManager Map M

/* phase 1 – determining affected failover units */;

look up object_id map O with key h in N;

create empty set P of deployment plan names;

for each Fi 2 F do
look up instance name i with key Fi in O
look up plan name p with key i in I;
if p is not in P then

add p to P
end

end

/* phase 2 – shutting down all affected components */;

for each p 2 P do
look up DomainApplicationManager m with key p in M;
retrieve list of ApplicationManagers A through m.get-

Applications ();
for each NodeApplication a 2 A do

call m.destroyApplication (a);
end

end

The efficiency of Algorithm 1 hinges on the actions of the Fault-
CorrelationManager during the deployment phase and on how it
populates the data structures. For efficient lookups, FaultCorrela-
tionManager makes use of hash maps.

Algorithm 1 operates on these maps to process fault notifica-
tions during system operation. This processing occurs in two
phases. In phase one, all affected failover units (represented as
deployment plans) are determined based on the failure informa-
tion using the internal maps. In phase two, existing D&C actors
(namely the DomainApplicationManagers) stop all component
applications that belong to these deployment plans.

The runtime complexity of this algorithm is proportional to the
number of affected node applications, which can maximally be
Oðm � nÞ, where m is the number of deployment plans in the sys-
tem and n the number of nodes in the system. This complexity
stems from the fact that each NodeApplication of each affected
deployment plan must be shut down separately according to the
D&C interfaces. The complexity of the part that determines which
plans are affected is proportional only to the number of received
failure entities and is optimized by using hash maps.

3.3.3. Failover of component groups
Challenge: Supporting failover units as a first-class attribute in

the CORFU middleware implies that after failure, all components
within the group must failover to a replica failover unit. Since COR-
FU enhances the object-level failover capabilities provided by
FLARe, it is necessary to map the semantics of the group to a collec-
tion of objects. Moreover, since FLARe uses the notion of a ranked
ordering for objects, this concept should carry over to the seman-
tics of the failover unit. Adding these semantics directly within
the ReplicationManager would break the abstraction layering,
since the ReplicationManager operates on the object level.

Solution ? failover constraints: CORFU handles this challenge by
modifying the ReplicationManager’s RankList ordering algorithm
such that it can process failover constraints. Fig. 5 shows an
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

Fig. 5. Interaction between FaultCorrelationManager and ReplicationManager
through failover constraints.

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 7
example system infrastructure with three replicated components
grouped into a failover unit with two backup units.

The FaultCorrelationManager transforms this information into
failover constraints that define an order of objects per replica ob-
ject ID. An ordered sequence of host names defines the failover or-
der of each replica. The first host list entry indicates where the
primary is hosted and the following hosts contain backup compo-
nent replicas. Since every host has only one replica of the same
group, this object ID uniquely identifies a replica.

The FaultCorrelationManager provides another algorithm called
Failover Unit (FoU)-Ordering to create constraints based on infor-
mation from the deployment plan. Each deployment plan repre-
senting a failover unit has an assigned rank within its group of
failover unit replicas. Algorithm 2 describes how the failover
unit-based replica ordering is done.

Algorithm 2: FoU-Ordering

Data: List of deployment plans D
Pleas
tems
Output: A constraint list L

partially sort plans in D by their ranks;

for each plan d 2 D do
for each instance i 2 d do

get object_id o property from i;
get host name n property from i;
append n to list entry of L with object_id o;

end
end
All known plans are processed in the order of their failover unit
rank. Each component entity results in one host name entry in the
Fig. 6. State transmission sequence

e cite this article in press as: F. Wolf et al., Supporting component-based
, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
corresponding object replica group. Constraints are updated using
this algorithm whenever the system structure changes. These
changes occur when new deployment plans are loaded or when
failures occur and deployments are removed.

3.3.4. Real-time aware group-wide state dissemination
Challenge: To address the timeliness requirements, applications

may dictate when snapshots shall be distributed from the primary
replica to backup replicas. There are two main types of timing
behavior: (1) cyclic timing, where state is updated based on a given
time interval and (2) acyclic timing, where specific events (such as a
client request handling in the primary) triggers state synchroniza-
tion. Since the timing cannot be predicted in the acyclic case, active
involvement of applications is needed to disseminate state at the
right time. Combining both cases into a general framework mech-
anism is thus needed to ease the burden of the application devel-
oper without restricting timing schemes.

Solution ? CHESS framework: We designed the Components
with HEterogeneous State Synchronization (CHESS) framework
within CORFU that treats both cases in a uniform way. This ap-
proach includes several steps of interaction between an application
and a StateSynchronizationAgent, which is a CORFU-supplied
agent for state synchronization. Each process containing server ob-
ject replicas also hosts a StateSynchronizationAgent that is respon-
sible for all replication related functionality and therefore removes
this obligation from the application developer.

The sequence of interactions described in Fig. 6 provides a
mechanism for flexible and generic state dissemination, as de-
scribed below:

(a) Registration of components with the StateSynchronization-
Agent through a unique application ID allows the manager
to retrieve state from the application when needed. The reg-
istration is performed during the start-up phase of the
component.

(b) The StateSynchronizationAgent exposes the interface
method state_changed (in string id) that allows the
component to indicate a change of its internal state, which
then triggers state synchronization. The id parameter is
needed by the agent to identify the component among all
locally deployed components managed by this agent.

(c) It is the agent’s responsibility to react to the notification of a
state change and retrieve the component state from the
component that issued the notification. Agents retrieve com-
ponent state by calling back the get_state() method,
which is an upcall method invocation on the application
object to retrieve application state that is serialized for
distribution.
based on a common interface.

failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

Fig. 7. The strategy pattern applied to state synchronization.

8 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
(d) As the final step, the StateSynchronizationAgent will then
distribute component state to backup replicas in form of
the CORBA any instance, which stores the data type infor-
mation together with the value in a serialized format.

To allow for variability in state size and transport mechanisms
used, CHESS uses the Strategy pattern [17, p. 315f] so applications
can flexibly select the desired protocol at runtime. The state
dissemination mechanism is represented by an object interface
that provides a generic way to access all variants of state dissemi-
nation in a uniform manner. This pattern shields component
developers from the concrete protocol for state dissemination.
The Strategy pattern implementation is available as part of the
StateSynchronizationAgent.

When applications create and register component replicas they
can set a policy to determine which mechanism will be used by the
agent. The agent then will instantiate the appropriate concrete
strategy object instance and associate it with the application to
use with every dissemination of state information.

Fig. 7 shows how CHESS supports two different communication
mechanisms using the Strategy pattern: (1) synchronous CORBA
calls and (2) multicast communication based on OMGs Data Distri-
bution Service (DDS) [16]. By providing a strategized approach to
state synchronization, applications can choose to configure the
mechanism best suited to their performance and fault-tolerance
requirements.
4. Qualitative and quantitative analysis of CORFU

This section evaluates CORFU using two different approaches.
First, we conduct a qualitative analysis of development effort by
Fig. 8. Responsibilities for se

Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
comparing object-oriented development of fault-tolerant applica-
tions with development using the CORFU component-based infra-
structure. Second, we evaluate CORFU’s timing behavior to show
its suitability for DRE systems by measuring failover unit shut-
down latency and client perceived fail over latency (which includes
the state transfer capabilities provided by CHESS).

