Paper Draft

Evaluating the Performance of Publish/Subscribe Platforms for
Information Management
 in Distributed Real-time and Embedded Systems
Ming Xiong, Jeff Parsons, James Edmondson, Hieu Nguyen, and Douglas C Schmidt,
Vanderbilt University, Nashville TN, USA
Abstract
Recent trends in distributed real-time and embedded (DRE) sys​tems motivate the need for information management capabili​ties that ensure the right information is delivered to the right place at the right time to satisfy quality of service (QoS) re​quire​ments in heterogeneous environments. To build and evolve large-scale and long-lived DRE information management systems, it is necessary to develop standards-based QoS-enabled pub​lish/subscribe (pub/sub) plat​forms that enable participants to commu​nicate by publishing the information they have and subscrib​ing to the information they need in a robust and timely manner. Since there is little existing evaluation of the ability of these platforms to meet the performance needs of DRE informa​tion management systems, this paper provides two contributions: (1) it describes three com​mon architectures for the OMG Data Distribution Service (DDS), which is a standard QoS-enabled pub/sub platform and (2) it evalu​ates implementations of each of these architectures to investi​gate their design tradeoffs and com​pare their performance empirically, both with each other and with other pub/sub middle​ware. Our results show that DDS pub/sub implementations per​form significantly better than standard non-DDS pub/sub alterna​tives and are well-suited for certain classes of data-critical DRE information management applications.
Keywords: Information Management in DRE Systems; QoS-en​abled Pub​lish/Subscribe Platforms; Data Distribution Service;
1 Introduction
Mission-critical distributed real-time and embedded (DRE) ap​pli​cations increasingly run in systems of systems, such as the Global Information Grid (GiG) [11], that are characterized by thou​sands of platforms, sensors, decision nodes, and computers connected together to ex​change information, sup​port collaborative de​cision making, and effect changes in the physi​cal environment. For example, the GIG is designed to en​sure the right information gets to the right place at the right time by satisfying end-to-end quality of service (QoS) requirements, such as latency, jitter, through​put, dependability, and scalability. At the core of DRE systems of systems are data-centric QoS-en​abled pub​lish/subscribe (pub/sub) platforms that provide
· Universal access to information from a wide variety of sources running over a wide variety of hard​ware/software platforms and networks,
· An orches​trated information environment that aggregates, fil​ters, and prioritizes the delivery of this information to work ef​fectively in the face of transient and enduring resource con​straints,
· Continuous adaptation to changes in the operating environ​ment, such as dynamic network topolo​gies, pub​lisher and subscriber membership changes, and intermittent connec​tivity, and
· Various QoS parameters and mechanisms that enable applica​tions and administrators to customize the way information is de​livered, received, and processed in the appropriate form and level of de​tail to users at multiple levels in a DRE system.
Conventional Service-Oriented Architecture (SOA) middleware platforms have had limited success in providing these capabilities, due to their lack of support for data-centric QoS mechanisms. For exam​ple, the Java Messaging Service for Java 2 Enterprise Edi​tion (J2EE) [10] is a SOA middleware platform that is not well-suited for DRE environments due to its limited QoS support, lack of real-time operating system integration, and high time/space over​head. Even conventional QoS-enabled SOA middleware, such as Real-time CORBA [9], is poorly suited for dynamic data dissemi​nation between many publishers and subscribers due to excessive layering, extra time/space overhead, and inflexible QoS policies.
To address these limitations—and to better support DRE infor​mation management—the Object Management Group (OMG) has recently adopted the Data Distribution Ser​vice (DDS) [6] specification. DDS is a standard for QoS-enabled pub/sub commu​nication aimed at mission-critical DRE systems. It is de​signed to provide (1) location independence, via anonymous pub/sub protocols that enable communication be​tween collocated or remote publishers and subscribers, (2) scalability, by support​ing large numbers of topics, data readers, and data writers, and (3) platform portability and in​teroperability, via standard interfaces and transport protocols. Multiple implementations of DDS are now available, ranging from high-end COTS products to open-source community-sup​ported projects. DDS is used in a wide range of DRE sys​tems, including traffic monitoring [], controlling unmanned vehicle commu​nication with their ground stations [16], and in semiconduc​tor fabrication devices []
.
Although DDS is designed to be scalable, efficient, and predict​able, few publica​tions have evaluated and compared DDS performance empirically for common DRE informa​tion management scenarios. Likewise, little published work has systematically compared DDS with alternative non-DDS pub/sub middle​ware platforms. This paper addresses this gap in the R&D literature by describing the results of the Pollux project, which is evalu​ating a range of pub/sub platforms to compare how their archi​tecture and design techniques affect their performance and suitability of DRE information management. This paper also de​scribes the de​sign and application of an open-source DDS bench​marking environ​ment we developed as part of Pollux to auto​mate the comparison of pub/sub latency, jitter, throughput, and scalabil​ity.
The remainder of this paper is organized as follows: Section 2 summarizes the DDS specification and the architectural differ​ences of three popular DDS implementations; Section 3 de​scribes our ISIS​lab hardware testbed and open-source DDS Benchmark Environ​ment (DBE); Section 4 analyzes the results of benchmarks conducted using DBE in ISISlab; Section 5 presents the lessons learned from our experiments; Section 6 compares our work with related research on pub/sub architectures; and Section 7 presents concluding remarks and outlines our future R&D directions.
2 Overview of DDS
2.1 Core Features and Benefits of DDS
The OMG Data Distribution Ser​vice (DDS) specification provides a data-centric communication standard for a range of DRE comput​ing environments, from small networked embed​ded sys​tems up to large-scale information backbones. At the core of DDS is the Data-Centric Publish-Subscribe (DCPS) model, whose specifi​cation defines standard interfaces that enable applications running on heterogeneous platforms to write/read data to/from a global data space in a DRE system. Applications share informa​tion with others can use this global data space to declare their in​tent to publish data that is categorized into one or more topics of interest to participants. Similarly, applications that want to access topics of interest can also use this data space to declare their intent to become subscribers. The under​lying DCPS middleware propa​gates data samples written by pub​lishers into the global data space, where it is disseminated to interested subscribers [6]. The DCPS model decouples the declaration of information access intent from the information access itself, thereby enabling the DDS middle​ware to support and optimize QoS-enabled communica​tion.

