Functional description of the DEEP framework

The DEEP framework contains only one DCPS application, called the
deepParticipant. This application can be started multiple times an every instance
of this application can be configured individually. The complete set of
deepParticipants that run in a test, together with their configuration settings, is
called a scenario. The DEEP framework will be a success only if the
configuration possibilities are sufficient and easy to use. This document
describes the current DEEP scenario design. It is accompanied by a UML
diagram that shows the relations of the different entities in the scenario.

The entities in the DEEP scenario and their relations

Conceptually, every scenario is identified by its unique name. This name is used
to identify the resource where the scenario details are stored. It is up to the final
implementation to decide how a scenario name is translated into the actual
resource and how this resource is looked up.

Every scenario defines an unlimited number of participants. Every participant has
a name that is unique within its scenario. Every participant in a scenario maps
onto the deepParticipant application. The syntax for starting a deepParticipant
with name participantld, defined in scenario with name scenariold is therefore:

deepPartici pant scenariold participantld

The deepParticipant will try to find the scenario and lookup the participant in the
scenario description. The actual starting of the deepParticipants is outside of the
scope of this document. This might be done using a simple script or by using
another framework that reads the scenario file and decides what participants to
start at what location.

Every participant defines a number of actors that it owns. Any of these actors is
either a source, a reflector or a sink. Every actor is associated with a single topic,
SO an actor can act on one topic only. Actors are also linked to a reader or a
writer, or both. A source actor is linked to a writer only. A sink actor is linked to a
reader only. A reflector actor is linked to both a writer and a reader.

Detailed descriptions of the configuration of every entity

The table below gives an overview of all configuration settings per entity and their
meaning.

Entity Setting Type Description
Scenario name string Name that uniquely identifies the
scenario
participants Participant[] | Set of references to Participants that will
participate in this scenario




Entity Setting Type Description
Participant | name string Name that uniquely identifies the
participant with the scenario
domainld string String representation of the DDS
domainld to connect to
actors Source][], Set of references to Actors that are
Reflector[], | managed and run by the participant
Sink]]
Source name string Name that uniquely identifies the Source
configuration within the Scenario
topicName string Name of the topic that will be used by
this Source
typeName string Name of the type that will be linked to the
topic. This is restricted by a set of
predefined strings, corresponding to the
different types that are supported by the
framework
writerPartitionExpression | string The partition expression the Source will
write into
priority natural OS priority used for the thread the
Source runs in
burstSize natural Number of samples the Source will write
within one burst
nofBursts natural Number of bursts that the Source will
write in total
sleepTime natural The number of milliseconds the Source
will sleep between two bursts
topic Topic Reference to the Topic configuration that
will be used by the Source
writer Writer
Reflector name string Name that uniquely identifies the
Reflector configuration within the
Scenario
topicName string Name of the topic that will be used by
this Reflector
typeName string Name of the type that will be linked to the
topic. This is restricted by a set of
predefined strings, corresponding to the
different types that are supported by the
framework
writerPartitionExpression | string The partition expression the Reflector will

write into




Entity

Setting

Type

Description

readerPartitionExpression

string

The partition expression the Reflector will
read from

doTiming

boolean

A flag indicating whether this Reflector
should be calculating latencies for every
sample received

timeoutPeriod

natural

The number of milliseconds to wait for
newly arrived data. The Reflector will
terminate if no new data has arrived

topic

Topic

Reference to the Topic configuration that
will be used by the Reflector

writer

Writer

Reference to the Writer configuration that
will be used by the Reflector

reader

Reader

Reference to the Reader configuration
that will be used by the Reflector

Sink

name

string

Name that uniquely identifies the Sink
configuration within the Scenario

topicName

string

Name of the topic that will be used by
this Sink

typeName

string

Name of the type that will be linked to the
topic. This is restricted by a set of
predefined strings, corresponding to the
different types that are supported by the
framework

readerPartitionExpression

string

The partition expression the Sink will
read from

doTiming

boolean

A flag indicating whether this Sink should
be calculating latencies for every sample
received

timeoutPeriod

natural

The number of milliseconds to wait for
newly arrived data. The Sink will
terminate if no new data has arrived

topic

Topic

Reference to the Topic configuration that
will be used by the Sink

reader

Reader

Reference to the Reader configuration
that will be used by the Sink

Topic

name

string

Name that uniquely identifies the Topic
configuration within the Scenario

reliable

boolean

Reliability quality of service value used
for the Topic.

Writer

name

string

Name that uniquely identifies the Writer
configuration within the scenario




Entity

Setting

Type

Description

urgency

natural

An indication of the urgency of the data
written by the Writer. This maps onto the
DCPS latency budget quality of service

importance

natural

An indication of the importance of the
data written by the Writer. This maps
onto the DCPS transport priority quality
of service

Reader

name

string

Name that uniquely identifies the Reader
configuration within the senario

As the table shows, every entity has its unique name. This makes it possible to
use settings by reference, meaning that a single setting can be reused by several
entities. For example, a Scenario containing several Sources with the same
characteristics, requires only one Source configuration item. Every Source will be
configured by referring to this single configuration item.