4.1. Evaluating component-based fault-tolerance with object-oriented
fault-tolerance

Developing applications based on distributed object-oriented
fault-tolerance (e.g., using the mechanisms provided by FLARe) in-
curs additional effort relative to component-based fault-tolerance
(e.g., using the mechanisms provided by CORFU). Below, we qualify
this additional effort and contrast it with CORFU.

Development obligations of object-oriented fault-tolerance: FLARe
requires different means to implement fault-tolerance on the ser-
ver than on the client. The difference stems from variations in
the infrastructure on the client and server. Fig. 8 describes the obli-
gations related to server development. These obligations can be
grouped into (1) object implementation obligations that each COR-
BA servant must implement to integrate into the fault-tolerance
infrastructure, (2) initialization obligations an application needs
to perform to use FLARe functionality and (3) configuration obliga-
tions at start-up that configure application fault-tolerant aspects.

Some initialization steps (such as HostMonitor thread instanti-
ation and registration) are just performed once per process. Other
steps (such as object implementation obligations, application
configuration, and registration of objects with the ReplicationMan-
ager), must be done for each object in a process. Client initializa-
tion is not as complex, but still involves several process-wide
initialization steps (such as creating and registering the redirection
agent and the request interceptor).

Consequences for application development: The presented obliga-
tions result in considerable effort for application development.
Manually implementing these initialization steps in clients and
servers increases the risk of accidentally omitting or confusing
steps. It also limits software reuse for different deployment scenar-
ios since the number and types of object replicas per-server pro-
cess are hard coded. Collocating objects within one process
require recompilation of the server application and changes of con-
figuration metadata.

Benefits of CORFU’s component-based approach: By integrating
FLARe functionality into a fault-tolerant component server, CORFU
overcomes many limitations with traditional object-oriented fault-
tolerance approaches. For example, CORFU’s client and server
capabilities are available within the same component server, which
is an important architectural capability since CORBA objects often
play both client and server roles simultaneously. Below we present
the benefits of CORFU’s component server approach by evaluating
rver-side fault-tolerance.

failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

1 Since state synchronization overhead is highly application dependent and can
skew overhead measurements, we take state synchronization time into account in the
third experiment, where we measure client perceived failover latency.

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 9
them in terms of the three different types of obligations outlined
above:

(a) Component-based application business logic: The application
business logic in a component is provided by the servant
executor, which is similar to an object implementation in
CORBA 2.x. Unlike CORBA 2.x, however, LwCCM provides
code generation functionality in the form of the IDL and CIDL
compilers that can automatically create necessary code arti-
facts thereby completely decoupling a servant executor from
having to provide additional code to integrate with the fault-
tolerance mechanisms.

(b) Initialization: Most client and server initialization states can
be done automatically. CORFU’s fault-tolerant component
server hides the complexity of initializing FLARe entities
from component developers. The registration of individual
components with the framework are also done automati-
cally by CORFU’s fault-tolerance-aware session container.

(c) Configuration: Instead of using proprietary mechanisms on a
per-application level, CORFU’s component server approach
enables the use of standardized configuration mechanism
provided by the LwCCM D&C specification. Special fault-tol-
erant component attributes are used in the context of COR-
FU’s automated configuration framework, so that no
proprietary solutions that differ from application-to-applica-
tion are needed.

Summary of analysis: CORFU increases the transparency of using
fault-tolerance mechanisms for both client and server develop-
ment. This transparency allows application developers to focus
on implementing their application business logic, while fault-toler-
ance aspects can be added and configured orthogonally. It is possi-
ble to collocate fault-tolerant components without changing their
implementation code. CORFU therefore also substantially improves
the flexibility of system deployment and system evolution. More-
over, there are fewer possibilities for accidental faults in applica-
tion development since initialization is performed in a standard
way by the component server.

4.2. Experimental results

Below we present experiments that evaluate the timing behav-
ior of CORFU and quantify the overhead and latencies involved in
its failover mechanisms. First, we evaluate the overhead in client’s
call-path due to client-side interceptor and its capability to failover
to the next server replica in the order of RankList. Second, we eval-
uate the overall time taken by CORFU’s FaultCorrelationManager to
react to a failure and shutdown the primary failover unit. Third, we
evaluate the client perceived latency with the increasing size of the
failover unit and where the failure occurs within a failover unit. Fi-
nally, we evaluate how CORFU reacts in the case of processor fail-
ure. All experiments except the last one assume process failures
only.

4.2.1. Testbed
All experiments have been conducted on ISISLab (www.isi-

slab.vanderbilt.edu), which is a LAN virtualization environment
containing up to 56 identical blades connected through 4 Gbps
switches that allow for dedicated links per experiment. Each blade
has two 2.8 GHz Xeon CPUs and 1 gigabyte RAM. The Fedora Core 6
Linux distribution with rt11 real-time kernel patches is used as
operating system. The enhancements to FLARe and the CORFU
implementation are based on TAO version 1.6.8, a real-time CORBA
implementation and CIAO version 0.6.8, which is an implementa-
tion of LwCCM. CORFU and all testing applications have been built
using the GNU compiler collection (gcc) version 3.4.6.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
4.2.2. Overhead measurements
Experiment setup: This experiment compares the overhead a cli-

ent experiences for CORBA 2.x object-oriented applications and
LwCCM component-based applications. A client application peri-
odically invokes an operation on a replicated server application.
For each call the server processing time and the response time
on the client side are measured. The communication latency is cal-
culated by subtraction of the processing time from the response
time.

Requests are made with a period of 200 ms. A defined execution
time of 20 ms is realized through the CPU worker component of the
system execution modeling tool CUTS [18]. On the 11th invocation,
a fault is injected in the server process to shut it down, which then
causes the client to failover to the server’s backup replica.

All primary servers are hosted on one host, the backup servers
are hosted on a separate host. The clients are deployed on an addi-
tional host. CHESS state synchronization module is disabled in this
experiment because it is needed only when the primary servers
modify their state.1

The experiment is implemented in two variants. The first vari-
ant is object-oriented and consists of a client and a server execut-
able that directly use FLARe functionality. The second variant is
component-based and uses CORFU’s fault-tolerant component ser-
ver. Each variant has three different experiment configurations
with one, two, and four client server groups running simulta-
neously. We repeat each measurement configuration 100 times
to obtain representative results.

Analysis of results: An example for a single measurement for fail
over latency given in Fig. 9 represents the component-based case
with one running component. Ten invocations before and after
the failure event are recorded. The first ten invocations show a
communication overhead between 0 and 1 ms, which represents
failure-free communication with the primary server component.