[image: image1]
Figure 1: Architecture of DDS

When we create a DCPS DDS application, the following DDS entities are involved, as shown in Figure 1:

· Domain – DDS applications send and receive data within a do​main, which provides a virtual communication environment for participants having the same domain_id. This environment also isolates participants associated with different domains, i.e., only participants within the same domain can communicate, which is useful for isolating and optimizing communication within a com​munity that shares common interests.
· Domain Participant – A domain participant is an entity that represents a DDS application’s participation in a domain. It serves as factory, container, and manager for the DDS entities discussed below.

· Data Writer and Publisher – Data writers are the building blocks that applications use to publish data values to the global data space of a domain. A publisher is created by a do​main partici​pant and used as a factory to create and manage a group of data writers with similar behavior or QoS policies.
· Subscriber and Data Reader – Data readers are the basic building blocks applications use to receive data. A sub​scriber is created by a domain participant and used as a factory to create and manage data readers. A data reader can obtain its sub​scribed data via two approaches: (1) listener-based, which pro​vides an asynchronous mechanism to obtain data via callbacks in a separate thread that does not block the main application and (2) wait-based, which provides a synchronous mechanism that blocks the application until a designated condition is met.

· Topic – A topic connects a data writer with a data reader: com​munication only happens if the topic published by a data writer matches a topic subscribed to by a data reader. Communication via topics is anonymous and transparent, i.e., publishers and sub​scribers need not be concerned with how topics are created nor who is writing/reading them since the DDS DCPS middle​ware manages these issues.
The remainder of this subsection describes the benefits of DDS relative to conventional pub/sub middleware and client/server-based SOA platforms.
[image: image2.emf]Data

Reader

R

Data

Writer

R

Publisher Subscriber

Topic

R

Tactical

Network & RTOS

DDS Pub/Sub

Infrastructure

RT Info to Cockpit &

Track Processing

Data

Reader

R

Data

Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

S6 S5 S4 S3 S2 S1

Topic

R

S7 S7

X

HISTORY

RELIABILITY

COHERENCY

RESOURCE LIMITS

LATENCY

(A) Fewer Layers in the DDS

Architecture

(B) DDS QoS Policies

Figure 2: Optimizations and QoS Capabilities of DDS

Figures 2 and 3 show DDS ca​pabilities that make it better suited as the basis of DRE information manage​ment than other standard middleware platforms. Figure 2(A) shows that DDS has fewer layers in its architecture than conventional SOA standards, such as CORBA, .NET, and J2EE, which significantly reducing latency and jitter, as shown in Section 4. Figure 2(B) shows that DDS supports many QoS properties, such as
· The lifetime of each data sample, i.e., is it destroyed after being sent, kept avail​able during the publisher’s lifetime, or remain for a specified duration after the publisher shuts down.

· The degree and scope of coherency for information updates, i.e., whether a group of updates can be received as a unit and in the order in which they were sent.

· The frequency of information updates, i.e., the rate at which updated values are sent and/or received.

· The maximum latency of data delivery, i.e., a bound on the ac​ceptable interval between the time data is sent and received
· The priority of data delivery, i.e., the priority used by the under​lying transport to deliver the data.

· The reliability of data delivery, i.e., whether missed deliveries will be retried.

· How to arbitrate simultaneous modifications to shared data by multiple writers, i.e., to determine which modification to apply.

· Mechanisms and parameters to determine liveliness, i.e., whether data readers and data writers are still active or not.

· Parameters for filtering by data receivers, i.e., predicates which determine which data values are accepted or rejected.

· The duration of data validity, i.e., the specification of an expira​tion time for data to avoid delivering “stale” data.
· The depth of the ‘history’ included in updates, i.e., how many prior updates will be available at any time, e.g., ‘only the most recent update,’ ‘the last n updates,’ or ‘all prior updates’.
These parameters can be configured at various levels of granular​ity (i.e., topics, publishers, data writers, subscribers, and data read​ers), thereby allowing application developers to construct cus​tomized contracts based on the specific QoS requirements of individ​ual entities. Since the identity of publish​ers and sub​scribers are unknown to each other, the DDS DCPS middleware is responsi​ble for determining whether QoS parameters offered by a publisher are compatible with those required by a subscriber, only allowing data distribution when compatibility is satisfied.
[image: image3.emf]Data

Reader

R

Data

Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

Topic

R

SOURCE

FILTER

DESTINATION

FILTER

TIME-BASED

FILTER

Data

Reader

R

Data

Writer

R

Publisher Subscriber

Topic

R

NEW TOPIC

NEW

SUBSCRIBER

NEW

PUBLISHER

(A) Moving Processing

Closer to the Data

(B) Subscribing to

Meta-Events

Figure 3: Filtering and Meta-event Capabilities of DDS

Figure 3(A) shows how DDS can migrate processing closer to the data source, which reduces bandwidth in resource-con​strained network links. Figure 3(B) shows how DDS enables cli​ents to subscribe to meta-events that they can use to detect dy​namic changes in network topology, membership, and QoS levels. This mechanism helps DRE information management systems adapt to environments that are continuously changing.

2.2 Alternative DDS Implementations
The DDS specification defines only policies and interfaces be​tween participants.
 To maximize the freedom of DDS provid​ers, the specification intentionally does not address how to imple​ment the services or manage DDS resources internally. Naturally, the particular communication models, distribution architectures, and implementation techniques used by DDS providers have a significant impact on application behaviour and QoS, i.e., differ​ent choices affect the suitability of different DDS implementations and configura​tions for different classes of DRE information manage​ment applications.
Table 1: Supported DDS Communication Models

	DDS Impl
	Unicast
	Multicast
	Broadcast

	DDS1
	Yes (default)
	Yes
	No

	DDS2
	No
	Yes
	Yes (default)

	DDS3
	Yes (default)
	No
	No

The DDS imple​mentations we evaluated for the Pollux pro​ject did not all support the same communication models. As shown in Table 1, DDS1 sup​ports unicast and multicast, DDS2 supports multicast and broad​cast, whereas DDS3 only supports unicast.
 We also found the three most popular DDS implementa​tions have different architectural designs, as described in the remain​der of this section.

2.2.1 Federated Architecture
The federated DDS architecture shown in Figure 4 uses a sepa​rate daemon process for each network interface. This daemon must be started on each node before domain participants can commu​nicate remotely. Once started, it communicates with dae​mons running on other nodes and establishes data channels based on reliability requirements (e.g., reliable or best effort) and trans​port addresses (e.g., unicast or multicast). Each channel handles the communication and QoS for all the participants requiring its particular properties. Using a dae​mon process decoup​les the applica​tions (which run in a separate user process) from configura​tion- and communication-related de​tails. For example, the daemon process can use a configuration file to store common sys​tem parameters shared by communication endpoints associated with a network interface, so that changing the configuration does not affect application code or processing.
[image: image4.png]User process

l

Daemon process

Node (computer)

User process }

b

Daemon process

id

Node (computer)

Figure 4: Federated DDS Architecture
In general, the advantages of a federated architecture are that ap​plications can achieve higher scalability to larger number of DDS partici​pants on the same node, e.g., by bundling messages that originate from different DDS participants. Moreover, us​ing a separate daemon process to mediate access to the network can enable more orchestrated policies
 and prioritization of messages.
A disadvantage of this approach, however, is that it intro​duces an extra con​figuration step—and possibly another point of failure. More​over, applications must cross extra process bounda​ries to communi​cate, which can increase latency and jitter.

2.2.2 Decentralized Architecture
The decentralized DDS architecture shown in Figure 5 places the communication- and configuration-related capabilities into the same user process as the application itself. These capabilities exe​cute in separate threads (rather than in a separate daemon process) that the DCPS middleware library uses to handle communication, reliability, and QoS.
[image: image5.png]« N

comm/

« D

comm/

aux threads

_User process /
Node (computer) Q

aux threads

__User process /

Node (computer) @v
=R

Figure 5: Decentralized DDS Architecture
The advantage of a decentralized architecture is that each appli​cation is self-contained, without the need for a separate dae​mon. As a result, there is less latency and jitter over​head, as well as one less configuration and failure point. A disadvantage, how​ever, is that application developers may need to specify extra configu​ration de​tails, such as
. This architecture also makes it hard to buffer/optimize data sent to/from multiple DDS applications on a node, which loses some of the scalability benefits provided by the federated architec​ture described in Section 2.2.1.
2.2.3 Centralized Architecture
The centralized architecture shown in Figure 6 uses a single dae​mon server running on a designated node to store the informa​tion needed to initializ​e connections between different DDS partici​pants in a domain.

[image: image6.png]User process
Node (computer)

User process
Node (computer)

Daemon process

a

Node (computer) e=%

Figure 6: Centralized DDS Architecture
The advantage of the centralized approach is its simplicity of im​plementation and configuration since all control information resides in a single location. The disadvantage, of course, is that the daemon is a single point of failure, as well as a potential perform​ance bottleneck in a highly loaded system.

The remainder of this paper investigates how the architec​ture dif​ferences described above can affect the performance experi​enced by DRE information management applications.
3 Methodology for Pub/Sub Platform Evaluation
This section describes our methodology for evaluating various pub/sub platforms to determine empirically how well they support various classes of DRE information management applications, including …

3.1 Evaluated Pub/Sub Platforms
In our evaluations, we focused on comparing the performance of the C++ implementations of DDS shown in Table 2 against each other.
Table 2: DDS Versions Used in Experiments
	DDS Impl
	Version
	DDS Distribution Architecture

	DDS1
	?
	Decentralized Architecture

	DDS2
	?
	Federated Architecture

	DDS3
	?
	Centralized Architecture

We also compared these three DDS implementations against the three other pub/sub middleware platforms shown in Table 3.
Table 3: Other Pub/Sub Platforms Used in Experiments

	Platform
	Version
	Summary

	CORBA Notification Service
	TAO 1.x
	?

	GSOAP
	?
	?

	JMS
	?
	?

We compared the performance of these pub/sub mechanisms by using the following metrics:

· Latency, which is defined as the roundtrip time between the sending of a message and reception of an acknowledg​ment from the subscriber. In our test, the roundtrip latency is calculated as the average value of 10,000 round trip measurement.
· Jitter, which is the standard deviation value to measure the varia​tion of the latency.
· Throughput, which is defined as the total number of bytes that the subscribers can receive at a unit time in different 1-to-n pub​lisher/subscriber configurations, i.e., 1-to-4, 1-to-8, and 1-to-12.
We also compared the performance of the DDS listener-based and waitset-based subscriber notifi​cation mechanisms. Finally, we conducted qualitative evaluations of DDS portability and configu​ration mechanisms.
3.2 Benchmarking Environment
3.2.1 Hardware Testbed and Software Infrastructure
The computing nodes we used to run our experiments are hosted on ISISLab [19], which is a testbed of computer systems and network switches that can be arranged in many configura​tions. ISISLab consists of 6 Cisco 3750G-24TS switches, 1 Cisco 3750G-48TS switch, 4 IBM Blade Centers each consist​ing of 14 blades (for a total of 56 blades), 4 gigabit network IO modules and 1 management modules. Each blade has a two 2.8 GHz Xeon CPUs, 1GB of ram, 40GB HDD, and 4Gbps network interfaces.

In our test, we used up to 14 nodes (1 pub, 12 subs, and a central​ized server in the case of DDS3). Each blade ran Fedora Core 4 Linux, version 2.6.16-1.2108_FC4smp. The DDS applica​tions were run in the Linux real-time scheduling class
 to minimize ex​traneous sources of memory, CPU, and network load.
3.2.2 The DDS Benchmark Environment (DBE)
To facilitate the growth of our tests both in variety and complex​ity, we created the DDS Benchmarking Environment (DBE), which is an open-source framework for automating our DDS testing. The DBE consists of
· A directory structure to organize scripts, configuration files, test ids, and test results

· A hierarchy of Perl scripts to automate test setup and execu​tion

· A tool for automated graph generation

· A shared library for gathering results and calculating statistics

[image: image7.png]Benchmark.pl

Start_Repo.pl

Start_Sub.pl

Start_Pub.pl

InfoRepo

Subscriber

Publisher

Figure 7: DDS Benchmarking Environment Architecture

The DBE has three levels of execution, as shown in Figure 7. This multi-tiered design enhances flexibility, performance, and portability while incurring low overhead. Each level of execution has a specific purpose, i.e., the top level is the user interface, the second level manipulates the node itself, and the bot​tom level is comprised of the actual executables (e.g., publishers and sub​scribers for each DDS implementation). DBE is also implemented carefully to maximize resource usage by the actual test executables rather than the DBE scripts. For example, if Ethernet saturation is reached in our testing, it is due to DDS topic data transmission and not to the DBE test artifacts.
4 Empirical Results