The client experiences an increased response time on the elev-
enth request, since the primary server is no longer responding. This
results in a client failover that involves the interception of a CORBA
exception and the forwarding to a backup replica. As shown in
Fig. 9, latency increases from 1 to 4 ms for the client.

Fig. 10 shows the latency averages and jitter minima and
maxima as measured in all six configurations. The CORBA 2.x-
based object-oriented experiment with one application shows a
communication overhead of approximately 3 ms, while the corre-
sponding component-based experiment has a latency of 4 ms. This
result shows that the extra cost for CORFU’s LwCCM component-
based fault-tolerance with 25% additional overhead is relatively
small.

The component-based experiments with configurations of two
and four applications have a much lower jitter and a similar aver-
age of 4 ms, whereas the object-oriented examples have growing
latencies. This latency and jitter increase—which is proportional
to the number of applications—is not directly related to the failover
mechanism but reflects the implicit differences between the exper-
iment variants. In the object-based case, executables start process-
ing right away while a component is first loaded into the container
and then triggered later on to start processing. Nevertheless, the
results show that there is no unreasonably high overhead for COR-
FU’s component-based fault-tolerance.

4.2.3. Failover unit shutdown latency
Experiment setup: This second experiment measures the latency

involved in the process of shutting down failover units of various
sizes. The following factors contribute to shutdown latency:
failover units in middleware for distributed real-time and embedded sys-

http://www.isislab.vanderbilt.edu
http://www.isislab.vanderbilt.edu
http://dx.doi.org/10.1016/j.sysarc.2010.07.006

Fig. 9. Single failover latency measurement.

 0

 10

 20

 30

 40

 50

 60

Object 1 App Object 2 App Object 4 App Comp 1 App Comp 2 App Comp 4 App

La
te

nc
y

(m
s)

3.1
5.9

9.97

3.91 3.59 4.22

Fig. 10. Results for failover-latency measurements.

10 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
(a) Error detection and notification delay from the failure of a
component to the beginning of the notification processing
in the FaultCorrelationManager.

(b) Reaction delay within the FaultCorrelationManager to deter-
mine which components are affected and which deploy-
ments therefore need to shutdown. This latency is
dependent on the size of the failover unit.

(c) Shutdown time using the LwCCM D&C services (DomainAp-
plicationManager) and its interfaces to destroy the affected
NodeApplications. Depending upon how D&C services are
implemented, this latency may or may not depend on the
size of the failover unit.

To observe the impact of the size of the failover unit, we in-
creased the number of components in a failover unit from two to
five. The structure of the five component experiment and the se-
quence of events are shown in Fig. 11. The setup includes seven
processing nodes of which one node is dedicated for the CORFU
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
management entities, such as the ReplicationManager, the Fault-
CorrelationManager, the ExecutionManager, and other elements
of the LwCCM D&C runtime. Five other nodes have a HostMonitor
deployed to observe the system state per node.

Each node hosts one component for each of the five deployed
failover units. There is one primary failover unit that includes
one component per node, named A0 to E0. This failover unit is
replicated four times ensuring that no two replicas of the same
component are collocated on the same node. Each backup unit
contains replica components An to En of each component in the
primary unit. The failover order of the units corresponds to their
number.

The client is deployed on node-7 as shown in Fig. 11. At the
beginning of the experiment, the client initiates communication
with component A0. The failures are triggered at the predeter-
mined iterations in the active server component. Subsequently, cli-
ent fails over to the next replica of component An, which belongs to
the next failover unit.
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

Fig. 11. Setup for FOU shutdown latency measurement.

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 11
As the experiment progresses, failures are triggered leading to a
failover sequence of primary FOU, backup FOU 1, backup FOU 2,
and so on. Each experiment run therefore allows us to measure
four failover latencies. Due to the need for consistent time, all mea-
surements are taken on node-1 in the FaultCorrelationManager,
which alleviates the need for synchronized clocks. The events are
timestamped in the following sequence:

(a) A failure is provoked in component An of the active FOU,
which is detected by the HostMonitor and reported to the
ReplicationManager.

(b) The ReplicationManager notifies the FaultCorrelationManag-
er about the failure and the FaultCorrelationManager takes a
timestamp t1.

(c) The FaultCorrelationManager performs the FAILURE-REAC-
TION algorithm and takes a timestamp t2 after the affected
failover units have been identified in phase 1.

(d) The FaultCorrelationManager accesses the DomainApplica-
tionManager to retrieve all node applications for the corre-
sponding deployment plans and iterates through them to
shut them down. After the last call is returning, a third time-
stamp, t3, is taken to indicate the end of the shutdown
request.

(e) The HostMonitors notify ReplicationManager about all the
shutdowns of the affected components, which in turn noti-
fies FaultCorrelationManager. Upon reception of the last
shutdown notification, a timestamp t4 is taken in FaultCorre-
lationManager that represents the time when the failover
unit is completely shutdown.

Analysis of results: The results are summarized in Table 1. Three
essential components of the latency from this experiment include
the following:

� Reaction time (treaction), which is the time spent within the Fault-
CorrelationManager between the arrival of the first failure noti-
fication and the beginning of the shutdown process. The
Table 1
Shutdown latencies (min and max) of failover units of various sizes.

Size of failover unit tround-trip ðt4 � t1Þ (ms) tshutdown ðt3 � t2Þ (ms)

Min Avg Max Min Avg Max

2 192 215.6 265 13 14.4 16
3 138 225.4 283 18 21.9 26
4 130 263.1 313 23 26.9 31
5 252 267.4 310 32 32.9 35

Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
reaction time constitutes the time needed to execute the FAIL-
URE-REACTION algorithm and to serialize incoming notifica-
tions into a thread-safe queue to ensure correct processing of
potentially concurrent error notifications. We observed that
treaction was consistently under 1 ms in the experiment and
therefore we do not consider it further in the experiment.
� Shutdown time (tshutdown), which is the time needed to invoke

D&C services provided by the DomainApplicationManager to
terminate the remaining live components in the failover unit
where the failure occurred. Table 1 shows that minimum, aver-
age, and maximum values of tshutdown increase linearly with the
increasing size of the failover unit. This result is clearly an arti-
fact of the implementation detail because an iterative construct
is used in the FaultCorrelationManager to invoke the LwCCM
D&C services.
� Round-trip time (tround-trip), which is the time difference between

the notifications of the first component failure and the last com-
ponent shutdown (treaction and t shutdown are both subcomponents
of tround-trip). In spite of the predictability of prior two subcompo-
nents, Table 1 indicates that tround-trip is not predictable (but
bounded at 313 ms). This result is expected due to the inherent
non-determinism in three timing subcomponents: (1) the time
taken by component server processes to shutdown gracefully,
(2) the subsequent failure notification going from the HostMon-
itor to the ReplicationManager, and (3) concurrent handling of
these notifications in the FaultCorrelationManager.