This section analyzes the results of benchmarks conducted us​ing DBE in ISISlab. We first evaluate 1-to-1 roundtrip latency performance of DDS pub/sub implementations and compare them with the perform​ance of non-DDS pub/sub implementations. We then demon​strate and analyze the results of 1-to-n scalability through​put tests for each DDS implementa​tions, where n is 4, 8, and 12. All graphs of empirical results use logarithmic axes since the la​tency/throughput of some pub/sub implementations cover such a large range of values that linear axes are unreadable as pay​load size increases.
4.1 Latency and Jitter results
Benchmark design. Latency is an important measurement to evaluate DRE information management performance. Our test code measures roundtrip latency for each pub/sub middleware platform described in Section 3.1. We ran the tests on both simple and complex data types to see how well each platform handles marshaling/de-marshaling overhead introduced for complex data types. The IDL structure for the sim​ple and complex data type is shown below.

// Simple Sequence Type

Struct data { long index; sequence<octet> data; }

// Complex Sequence Type

struct Inner { string info; long index; };

typedef sequence<Inner> InnerSeq;

struct Outer {

long length; InnerSeq nested_member;

};

typedef sequence<Outer> ComplexSeq;

The pub​lisher writes a simple/complex data sequence of a cer​tain payload size on a particular topic. When the subscriber re​ceives the topic data it sends a 4-byte acknowledgement in re​sponse. The payload sequence length for both simple and complex data ranges from 4 to 16,384 by powers of 2.

The publisher test code measures latency by time​stamping the execution of the data transmission and subtracting that from the timestamp value when its receives the ack from the subscriber. The goal of this test is to evaluate how fast data gets trans​ferred from one pub/sub node to another at different payload sizes. To eliminate factors, other than differences among the middleware implementations that affect latency/jitter, we tested a single pub​lisher sending to a single subscriber running in sepa​rate processes on the same node. Since each node has two CPUs the publisher and subscriber can execute in parallel.

Results. Figures 8 and 9 show the latency/jitter results for all pub/sub platforms using the simple data type. These figures show how the latency/jitter of all three DDS implementations is low compared to conventional pub/sub middleware. In particular, DDS1 has extremely low latency and jitter compared with the other pub/sub mecha​nisms.
[image: image8.png]Avg. Latency (usecs)

DDS/GSOAP/JMS/Notification Servic

—4—DDS1
DDS3

X-JMs

DDS2
——GSOAP
®— Notification Service

Figure 8: Simple Data Type Jitter
[image: image9.emf]DDS/GSOAP/JMS/Notification Service Comparison - Jitter

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

Standard Deviation (usecs)

DDS1 DDS2

DDS3 GSOAP

JMS Notification service

Message Length (samples)

DDS/GSOAP/JMS/Notification Service Comparison - Jitter

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size (bytes)

Standard Deviation (usecs)

DDS1 DDS2

DDS3 GSOAP

JMS Notification service

Message Length (samples)

Figure 9: Simple Data Type Jitter
Figures 10 and 11
 show the latency and jitter results for all pub/sub platforms using the complex data type. These figures show that although latency/jitter increases faster as data size in​crease the non-DDS middle​ware still trails DDS by a large margin.
[image: image10.png]Avg. Latency (usecs)

1000000

DDS/GSOAP Comparison - Co

100000

~+-DDS1

10000

DDs2

DDS3 ~GSOAP

1000

100

Figure 10: Complex Data Type Jitter
[image: image11.emf]Message Length (samples) Message Length (samples)

Figure 11: Complex Data Type Jitter
Analysis: There are several explanations for the results in Fig​ures 10 and 11. As discussed in Section 2.1, DDS has fewer layers than other standard pub/sub platforms, so it incurs much lower latency and jitter. The low latency of DDS1 stems largely from its mature implementation, as well as its architecture shown in Figure 5, in which publishers communicate to subscribers with​out going through a separate daemon process. In contrast, DDS2’s federated architecture involves an extra hop through a pair of dae​mon processes (one on the publisher and one on the subscriber), which helps explain why its latency is higher than DDS1’s when sending small simple data types.
These figures also indicate that sending complex data type in​curs more (de)marshal​ing overhead for all pub/sub implementa​tions, particularly as data size increases. Interesting, the latency increase rate of GSOAP is nearly linear as its data size increases, i.e. if the data size doubles, the la​tency nearly doubles as well. GSOAP’s poor performance with large payloads stems largely from its XML representation for sequences, which (de)marshals each element of a sequence using a verbose text-based format rather than (de)marshaling the sequence as a whole like DDS and CORBA.
4.2 Throughput Results

Benchmark design. Throughput is another important perform​ance metric for DRE information management systems. The primary goals of our throughput tests, therefore, were to meas​ure how well each DDS implementation handles scalabil​ity, how different communication models (e.g. unicast, multicast, and broadcast) compare in performance, and how synchronous (wait-based) and asynchronous (lis​tener-based) compare. To maximize scalability in our throughput tests, the publisher and subscrib​er(s) reside in different processes on different hosts.
In the remainder of this subsection we first evaluate the performance results of individ​ual DDS implementations as we vary the communication models they support, as per the constraints outlined in Table 1. We then compare the multicast performance of DDS1 and DDS2, as well as the unicast performance of DDS1 and DDS3, which are the only common points of evaluation at this point.
[Guys, please add a paragraph here that explains how each figure contains a box that summarizes what DDS QoS policies are used for the benchmark. Make sure to also emphasize that we are using the “best effort” QoS policy for throughput and explain our rationale for doing this (I recommend that it have something to do with the fact that we are focusing on DRE information management, which may preclude the overhead of retransmitting lost data samples, etc.]
4.2.1 DDS1 Unicast/Multicast
Results. Figures 12 and 13 show the results of our scalability tests for DDS1 unicast/multicast with 1 publisher and multiple subscrib​ers. These figures show that unicast performance de​grades drasti​cally when scaling up, whereas multicast scales up without affecting throughput significantly
.
[image: image12.png]KB/sec

10000

1000

100

10

* sub:
* no daemon (app spawns thread)
+ KEEP_LAST (depth = 1)

scriber uses listener

4 Subscribers

T T T T

64 128 256 512

8 Subscribers

T T T T T
1024 2048 4096 8192 16384

12 Subscribers

Bytes

Figure 12: DDS1 Unicast Scalability Throughput
[image: image13.png]KB/sec

100000

10000

1000

100

* subscriber uses listener
* no daemon (library per node)
+ KEEP_LAST (depth = 1)

4 Subscribers

128

T T

256 512

8 Subscribers

T T T T T
1024 2048 4096 8192 16384

12 Subscribers

Bytes

Figure 13: DDS1 Multicast Scalability Throughput

Figures 14 and 15 compare unicast and multi​cast of DDS1 for multiple subscribers. We can see that multi​cast performs better than unicast and the difference becomes greater in 1 pub to 12 subs than in 1 pub to 4 subs.