4.2.4. Impact of failover unit size on client perceived shutdown latency
Experiment setup: The third experiment measures client per-

ceived failover latency and how the location of the failing compo-
nent in a failover unit affects it. The deployment of components
and failover units in this experiment is identical to the previous
one, though we make two important changes in the functionality
of the application:

� We enabled CORFU’s state synchronization module to allow ser-
ver components to synchronize their internal state with their
replicas. Synchronization occurs synchronously using CORBA
at the end of the remote method call. We did not use DDS in
these experiments.
� We allow nested synchronous invocations from component Ai

to Bi, Bi to Ci, Ci to Di, and Di to Ei for every invocation made
by the client, where i indicates then active failover unit. Upon
invocation, every component (except En) immediately invokes
its following component and waits for it to return. Upon return-
ing, it consumes CPU for a predetermined (20 ms) amount of
time. These nested invocations allow us to trigger failures in
different components instead of the just the head component
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

12 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
client talks to. In this experiment, we trigger failures in the head
component (Ai) as well as in the tail component (En) and
observe its effect on the client perceived fail over latency.

When a tail component fails, the client remains unaware of such
a failure and continues waiting for the head component to return.
Client interceptors detect failure of the head component only after
FaultCorrelationManager shuts it down as described in the previ-
ous experiment. In such a case, failover unit shutdown latency
and the order in which components are shutdown affect the client
perceived failover latency.

Analysis of results: Figs. 12 and 13 summarize the effects of loca-
tion of the failing component on client perceived failover latency
with increasing size of failover unit.

When the head component (An) of a failover unit dies, client rec-
ognizes the failure immediately, and CORFU’s interceptors redirect
the client to the next available failover unit. We therefore do not
observe a linear increase in the client perceived failover latency,
even with the increasing size of failover unit in Fig. 12.

The observed latency also remains unaffected by the order in
which D&C services shutdown the components. In forward (An to
En) and reverse (En to An) iteration order, the failover latency re-
mains tightly bounded at 13 ms. The increase in the client per-
ceived failover latency compared to the first experiment is due to
the state synchronization overhead at the end of each nested
invocation.

In contrast to the head component failure, client perceived fail
over latency is sensitive to the varying sizes of failover units when
the tail component fails. Fig. 13 shows that when LwCCM D&C ser-
vices shutdown components in the forward (An to En) order, client
perceived failover latency remains relatively constant because as
soon as the head component is shutdown, the client fails over to
the backup failover unit.
Fig. 12. Client perceived failover latency when the head component fails.

Fig. 13. Client perceived failover latency when the tail component fails.

Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
In the case of reverse (En to An) iteration, conversely, the head
component is the last one to shutdown causing client to wait long-
er in proportion to the size of the failover unit. Moreover, tshutdown

component described in the earlier experiment also gets added to
the overall client perceived latency.

4.2.5. Impact of processor failures
Experiment setup: The fourth experiment measures the impact

on client perceived failover latency when processors fails. We
maintained the same experimental setup as before to compare pro-
cess and processor failures. We ran two variants of the experiment:
the first simulates a processor failure of the node hosting the head
component and the second simulates a processor failure of the
node hosting the tail component.

To simulate processor failure we used the iptables utility, which
allows us to setup, maintain, and inspect the tables of IPv4 packet
filter rules in the Linux kernel. We insert a new filter rule in the
OUTPUT chain of the kernel’s iptables that drops every outgoing
TCP packet to the nodes involved in the experiment. The filtering
rule has the following two effects on the experiment:

� ReplicationManager ceases to obtain the periodic heart-beat
beacon from the HostMonitor running on the node that fails.
When the ReplicationManager fails to receive three consecutive
heart-beats from the same node, it declares node failure and
informs the FaultCorrelationManager.
� The component that invoked the remote method call on the

component running on failed node, waits till the method call
returns. In fact, the method call never returns because all the
outgoing TCP traffic is dropped at the failed node. The client will
remain blocked till the remote method call returns from the
head component if the node hosting that component fails.

Analysis of results: In case of the tail node failure, the client per-
ceived failover latency was identical to that of Fig. 13 since Fault-
CorrelationManager begins shutting down the primary failover
unit as soon as it receives a failure notification from the Replica-
tionManager. The head component the client is talking to is also
shutdown by D&C services and subsequently, the client fails over
to its next available failover unit.

In the case of head node failure, however, we observed that cli-
ent perceived failover latency is much higher than before, although
FaultCorrelationManager shuts the failover unit down. In fact, it is
bounded by TCP’s retry timeout, which is at least 100 s as specified
in RFC 1122 [19]. We verified this result by modifying the default
value, 15, of tcp_retries2 variable of kernel’s IPv4 module using ips-
ysctl utility. When the value of tcp_retries2 variable was low, the
client TCP connection times out much earlier.

This experiment indicates that current CORFU’s infrastructure
requires enhancements, particularly in the RedirectionAgent, to
force clients failover in a timely fashion in the case of head proces-
sor failure. In the following section we describe how we plan to im-
prove client perceived latency and address other limitations.

4.2.6. Summary of the analysis
The experiment results described above showcase several ben-

efits of CORFU. Using a client-side failover mechanism allows for
short fail over latencies since communication with the central rep-
lication manager in the instant of a failure is avoided. This interac-
tion with the ReplicationManager would be a bottleneck in
performance of large-scale DRE systems.

As shown by the first experiment, the client-side failover la-
tency is relatively small, being 4 ms for the component variant.
Having evaluated the benefits for CORFU concerning application
development and system deployment we also needed to ensure
that this does not drastically degrade performance and therefore
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 13
render the solution unusable for DRE applications. As our experi-
ment shows, client failover in CORFU is comparable in performance
and incurs only minimal overhead, having an average response
time of 4 ms.

Compared to the client failover latency the failover unit shut-
down latency of more than 200 ms on average is relatively high.
The reason for this is partly to be found in the iterative way a
deployment has to be shutdown based on the domain application
and node application interfaces. Another source of high response
times is the communication time between the different entities,
such as the HostMonitors, the ReplicationManager and the Fault-
CorrelationManager. The internal reaction time of the FaultCorrela-
tionManager to determine deployments that are affected by faults
is already optimized through the use of hash maps with close to
constant access times.

Based on these sources of overhead, we envision the following
four approaches to reduce the round-trip latency for failover unit
shutdown and improve client perceived failover latency:

� Concurrent shutdown: To reduce the shutdown latency, the calls
initializing shutdowns for affected node applications can be par-
allelized instead of being done in sequential order. A suitable
mechanism is the CORBA Asynchronous Method Invocation
(AMI) [20,21] specification. AMI allows the FaultCorrelationMan-
ager as a client to issue all shutdown requests without having to
wait for their response in between, which would significantly
reduce shutdown time, especially in large deployments.
� Collocation of management entities: Some communication paths,

especially between ReplicationManager, FaultCorrelationMan-
ager, and ExecutionManager can be optimized by collocating
these entities into the same process space. This optimization
greatly reduces communication times since the network stack
can be avoided and in-process (i.e., loopback) communication
mechanisms are used instead.
� Real-time CORBA: For the communication paths that need to go

through the network, communication can be made more reli-
able and deterministic by using real-time CORBA [22] features,
such as the real-time scheduling service, private connections,
pre-allocation of connections, and end-to-end priority
preservation.
� Enhanced redirection agent: CORFU’s existing Redirection Agent

reacts only when system-level exceptions are raised on the cli-
ent-side. In the case of the head processor failure, these excep-
tions are thrown when the TCP connection times out, which is
much later than the actual event of processor failure. The Repli-
cationManager must therefore communicate to the Redirection
Agent not only the RankList of IORs but also whether a proces-
sor has failed. The Redirection Agent must perform extra steps
to close the soon-to-be-dead TCP connection and force the cli-
ent to failover.

Although there is still potential for performance improvement,
the measurements show that CORFU is suitable for DRE systems,
such as our MCS case study described in Section 2, and offers com-
parable performance to the distributed object-oriented computing
fault-tolerance provided by FLARe.
5. Related work

This section compares our work on CORFU with related research
in DRE systems along the following three dimensions:

� Frameworks for fault-tolerance: Since CORFU provides fault-tol-
erance support to component-based DRE systems we compare
and contrast it with related fault-tolerance frameworks.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
� Dependency analysis for fault correlation: Since CORFU provides
fault-tolerance for a group of components treated as a failover
unit we compare and contrast it with related work on fault cor-
relation frameworks.
� Modeling dependability aspects: Since CORFU is geared to inte-

grate with and leverage the analysis of model-based frame-
works (such as MDDPro [13]) we compare it with related
modeling efforts.

In each dimension we also compare CORFU with our prior work
and summarize the novel contributions made by CORFU relative to
this earlier work.
5.1. Frameworks for fault-tolerance

A framework for fault-tolerance integrates different aspects of
dependability, including error detection, fault diagnosis, fault iso-
lation, error recovery including state consistency, and system
reconfiguration. Other forms of dependability, such as fault pre-
vention, fault removal, and fault forecasting, can also benefit from
fault-tolerance frameworks. Below we compare CORFU with prior
work that covers a wide range of fault-tolerance mechanisms pro-
vided by different frameworks and different domain scope.

Related work that is most similar to CORFU are AQUA [23,24]
and JAGR [25]. AQUA uses ACTIVE replication to provide both avail-
ability and timeliness capabilities for applications, and optimizes
the response times for applications by dynamically deciding on
the number of replicas executing the request. AQuA objects are
contained in replication groups that provide a variety of replication
schemes realized by a message-based group communication
mechanism. AQuA uses CORBA to define and implement objects
but maps them to the underlying group communication mecha-
nism. The mapping layer includes mechanisms for error detection
and failover. The fault model includes process failures that are de-
tected through heart-beat messages and data value failures. A cen-
tralized dependability manager coordinates groups and manages
the fault-tolerance infrastructure.

While AQuA supports fault-tolerance at the granularity of ob-
jects, component-based systems often includes additional levels
of granularity. For example, components themselves can comprise
objects and hence dependencies between components can result in
their need to failover together. Component-based frameworks such
as CORFU go beyond the general framework approach provided by
mechanisms like Aqua by additionally defining a component life-
cycle and development process. The benefit of such a process is
that it allows to formalize other aspects of dependability, such as
fault prevention through offline analysis or methodologies for fault
removal and system validation.

JAGR [25] builds on a component-based infrastructure for the
domain of three tier web applications with permanent data
storage. It focuses on intelligent failover mechanisms based on
dependency information gained through automatic failure-path
interference as described earlier. JAGR’s main components are a
modular monitoring structure that allows to plug in different mon-
itors for different error types. An intelligent recovery manager
gathers this information and applies micro-reboots to restart parts
of the system that are affected. Based on the result it can escalate
the reboot scope from single components to the whole system.

Mechanisms such as JAGR apply predominantly to enterprise
systems where persistence of data is important and for which large
storage capacities are available. In DRE systems, however, persis-
tent data storage and stateless components cannot be applied in
all cases due to limited storage and processing resources. The
CHESS state management mechanism provided by CORFU there-
fore takes into account state replication of individual components
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

14 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
and provides failover mechanisms as a major means for fault-toler-
ance instead of micro-reboots provided in JAGR.

There are also other frameworks for fault tolerance. For exam-
ple, Delta-4/XPA [26] provides real-time fault-tolerance to distrib-
uted systems using semi-active replication. MEAD [27] and its
proactive recovery strategy for distributed CORBA applications
can minimize the recovery time for DRE systems. The Time-trig-
gered Message-triggered Objects (TMO) project [28] considers rep-
lication schemes such as the primary-shadow TMO replication
(PSTR) scheme, for which recovery time bounds can be quantita-
tively established, and real-time fault-tolerance guarantees can
be provided to applications. DARX [29] provides adaptive fault-tol-
erance for multi-agent software platforms by dynamically chang-
ing replication styles in response to changing resource
availabilities and application performance.

Many mechanisms for providing fault tolerance and assuring
timeliness properties in these related works are orthogonal to
the focus of CORFU. It is conceivable to design a different container
mechanism in CORFU that can support active replication as in
MEAD, or support the dynamic changing of replication styles as
in DARX.

Our earlier work on the DOORS framework [30,31] provides
warm-passive replication to CORBA objects. Efforts such as DOORS
and Eternal [32] led to the standardization of the fault-tolerant
CORBA specification [33]. These efforts focus on object-based
fault-tolerance, and did not address real-time requirements of
component-based DRE systems.

Our recent work called GRAFT [34] provides a generative ap-
proach to deal with group failover. Like CORFU, the GRAFT project
identifies the lack of first-class support for fault-tolerance in com-
ponent middleware. Unlike CORFU (which provides a first-class
middleware support for group failover), however, GRAFT relies
on an aspect-oriented approach to weave in group-based fault-
tolerance.

The GRAFT approach may become a limiting factor when fault
management and recovery yields interactions with complex
semantics (e.g., timing and state consistency). In these circum-
stances, first-class support within the middleware is preferable.
Moreover GRAFT uses exceptions to detect critical errors, whereas
CORFU provides a monitoring framework that supports advanced
error detection, such as failure of component server processes,
and failure of the nodes hosting these servers.

5.2. Dependency analysis for fault correlation

A key challenge for effective failure handling is to gain compre-
hensive knowledge about which parts of a system are affected by a
fault. Faults cannot be detected directly but only through the
resulting errors they cause. Pinpointing the cause of faults allows
reasoning about system parts that are affected by the original fault.
This allows fast reaction to errors before they can cause subse-
quent errors in other parts of the system.

Obtaining knowledge of error propagation dependencies be-
tween system elements is therefore crucial to realize dependable
systems. This information can be used to determine which system
parts will eventually be compromised. This enables comprehensive
failure handling as opposed to simple reactive approaches that
provide only monitoring for the basic elements of the system. Fault
correlation is particularly important to support group failover since
any single fault within any of the participant of a failover group
must quickly be correlated as a group failure thereby effecting a ra-
pid group failover.