[image: image14.emf]Unicast Multicast

• subscriber uses listener

• no daemon (app spawns thread)

• KEEP_LAST (depth = 1)

Unicast Multicast

• subscriber uses listener

• no daemon (app spawns thread)

• KEEP_LAST (depth = 1)

Figure 14: 1-4 DDS1 Unicast vs. DDS1 Multicast

[image: image15.emf]Unicast Multicast

• subscriber uses listener

• no daemon (app spawns thread)

• KEEP_LAST (depth = 1)

Unicast Multicast

• subscriber uses listener

• no daemon (app spawns thread)

• KEEP_LAST (depth = 1)

Figure 15: 1-12 DDS1 Unicast vs. DDS1 Multicast
Analysis. Figure 12 indicates that the overhead of unicast leads to performance degradation as the number of subscribers increases since the middleware sends a copy to each subscribe. Figure 13 indicates how multicast improves scalability since only one copy of the data is delivered regardless of how many recipi​ents in the domain subscribe. Figure 14 and 15 demon​strates the performance edge of multicast over unicast and indi​cates that the more subscribers we deploy the more benefit we can obtain from using multicast.

4.2.2 DDS2 Broadcast/Multicast

Results. Figure 16 shows the scalability test results for DDS2 broadcast with 1 publisher and multiple subscribers (i.e., 4, 8, and 12). This figure shows that broadcast scales well as the num​ber of subscrib​ers increases. Figures 17 and 18 compare DDS2 broadcast and multicast performance. This figure shows that multicast generally performs better than broadcast. Moreover, as the number of subscribers increases, this performance differ​ence also increases.
Analysis. To be added.

[image: image16.emf]4 Subscribers 8 Subscribers

12 Subscribers

• subscriber uses listener

• daemon per network interface

• KEEP_LAST (depth = 1)

4 Subscribers 8 Subscribers

12 Subscribers

• subscriber uses listener

• daemon per network interface

• KEEP_LAST (depth = 1)

Figure 16: DDS2 Broadcast Scalability Throughput
[image: image17.emf]Broadcast Multicast

• subscriber uses listener

• daemon per network interface

• KEEP_LAST (depth = 1)

Broadcast Multicast

• subscriber uses listener

• daemon per network interface

• KEEP_LAST (depth = 1)

Figure 17: 1-4 DDS2 Broadcast vs. DDS2 Multicast

[image: image18.emf]Broadcast Multicast

• subscriber uses listener

• daemon per network interface

• KEEP_LAST (depth = 1)

Broadcast Multicast

• subscriber uses listener

• daemon per network interface

• KEEP_LAST (depth = 1)

Figure 18: 1-12 DDS2 Broadcast vs. DDS2 Multicast

4.2.3 Comparing DDS Implementation Performance
Results. Figure 19 shows multicast performance compari​son of DDS1 and DDS2 with 1 publisher and 8
subscribers. Since DDS3 does not currently support multicast we omit it from the comparison. Figure 20 shows uni​cast performance comparison of DDS1 and DDS3. Since DDS2 does not support unicast we also omit it from this comparison.
Analysis. Figures 19 and 20 indicate that DDS1 outperforms DDS2 for smaller data sizes. As the size of the payloads increase, however, DDS2 performs better. It appears that the difference in the results stems from the different distribution architectures used to implement DDS1 and DDS2, which are the decentralized and federated architectures, respectively.

[image: image19.emf]DDS1 DDS2

• subscriber uses listener

• KEEP_LAST (depth = 1)

Figure 19: 1-8 DDS1 Multicast vs. DDS2 Multicast

[image: image20.emf]DDS1 DDS3

• subscriber uses listener

• KEEP_ALL

Figure 20: 1-8 DDS1 Unicast vs. DDS3 Unicast

4.2.4 Comparing Wait-based vs Listener-based Notification Mechanisms
Benchmark design.
Results.. Figure 21 shows the performance comparisons of lis​tener-based and wait-based notification mechanisms. This fig​ure shows that for DDS1, listener-based notification outperforms wait-based notification, and for DDS2, there is no consistent differ​ence between the two.

Analysis. (To be added)
[image: image21.png]KB/sec

100000

10000

1000 -

100

* multicast
+ 4 subscribers
+ KEEP_LAST (depth = 1)

DDS1 Listener

T T T
64 128 256

T T T
512 1024 2048

DDS1 Waitset

DDS2 Listener

T T T
4096 8192 16384

Bytes

DDS2 Waitset

Figure 21: Listener-based vs. Wait-based

5 Key Challenges and Lessons Learned

This section describes the challenges we encountered when conducting the experiments presented in Section 4 and summarizes the lessons learned from our efforts.
5.1 Resolving DBE Design and Execution Challeng
es