Research on detection and expression of failure dependencies
between system components can be categorized into (1) static
modeling and (2) observation-based techniques. Static modeling
follows a white box approach that allows system developers to
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
explicitly specify different types of dependencies and then reasons
on fault propagation based on this information. Observation-based
modeling treats systems as a black box and uses fault injection and
monitoring to analyze which errors cause which parts of the
systems to fail. This information is then used to build a system
model.

Vieira et al. [35] present an approach that automates depen-
dency analysis in component-based systems. The Component-Based
Dependency Model allows incorporating diverse types of dependen-
cies that are categorized into intra-component dependencies that
define execution and error propagation paths within one compo-
nent implementation, and inter-component dependencies that de-
fine dependencies on external component or hardware and
software infrastructure elements.

This approach is powerful because it integrates different
sources of information about the system, such as deployment
information, additional component metadata and metadata about
component connection, all of which help in the correlation. A con-
crete example is event correlation [36] in the domain of event
based systems, where dependencies between different event
sources are used to identify the original fault. This approach is sta-
tic, however, since it builds its dependency information based on
statically known metadata. It therefore cannot react to unforeseen
or emergent failures, and error propagation paths.

To address the limitations of static dependency information the
Automatic Failure-Path Inference [37] and Active Dependency Dis-
covery [38] approaches rely on system behavior analysis at run-
time. For example, the automatic failure-path inference approach
focuses on component-based web applications implemented in
Java and assumes that errors express themselves as exceptions.
Fault dependencies are captured as a directed graph called fail-
ure-propagation map. This graph is populated through direct inter-
action with the system.

Fault injection and monitoring of resulting component crashes
is used to build up an initial graph for a system. Subsequently, this
graph is corrected based on non-intrusive monitoring of the sys-
tem under nominal operation. While this approach is very flexible
in adopting the dependency information to the system it is limited
in its support of different fault types due to its focus on exceptions
and the Java programming language.

This related work on dependency analysis relates to our re-
search on CORFU since they provide methodologies to define
groups of dependent components. The related work is generally
orthogonal to CORFU, however, since they provide algorithms for
dependency analysis, whereas CORFU provides mechanisms to
honor the dependencies. It is conceivable that to improve the fai-
lover shutdown latencies shown in Section 4.2, CORFU’s compo-
nent lifecycle mechanisms may include the predetermined
dependencies to expedite the group shutdown process.

A related approach known as Rx [39] handles deterministic soft-
ware faults. Rx treats software faults as allergies correlating the ex-
act cause of the fault to its operating environment. When Rx
encounters a fault, it rolls back the application to an earlier check-
pointed state and reexecutes the application in a different operat-
ing environment. The premise behind this approach is that the
operating environment and parameters are the likely cause for
the software fault, so a change in the conditions may help elimi-
nate the fault.

5.3. Modeling dependability aspects

CORFU provides runtime middleware mechanisms for compo-
nent-based fault-tolerance, particularly for a group of components
treated as a single unit. The deployment and runtime mechanisms
in CORFU can benefit from offline analysis tools for dependability.
For example, such an analysis could include decisions on where to
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 15
deploy the components so that the overall reliability of the system
improves. Below we provide some examples of related work in this
area.

Cadena [40] is a model-driven engineering tool that supports
modeling of component behavior early in the design process
based on property specifications that capture high-level compo-
nent information. This information includes inter-dependencies
between ports of other components and intra-dependencies
that capture relationships between ports of the same component.
The properties also capture behavioral specifications that
allow reasoning of temporal behavior and control-flows within
components.

Based on this information, interface definitions and assembly
descriptions of the system model can be constructed to allow rea-
soning of various system aspects, such as event rate assignment,
effective component distribution that minimizes network traffic,
and schedulability analysis. These aspects can consider replicas
of system components to support fault-tolerance. Cadena not only
encompasses a runtime framework, but also a domain-specific
modeling tool suite for system modeling and a simulation environ-
ment for model checking and verification.

Our earlier work on MDDPro [13] focused on modeling depend-
ability QoS requirements. MDDPro’s domain-specific modeling lan-
guage provides an orthogonal view to the deployment structure of
a system and allows the annotation of fault-tolerance attributes to
components. It introduces three concepts to explicitly model com-
ponent replication:

(a) Failover units, which define a group of system entities as an
atomic unit of failover. Different parameters can be defined
on the group that characterize the type of failure recovery
strategy used (e.g., number of replicas, heart-beat frequency,
among others).

(b) Replication groups, which define what components replicate
the same logical object. Replication groups can be used to
configure state synchronization policies, such as synchroniz-
ing the state every N requests, where N is configurable; or
defining the levels of consistency including weak or eventual
consistency.

(c) Shared risk groups, which can model the probability of a fail-
ure propagating from one processing node to other nodes.
This model is realized as a tree where edges represent neigh-
boring nodes and distances in number of edges serve as a
measure for how likely a failure is to propagate.

The MDDPro modeling framework can be strategized with dif-
ferent placement algorithms that determine the mapping of repli-
cas to nodes. In particular, MDDPro focuses on algorithms that
automatically place components and their replicas to minimize
the chances of simultaneous failures. It also generates the neces-
sary deployment metadata via model interpreters. CORFU comple-
ments Cadena and MDDPro by providing a runtime middleware
infrastructure that can process and instantiate systems modeled
with Cadena or MDDPro.
6. Concluding remarks

The state-of-the-art in fault-tolerant DRE systems has not ac-
counted for application development effort, application lifecycles,
and system evolution simultaneously. Moreover, many middle-
ware-based solutions provide relatively low-level abstractions,
e.g., function-based or object-oriented. In contrast, component-
based middleware can provide sophisticated fault detection and
recovery that is suitable for DRE systems, while also improving
transparency of fault-tolerance aspects in the application develop-
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
ment process, thereby enhancing DRE system flexibility, evolvabil-
ity, and quality. This paper describes how our CORFU middleware
addresses key challenges of component-based fault-tolerance,
including the need for efficient synchronization of internal compo-
nent state, failure correlation across groups of components, and
configuration of fault-tolerance properties at the component gran-
ularity level.

We learned the following lessons from our work on CORFU pre-
sented in this paper:

(a) Fault-tolerance affects all aspects of a system and introduces
a new dimension of complexity. It is therefore hard to cap-
ture all fault-tolerance aspects in a comprehensive middle-
ware framework. Application characteristics differ greatly
even within the DRE domain, which impacts decisions on
what protocols are used, architectural concepts applied
and technologies chosen. Each of these choices might
require different approaches to fault-tolerance.

(b) Component-based middleware allows for greater fault-toler-
ance transparency. As demonstrated by CORFU’s fault-toler-
ant component server, the component-based development
paradigm and lightweight fault-tolerance integrate well,
thereby hiding key sources of complexity in this domain.