When designing DBE and running our benchmark experi​ments, we encountered a number of challenges. Below, we summa​rize these challenges and how we addressed them.
Challenge1: Synchronizing Distributed Clocks
Problem: It is hard to precisely synchronize clocks between ap​plications running on blades distributed throughout ISISLab. Even when using the Network Time Protocol (NTP) we still experi​enced differences in time that ranged from x to y
, and we have to constantly repeat the synchronization routines to make sure that the time in different nodes are in sync. We therefore needed to avoid relying on synchronized clocks to measure la​tency, jitter, and throughput.
Solution: For our latency experiments, we simply have the sub​scriber send a minimal reply to the publisher, and use on the clock on the publisher side to calculate the roundtrip time. For throughput, we use the subscriber’s clock to measure the time required to receive a designated number of samples. Both methods provide us with common reference points and minimize timing errors through the usage of effective latency and throughput calcula​tions based on a single clock.
Challenge2: Automating Test Execution
Problem: Achieving good coverage of a test space where pa​rameters can vary in several orthogonal dimensions leads to a combi​natorial explosion of test types and configurations. Manu​ally running tests for each configuration, for each middle​ware implementation on each node is tedious, error-prone and ex​tremely time-consuming. The task of managing and organizing test results also grows exponentially along with the number of distinct test configuration combinations.
Solution: The DBE, described in Section 3.2.2, grew out of our efforts to manage the large number of tests and the associated volume of result data. Our efforts to streamline test creation, execu​tion and analysis are ongoing, and include work on several fronts – a hierarchy of scripts, several types of configuration files, and test code refactoring.
Challenge3: Handling Packet Loss
Problem: Since our DDS implementations support the UDP transport, it is possible for packets to be dropped, both at the pub​lisher and subscriber side, so we need to be sure that the subscrib​ers get the designated number of samples in spite of packet loss.
Solution: We let publishers oversend an appropriate amount of extra data to ensure that the subscribers will successfully re​ceive enough samples.

Challenge4: Ensuring Steady Communication State

Problem: We need to make sure our benchmark applications are in a steady state when statistical data is being collected.
Solution: We send primer samples to “warm up” the applica​tions before actually measuring the data. This warmup period al​lows time for possible discovery activity related to other subscrib​ers to finish, and for any other first-time actions, on-demand ac​tions, or lazy evaluations to be completed, so that their extra over​head does affect the statistics calculations.
5.2 Summary of Lessons Learned
Based on the results and our experience of developing DBE and running the DDS experiments we learned the following les​sons:
· DDS Performs significantly better than other pub/sub imple​mentations – Figure 7 in
 section 4.1 shows that even the slowest DDS was around 2 times faster than non-DDS pub/sub services. This performance margin is made possi​ble partly by the fact that DDS decouples the information in​tent from informa​tion exchange. In particular, an XML-based pub/sub mecha​nism such as SOAP is optimized for transmitting strings, whereas the data types we used for testing were sequences. GSOAP’s poor performance with large payloads is due to the fact that its design requires it to marshal/de-marshal each ele​ment of a sequence, which may be a small as a single byte, while DDS implementations can send and receive such data types as blocks.
· DDS scales better to larger payloads, especially for simple data types
 – Figure 7 and Figure 8 from Section 4.1
 shows that DDS pub/sub middleware scales better for larger payloads com​pared to non-DDS pub/sub middleware.
· Individual DDS implementations are optimized for different use cases – Figures 8 and 16 indicate that DDS1 is optimized for smaller payload sizes compared to DDS2. As payload size increases, especially for the complex date type measured in Fig​ure 8, DDS2 catches up and surpasses DDS1 in performance. Simi​larly, Figures 9, 10 and 13 indicate that DDS2’s perform​ance stays more constant than that of DDS1 as the number of sub​scribers increases.
· It is hard to make apples-to-apples comparisons of DDS im​plementation. The difference falls into the following three catego​ries:

· No common transport protocol, e.g., the DDS implementa​tions that we investigated share no com​mon application proto​col. DDS1 uses RTPS like protocol on top of UDP. DDS2 will add RTPS support soon but not yet, DDS3 simply im​plements on top of raw TCP and UDP. Note that this lack of a common transport protocol is not a shortcoming of the im​plementations, but entirely due to the fact that a standard trans​port protocol had not been adopted when the most recent re​leases of these implementations were made.
· No universal support for uni​cast/broadcast/multicast. Table 1 shows the different mechanisms supported by each DDS im​plementations, from which we can see DDS3 does not sup​port any point to multi-points transport, thus making it hard to scale as num​ber of subscribers increase.
· DDS applications are not yet portable, which is partially due to fact that the specification is still evolving and vendors use pro​prietary techniques to fill the gaps. A portability wrap​per fa​çade would be a great help to any DDS application de​veloper, and a huge help to our efforts in writing and running large num​bers of benchmark tests.
· Substantial tuning of policies and options are re​quired or suggested by vendors to optimize performance, which adds difficulty to designing universal benchmark configu​rations, as well as to the learning curve of any application developer.
· Broadcast can be a double-edged sword – Using broadcast can significantly increase performance but it also has the poten​tial to exhaust the network router bandwidth.
6 Related Work

As an emerging technology for Global Information Grid and data-critical real-time systems, DDS in particular, and pub​lish/subscribe architec​ture in general, has attracted a considerably increasing number of research efforts such as COBEA [20], Siena [12) and commercial products and standards (such as JMS [10], WS_NOTIFICATION [13], the CORBA Event and Notification services [17]). This Section describes the growing body of work related to our effort.
Open Architecture Benchmark. Open Architecture Bench​mark (OAB) is a DDS benchmark effort along with Open Architec​ture Computing Environment, an open architecture initi​ated by the US Navy to facilitate future combat system software develop​ment. Joint efforts have been conducted in OAB to evalu​ate DDS products, in particular RTI’s NDDS and THALES DDS, and to understand the ability of these DDS products to support bounded latencies and sustained throughput required by combat system applications [8].
CORBA Pub/Sub Services. OMG has specified a Notifi-cation Service [21], which is a superset of the CORBA Event Ser​vice that adds interfaces for event filtering, configurable event delivery semantics (e.g., at least once or at most once), security, event channel federations, and event delivery QoS. The patterns and techniques used in the implementation of TAO’s Real-time Event Service can be used to improve the performance and predict​ability of Notification Service implementations. A Notifica​tion Service for TAO [22] has been implemented and used it to vali​date the feasibility of building a reusable framework that factors out common code for TAO’s Notification Service, its stan​dard CORBA Event Service implementation, and its Real-time Event Service.
PADRES: The Publish/subscribe Applied to Distributed Re​source Scheduling (PADRES)
 is a novel distributed, content-based publish/subscribe messaging system. A PADRES system consists of a set of brokers connected by overlay network. Each broker employs a rule-based engine to route and match pub​lish/subscribe messages, and is used for composite event detection.
More

7 Concluding Remarks

This paper describes and evaluates the architectures of three popular implementations of the OMG Data Distribution Service (DDS). It then presents the DDS Bench​marking Environment (DBE) and uses DBE to compare the performance of these DDS implementations, as well as non-DDS pub/sub platforms. Our results show that

As part of the ongoing Pollux project, we will continue to evalu​ate other interesting features of DDS needed by large-scale DRE information management systems. Our future work will include (1) tailoring benchmarks to explore key classes of applications in DRE information management systems, (2) devising generators that can emulate various workloads and use cases, (3) including a wider range of QoS configurations, e.g. durability, reliable vs. best effort, integra​tion of durability, reliability and history depth, (4) designs for migrating processing toward data sources, (5) measur​ing participant discov​ery time for various entities, (6) identi​fying scenarios that distinguish performance of QoS policies and fea​tures e.g. colloca​tion applications, and (7) evaluating the suitability of DDS in heterogeneous dynamic environments, e.g., mobile ad hoc networks, where system resources are limited and dynamic configuration changes are com​mon.
Acknowledgements
We would like to thank Real-Time Innovations (RTI), Prism Tech​nologies (PT), and Object Computing Inc. (OCI), particularly Dr. Gerardo Pardo-Castellote, Ms Gong Ke from RTI, Dr. Hans van’t Hag from PrismTech, and Yan Dan and Steve Harris from OCI, for their extensive help performing the experiments reported in this paper.

References

1 Gerardo Pardo-Castellote, Bert Farabaugh, Rick Warren, “An introduction to DDS and Data-Centric Communications,” www.rti.com/resources.html.
2 Douglas C. Schmidt and Carlos O'Ryan, “Patterns and Perform​ance of Distributed Real-time and Embedded Pub​lisher/Subscriber Architectures,” Journal of Systems and Soft​ware, Special Issue on Software Architecture -- Engineering Qual​ity Attributes, edited by Jan Bosch and Lars Lundberg, Oc​to​ber 2002.
3 Chris Gill, Jeanna M. Gossett, David Corman, Joseph P. Loy​all, Richard E. Schantz, Michael Atighetchi, and Douglas C. Schmidt, “Integrated Adaptive QoS Management in Middle​ware: An Empirical Case Study,” Proceedings of the 10th Real-time Technology and Application Symposium, May 25-28, 2004, Toronto, CA
4 Gerardo Pardo-Castellote, “DDS Spec Outfits Publish-Sub​scribe Technology for GIG,” COTS Journal, April 2005
5 Gerardo Pardo-Castellote, “OMG Data Distribution Service: Real-Time Publish/Subscribe Becomes a Standard,” www.rti.com/docs/reprint_rti.pdf.
6 OMG, “Data Distribution Service for Real-Time Systems Speci​fi​cation,” www.omg.org/docs/formal/04-12-02.pdf
7 DOC DDS Benchmark Project Site, www.dre.vanderbilt.edu/DDS.
8 Bruce McCormick, Leslie Madden, “Open Architecture Bench​mark,” Real-Time Embedded System Work Shop 2005, www.omg.org/news/meetings/workshops/RT_2005/03-3_McCormick-Madden.pdf.
9 Arvind S. Krishna, Douglas C. Schmidt, Ray Klefstad, and Angelo Corsaro, “Real-time CORBA Middleware,” in Middle​ware for Communications, edited by Qusay Mahmoud, Wiley and Sons, New York, 2003
10 Sun Microsystems, “J2EE 1.4 Tutorial,” java.sun.com/j2ee/1.4/docs/tutorial/doc/, December 2005

11 Fox, G., Ho,A., Pallickara, S., Pierce, M., and Wu,W, “Grids for the GiG and Real Time Simulations,” Proceedings of Ninth IEEE International Symposium DS-RT 2005 on Distributed Simulation and Real Time Applications, 2005

12 D.S.Rosenblum, A.L.Wolf, “A Design Framework for Inter​net-Scale Event Observation and Notification,” 6th European Soft​ware Engineering Conference. Lecture Notes in Computer Sci​ence 1301, Springer, Berlin, 1997, pages 344-360
13 IBM, “Web Service Notification,” www-128.ibm.com/developerworks/library/specification/ws-notifica​tion.
14 PrismTech, “Overview of OpenSplice Data Distribution Ser​vice,” www.prismtechnologies.com/section-item.asp?sid4=&sid3=252&sid2=10&sid=18&id=557.
15 Real-Time Innovation, RTI Data Distribution Service, www.rti.com/products/data_distribution/index.htm.
16 Real-Time Innovation, “Unmanned Georgia Tech Helicopter files with NDDS,”
controls.ae.gatech.edu/gtar/2000review/rtindds.pdf
17 Pradeep Gore, Douglas C. Schmidt, Chris Gill, and Irfan Pyarali, “The Design and Performance of a Real-time Notifica​tion Service,” Proceedings of the 10th IEEE Real-time Technol​ogy and Application Symposium (RTAS '04), Toronto, CA, May 2004
18 Nayef Abu-Ghazaleh, Michael J. Lewis, and Madhusudhan Govindaraju, “Differential Serialization for Optimized SOAP Per​formance,” Proceedings of HPDC-13: IEEE International Sym​posium on High Performance Distributed Computing, Hono​lulu, Hawaii, pp. 55-64, June 2004.
19 DOC Group, DDS Benchmark Project, www.dre.vanderbilt.edu/DDS/html/testbed.html.
20 C.Ma and J.Bacon “COBEA: A CORBA-Based Event Archi​tecture,” In Proceedings of the 4rd Conference on Object-Ori​ented Technologies and Systems, USENIX, Apr.1998
21 Object Management Group, “Notification Service Specifica​tion,” Object Management Group, OMG Document tele​com/99-07-01 ed., July 1999

22 P. Gore, R. K. Cytron, D. C. Schmidt, and C. O’Ryan, “Design​ing and Optimizing a Scalable CORBA Notification Ser​vice,” in Proceedings of the Workshop on Optimization of Mid​dleware and Distributed Systems, (Snowbird, Utah), pp. 196–204, ACM SIGPLAN, June 2001

Transport Protocol

Data Store + QoS Mechanisms

Tactical Network

Application

Data Domain

Subscriber

Publisher

Publisher

Subscriber

Data Writer

Data Reader

Data Reader

Data Writer

Data Writer

Data Reader

Topic

Topic

Topic

� The Real-Time Publish Subscribe (RTPS) protocol was formally adopted by the OMG in June 2006 as the default transport protocol for DDS, but is not yet integrated into the DDS specification.