(c) Layering and separation of concerns foster flexible and
extensible architectures. This lesson became clear in the
design of CORFU’s FaultCorrelationManager. By building
the failover units on top of the existing object-based
approach and separating concerns through failover con-
straints, the FaultCorrelationManager design and implemen-
tation could be kept small and focused on its main task to
analyze the system infrastructure and react on failures using
other existing software, namely the deployment and config-
uration infrastructure.

(d) Although separation of concerns is needed to foster flexibil-
ity, care must be taken to ensure that it does not impact per-
formance. For example, the clean separation of the fault-
tolerance capabilities within the container model of LwCCM
and the reliance on the D&C actors for start-up and shut-
down may impact performance, particularly when a failover
unit must be shutdown in a timely manner. Leveraging the
D&C process in a traditional manner leads to sequential
invocation of D&C actors to shutdown the necessary compo-
nents. As the size and distribution of failover units increase,
the shutdown latency will increase linearly, which impacts
client-perceived response times.

(e) Performance of fault-tolerance is hard to measure due to the
singular nature of failures and non-determinism in net-
works, operating system and middleware. Since faults are
not periodic events in systems expecting fail-stop behavior,
the setup of experiments is complex. Each measurement can
only measure a limited number of faults before the complete
system has to be restarted. The nature of DRE systems also
makes it hard to gather reliable timing information due to
network jitter, operating system scheduling and other
sources of non-determinism. Experiments and testing
scripts must be automated to allow a sufficient number of
single measurements.

CORFU is available in open-source form as part of the CIAO
LwCCM distribution available from www.dre.vanderbilt.edu/CIAO.
References

[1] A. Romanovsky, A looming fault tolerance software crisis?, SIGSOFT Software
Engineering Notes 32 (2) (2007) 1–4 doi:http://doi.acm.org/10.1145/
1234741.1234767.
failover units in middleware for distributed real-time and embedded sys-

http://www.dre.vanderbilt.edu/CIAO
http://dx.doi.org/10.1016/j.sysarc.2010.07.006

16 F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx
[2] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, E. Böde, Boosting
re-use of embedded automotive applications through rich components, in:
Proceedings of the Foundations of Interface Technologies, 2005.

[3] M.A. de Miguel, Integration of qos facilities into component container
architectures, in: ISORC’02: Proceedings of the 5th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, IEEE
Computer Society, Washington, DC, USA, 2002, p. 394.

[4] G. Ahlforn, E. Örnulf, Ericsson’s family of carrier-class technologies, Ericsson
Review 4 (2001) 190–195.

[5] D.C. Sharp, Reducing avionics software cost through component based product
line development, in: Software Product Lines: Experience and Research
Directions, vol. 576, 2000, pp. 353–370.

[6] G.T. Heineman, B.T. Councill, Component-Based Software Engineering: Putting
the Pieces Together, Addison-Wesley, Reading, Massachusetts, 2001.

[7] Clemens Szyperski, Component Software—Beyond Object-Oriented
Programming, Second ed., Addison-Wesley, Reading, Massachusetts, 2002.

[8] Object Management Group, Lightweight CCM FTF Convenience Document, ptc/
04-06-10 Edition, June 2004.

[9] N. Budhiraja, K. Marzullo, F.B. Schneider, S. Toueg, The primary-backup
approach, in: Distributed Systems, second ed., ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1993, pp. 199–216.

[10] N. Peccia, Egos: Esa/esoc Ground Operations Software System, 2005, pp. 3988–
3995.

[11] Object Management Group, Light Weight CORBA Component Model Revised
Submission, OMG Document realtime/03-05-05 Edition, May 2003.

[12] OMG, Deployment and Configuration of Component-based Distributed
Applications, v4.0, Document formal/2006-04-02 Edition, April 2006.

[13] S. Tambe, J. Balasubramanian, A. Gokhale, T. Damiano, MDDPro: model-driven
dependability provisioning in enterprise distributed real-time and embedded
systems, in: Proceedings of the International Service Availability Symposium
(ISAS), Lecture Notes in Computer Science, vol. 4526, Springer, Durham, New
Hampshire, USA, 2007, pp. 127–144.

[14] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, D.C. Schmidt, Adaptive
failover for real-time middleware with passive replication, in: Proceedings of
the 15th Real-time and Embedded Applications Symposium (RTAS’09), San
Francisco, CA, 2009, pp. 118–127.

[15] F. Wolf, J. Balasubramanian, A. Gokhale, D.C. Schmidt, A State Transfer
Framework for Object Oriented Fault-Tolerance, Tech. Rep. ISIS-09-106,
Institute for Software Integrated Systems, Vanderbilt University, Nashville,
TN, October 2009.

[16] Object Management Group, Data Distribution Service for Real-time Systems
Specification, 1.2 Edition, January 2007.

[17] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[18] J. Hill, J. Slaby, S. Baker, D. Schmidt, Applying system execution modeling tools
to enterprise distributed real-time and embedded system qos, in: Proceedings
of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Sydney, Australia, 2006.

[19] R. Braden, Requirements for internet hosts, Network Information Center RFC
1122 (1989) 1–116.

[20] Object Management Group, CORBA Messaging Specification, Object
Management Group, OMG Document orbos/98-05-05 Edition, May 1998.

[21] A.B. Arulanthu, C. O’Ryan, D.C. Schmidt, M. Kircher, J. Parsons, The design and
performance of a scalable ORB architecture for CORBA asynchronous
messaging, in: Proceedings of the Middleware 2000 Conference, ACM/IFIP,
2000.

[22] Object Management Group, Real-time CORBA Specification, 1.2 Edition,
January 2005.

[23] S. Krishnamurthy, W. Sanders, M. Cukier, A Dynamic Replica Selection
Algorithm for Tolerating Timing Faults, DSN’01, 2001, pp. 107–116.

[24] Y.J. Ren, D.E. Bakken, T. Courtney, M. Cukier, D.A. Karr, P. Rubel, C. Sabnis, W.H.
Sanders, R.E. Schantz, M. Seri, Aqua: an adaptive architecture that provides
dependable distributed objects, IEEE Transactions on Computers 52 (1) (2003)
31–50.

[25] G. Candea, E. Kiciman, S. Zhang, P. Keyani, A. Fox, Jagr: an autonomous self-
recovering application server, in: Autonomic Computing Workshop, 2003, pp.
168–177.

[26] D. Powell, Distributed fault tolerance: lessons from Delta-4, IEEE Micro 14 (1)
(1994) 36–47. doi:dx.doi.org/10.1109/40.259898.

[27] S. Pertet, P. Narasimhan, Proactive recovery in distributed corba applications,
in: DSN’04: Proceedings of the 2004 International Conference on Dependable
Systems and Networks, IEEE Computer Society, Washington, DC, USA, 2004, p.
357.

[28] K.H.K. Kim, C. Subbaraman, The pstr/sns scheme for real-time fault tolerance
via active object replication and network surveillance, IEEE Transactions on
Knowledge and Data Engineering 12 (2) (2000) 145–159. doi:dx.doi.org/
10.1109/69.842258.

[29] O. Marin, M. Bertier, P. Sens, Darx: a framework for the fault-tolerant support
of agent software, in: ISSRE’03: Proceedings of the 14th International
Symposium on Software Reliability Engineering, IEEE Computer Society,
Washington, DC, USA, 2003, p. 406.

[30] B. Natarajan, A. Gokhale, D.C. Schmidt, S. Yajnik, DOORS: towards high-
performance fault-tolerant CORBA, in: Proceedings of the 2nd International
Symposium on Distributed Objects and Applications (DOA 2000), OMG,
Antwerp, Belgium, 2000.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
[31] B. Natarajan, A. Gokhale, D.C. Schmidt, S. Yajnik, Applying patterns to improve
the performance of fault-tolerant CORBA, in: Proceedings of the 7th
International Conference on High Performance Computing (HiPC 2000),
ACM/IEEE, Bangalore, India, 2000.

[32] L. Moser, P. Melliar-Smith, P. Narasimhan, A fault tolerance framework for
CORBA, in: International Symposium on Fault Tolerant Computing, Madison,
WI, 1999, pp. 150–157.

[33] Object Management Group, Fault Tolerant CORBA Specification, OMG
Document orbos/99-12-08 Edition, December 1999.

[34] S. Tambe, A. Dabholkar, A. Gokhale, Generative techniques to specialize
middleware for fault tolerance, in: Proceedings of the 12th IEEE International
Symposium on Object-oriented Real-time distributed Computing (ISORC
2009), IEEE Computer Society, Tokyo, Japan, 2009.

[35] M. Vieira, D. Richardson, Analyzing dependencies in large component-based
systems, in: Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (ASE), 2002, pp. 241–244. doi:10.1109/
ASE.2002.1115020.

[36] B. Gruschke, A new approach for event correlation based on dependency
graphs, in: 5th Workshop of the OpenView University Association, 1998.

[37] G. Candea, M. Delgado, M. Chen, A. Fox, Automatic failure-path inference: a
generic introspection technique for internet applications, in: WIAPP’03:
Proceedings of the 3rd IEEE Workshop on Internet Applications, IEEE
Computer Society, Washington, DC, USA, 2003, p. 132.

[38] A. Brown, G. Car, A. Keller, An active approach to characterizing dynamic
dependencies for problem determination in a distributed application
environment, in: IEEE/IFIP International Symposium on Integrated Network
Management, 2001, pp. 377–390.

[39] F. Qin, J. Tucek, Y. Zhou, J. Sundaresan, Rx: treating bugs as allergies: a safe
method to survive software failures, ACM Transactions on Computer Systems
(TOCS) 25 (3) (2007) 7.

[40] J. Hatcliff, X. Deng, M.B. Dwyer, G. Jung, V.P. Ranganath, Cadena: an
integrated development, analysis, and verification environment for
component-based systems, in: International Conference on Software
Engineering, 2003, p. 160. doi:http://doi.ieeecomputersociety.org/10.1109/
ICSE.2003.1201197.

Friedhelm Wolf graduated with a MS in Computer
Science from Vanderbilt University in May 2009. His
research focus was fault-tolerant distributed real-time
and embedded systems. He is currently working in
industry in Germany.
Dr. Jaiganesh Balasubramanian graduated with a PhD
in Computer Science from Vanderbilt University in
September 2009. His research focuses on fault tolerant
solutions for distributed, real-time, and embedded sys-
tems. He has a MS in Computer Science from University
of California at Irvine. He is currently working in
industry in NJ, USA.
Sumant Tambe is a PhD candidate in the Department of
Electrical Engineering and Computer Science (EECS) in
Vanderbilt University. His research interests include
quality of service (QoS) provisining, aspect-oriented
modeling, and code generation for component-based
systems with particular focus on fault-tolerance. He has
a MS in Computer Science from New Mexico State
University. Contact him at sutambe@dre.vanderbilt.edu.
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

F. Wolf et al. / Journal of Systems Architecture xxx (2010) xxx–xxx 17
Dr. Aniruddha S. Gokhale is an Associate Professor
in the Department of Electrical Engineering and
Computer Science at Vanderbilt University, Nashville,
TN, USA. His primary research interests are in
investigating novel model-driven engineering (MDE)
solutions for systems problems pertaining to distrib-
uted real-time and embedded systems. He is the
project lead on the CoSMIC MDE framework. He has
published over 100 technical papers. He obtained his
B.E. (Computer Engineering) from University of Pune,
1989; MS (Computer Science) from Arizona State
University, 1992; and D.Sc. (Computer Science) from

Washington University in St. Louis, 1998. Prior to joining Vanderbilt, he was a
member of technical staff at Lucent Bell Laboratories, NJ, USA. He is a member
of IEEE and ACM.
Please cite this article in press as: F. Wolf et al., Supporting component-based
tems, J. Syst. Architect. (2010), doi:10.1016/j.sysarc.2010.07.006
Dr. Douglas C. Schmidt is a Professor of Computer
Science at Vanderbilt University. He has published 9
books and over 400 technical papers that cover a range
of research topics, including patterns, optimization
techniques, and empirical analyzes of software frame-
works and domain-specific modeling environments that
facilitate the development of distributed real-time and
embedded (DRE) middleware and applications running
over high-speed networks and embedded system
interconnects. He has served as a Deputy Office Director
and a Program Manager at DARPA, where he led the
national R&D effort on middleware for DRE systems. In

addition to his academic research and government service, He has over 15 years of
experience leading the development of ACE, TAO, CIAO, and CoSMIC, which are
widely used, open-source DRE middleware frameworks and model-driven tools

that contain a rich set of components and domain-specific languages that imple-
ment patterns and product-line architectures for high-performance DRE systems.
failover units in middleware for distributed real-time and embedded sys-

http://dx.doi.org/10.1016/j.sysarc.2010.07.006

	Supporting component-based failover units in middleware for distributed real-time and embedded systems
	Introduction
	Motivating component group fault-tolerance via a case study
	Overview of the Mission Control System (MCS)
	Fault-tolerance requirements of the MCS case study
	DRE system and deployment model

	The structure and functionality of CORFU
	Architectural foundation of CORFU: fault-tolerance for individual objects
	First-class support for component-level fault-tolerance
	First-class support for fault-tolerant component groups
	Replica grouping for component groups
	Efficient error detection at component group level
	Failover of component groups
	Real-time aware group-wide state dissemination

	Qualitative and quantitative analysis of CORFU
	Evaluating component-based fault-tolerance with object-oriented fault-tolerance
	Experimental results
	Testbed
	Overhead measurements
	Failover unit shutdown latency
	Impact of failover unit size on client perceived shutdown latency
	Impact of processor failures
	Summary of the analysis

	Related work
	Frameworks for fault-tolerance
	Dependency analysis for fault correlation
	Modeling dependability aspects

	Concluding remarks
	References