�Ming, we need to add two footnotes here. The first should thank our sponsors, i.e., AFRL/IF, Vanderbilt University, etc. The second should mention that you are the contact author and list your email address. Can you please see if you can add these footnotes without messing up the formatting?!

Ming: I’ve tried but it seems more tricky than I thought, I’ll have to address this later.

�Ming, there was too much detail here, as well as too much DoD stuff (which annoys some reviewers, especially those in Europe). Can you please add citations for the Tokyo traffic monitoring system and the semiconductor fabrication?

�Jeff, can you please change “tactical network” to simply “communication network”? Also, can you please simply replace the “data domain” layer with a series of layers entitled “data store & QoS mechanisms,” “transport protocol,” and “communication network”?

�Jeff, can you please integrate your cool diagram from the OMG RTWS that shows the different approaches? This will require renumbering all the figures, but that’s what we get for using MS Turd…

�Jeff, can you please make sure we explain what “liveness” means? I’m not sure if this is correct.

�Ming, please add another sentence or two here that explains what the “scope” of the current DDS multicast/broadcast support is, i.e., basically it uses the hardware mechanisms available from the network interfaces/routers and does not do fancier things, e.g., setup overlay networks, WAN-based multicast trees, etc. This would also be a good place to mention that there is work on scalable multicast, e.g., the Ricochet work at Cornell, etc.

�Jeff and Ming, I’ve heavily edited all of this stuff. Can you please read through it carefully to ensure that we’re saying the right things? In particular, I didn’t feel like

We’re not using terms like “domain” and “domain participants” properly/consistently in this discussion, which makes it hard to tell what’s really going on.

We need to give more insight as to the data path and control path in Figures 4 and 5, as well as the ensuing discussions of these figures.

Can you guys please work on this sort of stuff during your next passes, i.e., provide more in-depth insights into how these architectures really work!

�Ming, I don’t understand what this means. Can you please explain it a bit?

Ming, this is actually from a quote of Gerardo’s previous comments about the advantage of federated architecture. I think it means that it is easier for us to set up policies for a group of participants associated with the same network interface.

Ming, ok, that helps. Can you please update this sentence to say this rather than just say “orchestrated policies?”

�Ming, can you please list several examples of extra details that may need to be listed?

�Jeff, can you please say a bit more about how this architecture works, e.g., the separation of data vs. control?

�Ming, can you please summarize the classes of DDS applications that we’re concerned with here, e.g., systems that generate small amounts of data periodically (which require low latency and jitter), systems that send larger amount of data in bursts, etc. Please refer to the discussions we’ve had with Hans in the past about this.

�Ming, can you please briefly summarize what each of these platforms are/do? Please use a couple of sentences for each. Make sure that you also clearly indicate which VERSION of this stuff that we use!

�Ming, if after we zap all the extraneous graphs from Section 4 we have some extra room let’s add the ISISlab figure here and reference it in the text!

�James and Ming, can you guys please make sure that we can actually do this properly now for all the DDS tests?!

�James, this figure isn't very "interesting"! Can you please try to redraw it so that it has more interesting visual icons and relationships?!

�Ming, can you please briefly explain what QoS policies and other relevant configuration settings are used for each of the pub/sub middleware platforms?

�Ming, we really need to recreate all of these tests using the blades so that we'll actually be comparing apples-to-apples with the throughput results. Let's chat more about this soon.

�Guys, we really need to update these results to also include the TAO Notification, JMS, and WS_NOTIFICATION results.

�Ming, we need to briefly explain why we aren't measuring throughput for the other three pub/sub platforms, i.e., why are we just focusing on the DDS implementations?

�Hieu, I think it would better if we could put all of the lines in Figures 10 and 11 on the same graph since (1) that would reduce the number of figures and (2) it would also make it easier to "see" the differences, which are currently very hard to see since they are split between two figures. Can you please fix this?

�Ming, are these figures really necessary or are they redundant with the information that would be in a “combined” Figure 12-13? In general, we should try to reduce the number of redundant figures in the paper since (1) it doesn’t add to the content and (2) we’re already running over the page limit (which would probably be 10 pages)! Can you please take a look at this stuff and figure out how to consolidate things?

�Ming, again it this redundant? If so, please make things more concise.

�It would be nice if we could collect some statistics (e.g., number of dropped packets on the network interfaces, etc.) that we could use to explain the differences in the results for multicast vs. broadcast.

�Ming, why are we using the 8 subscriber results vs. the 12 subscriber results? I recommend we graph 1-4 and 1-12 on the same graph and then explain what it means.

�Ming, to REALLY ferret these differences out I think we need to do the following:

 Increase the size of the buffers from 16 kbytes to 64 kbytes

Increase the number of subscribers to 16

Let’s that with other folks to figure out how to do this.

�Ming, please take a look at the graph that Bruce McCorminck sent us recently, which also measures this same stuff. I think his results are a bit different, but let’s make sure that we understand the differences.

�Jeff and James, this section needs to be beefed up a lot. Can you please help Ming add more insightful content here?

�Ming, can you please summarize the specific problems we ran into here?

Ming: I added a little bit details for this, but I have to investigate what is the exactly value for x and y.

�Ming, this is a VERY controversial topic, so please make sure that we explain a lot more about what we are doing and motivate why we are doing things this way..

�Ming, the figure numbers need to be changes radically! Let’s do this later in the paper writing since things are still evolving.

�Ming I don’t understand this item at all. The boldface mentions larger payloads, but the body only talks about scaling subscribers.

Ming: I think this can be merged to the first bold item that talks about better performance since they are really covering the same lesson.

�Ming, the figure numbers need to be changes radically! Let’s do this later in the paper writing since things are still evolving.

�Ming, please add the citation to this here!!

� good citations on DDS by Victor Faye-Wolfe or Lisa Dipippo?

Ming, can you please also add a paragraph discussing the TOPSS stuff that Arno has done?

�Ming, please briefly summarize our results and outline why they are significant.

�Ming, there are too many references to commercial websites here, rather than to actual "academic" publications. Can you please try to replace as many of the website publications you can with academic publications?

