
o c i w e b . c o m 705

CHAPTER 23

CIAO and CCM

23.1 Introduction
The OMG CORBA Component Model (CCM) (OMG Document
formal/02-06-65) defines a specification for implementing component
middleware. The Component-Integrated ACE ORB (CIAO) is TAO’s
implementation of the CCM specification.
The CORBA Component Model is a step in the longtime evolution of
software engineering best practices towards higher levels of abstraction. CCM
is a realization of the concept of composing software from reusable, pluggable
components assembled into an application at run time. When properly applied,
component-based software development promotes improved software reuse,
deployment flexibility, and programmer productivity.

23.1.1 Prerequisites
To better understand this chapter, the reader should be familiar with the
content of the following TAO Developer’s Guide chapters:
• Chapter 2, Building ACE and TAO

706 o c i w e b . c o m

C I A O a n d C C M

• Chapter 4, Make Project Creator
• Chapter 6, The TAO IDL Compiler
• Chapter 11, Value types
• Chapter 13, Local Objects

23.1.2 What is a Component?
A component is a pluggable, self-contained software entity consisting of its
own encapsulated business logic and data with clearly defined interfaces for
collaboration. A component defines both the capabilities it provides and the
services it requires as well as events it publishes and consumes, as illustrated
by the diagram.

The CORBA 2.x object model lacks the expressiveness required to create
pluggable components. A CORBA 2.x IDL interface specifies a contract
between a client and a server. That contract specifies what the server provides
and what the client can expect. However, a great deal of information is
missing from that IDL contract. A client or server has no formal mechanism to
specify what it requires -- namely, which IDL interfaces it depends upon to
accomplish its tasks. These dependencies are hidden in the implementation

Figure 23-1 A CCM Component

<<component>>

Facets

Receptacle

Event
Publisher

Event
Consumer

Facet
Implementation

Facet
Implementation

o c i w e b . c o m 707

2 3 . 1 I n t r o d u c t i o n

code. Without knowledge of what each client or server requires, it is
impossible to connect the clients and servers at run time in a generic way.
The CORBA Component Model includes new IDL constructs for expressing
both the client and the server sides of component collaboration. This new
edition of IDL is called IDL3. IDL3 is a superset of traditional CORBA IDL,
or IDL2. The TAO 1.4a IDL compiler accepts both IDL3 and IDL2 interface
specifications.
A component defines its collaborations in terms of provided and required
interfaces. An IDL3 component specification consists of ports that indicate
how the component interacts with other components as both a client and a
server. There are several types of ports providing various capabilities:
• A facet defines an IDL interface provided by a component. This is the

server-side of the traditional IDL contract.
• A receptacle defines an IDL interface that is used by a component. The

component may interact with that interface either through synchronous
calls or through AMI. Facets and receptacles are connected via assembly
descriptors that are processed at run-time.

• An event source or publisher defines an event type that is published by a
component. CCM events are strongly typed, as our example will illustrate.

• An event sink or consumer defines an event type that is consumed by a
component. Event sources and sinks are connected via assembly
descriptors that are processed at run-time.

• An attribute provides a mechanism for configuring component properties
at application start-up.

An application consists of several components packaged together and
deployed at run time. A CCM-based application may consist of numerous
binary component implementations implemented in several different
programming languages communicating through CORBA.
The CCM specification defines a Component Implementation Framework
(CIF) consisting of tools to simplify the implementation of components. The
CIF uses the Component Implementation Definition Language (CIDL),
through which a component developer defines a composition to describe a
component’s implementation details. A CIDL compiler generates a skeletal
version of the component’s C++ implementation, or executor. The developer
is left to concentrate on application logic.

708 o c i w e b . c o m

C I A O a n d C C M

23.1.3 Component Deployment
A developer configures an application’s component connections -- facet to
receptacle, event source to event sink -- via descriptor files that a component
server process loads at run time. The component server creates a component
container to instantiate a component and connect it to any collaborating
components through the appropriate ports. The component itself is deployed
in a library that is dynamically loaded into the component server at run time.
CORBA is the underlying middleware infrastructure for the component
containers. The container programming model is built on the Portable Object
Adapter. Components communicate through CORBA, assuring
interoperability. The diagram illustrates the component container’s
relationship to the CORBA infrastructure.

23.1.4 Summary of the CCM Programming Model
The CCM model of component programming extends the CORBA 2.x
programming model in the following ways:
• A component specifies not only what it provides but also what it requires.
• A component can provide multiple interfaces that are not related through

inheritance.

Figure 23-2 The Component Container and the CORBA Infrastructure

<<component>> <<component>>

Container Container

ORB

POA POA

o c i w e b . c o m 709

2 3 . 1 I n t r o d u c t i o n

• A component specifies events it publishes and consumes directly in its
interface. Events are strongly typed value objects.

• An application developer assembles and deploys a component-based
application by writing standard XML-based assembly and deployment
descriptors. The component server reads the descriptors at run-time to
load libraries and connect components, promoting loose coupling of
component implementations.

• A component developer can add capabilities to an existing component
without affecting existing clients by providing a new facet.

• A component developer does not need to have any direct interaction with
the Portable Object Adapter. The component container interacts with the
POA.

• A component developer does not write a main().
• The component container instantiates and destroys the component.
• The component server provides standard services such as event

publication, transactions, persistent state, and security and enforces usage
policies consistently.

A CCM client does not have to be component-aware. A CORBA 2.x client can
bind to a component facet and interact with it without any knowledge that it is
part of a CCM component.

710 o c i w e b . c o m

C I A O a n d C C M

23.1.5 Road Map
The following sections illustrate the CCM programming model with an
example. The example illustrates the steps involved in developing a CIAO
application by tracing the road map outlined in the diagram.

As you can see, component development and deployment primarily consists
of five phases: defining interfaces, implementing interfaces, describing the
deployment, building, and running. Defining and implementing interfaces
should be familiar to any CORBA developer. We’ll find that some of the steps
in implementing an IDL3 interface are a bit different as we take advantage of
the CCM programming model. Describing the deployment, involves defining
XML descriptors to define how each component is composed from its libraries
and how the components are connected together to form an application. In the
fourth step, building, we create a set of dynamic libraries for each component.
Finally, we run the application by executing component servers to load the
dynamic libraries and connect the components together.

23.2 Example - The Messenger Application
Our CIAO example builds on the Messenger example used throughout the
TAO Developer’s Guide. The example’s source code, build files, and XML

Figure 23-3 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

o c i w e b . c o m 711

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

descriptor files ares in the
$TAO_ROOT/DevGuideExamples/CIAO/Messenger directory.
The CIAO Messenger example consists of three components: a Messenger, a
Receiver, and an Administrator. The Messenger publishes message events and
provides a history of all published messages. The Receiver subscribes to
message events and retrieves the Messenger’s message history. The
Administrator controls the Messenger, starting and stopping publication and
changing the attributes of what the Messenger publishes. The relationship
between the three component types is demonstrated by the following
component diagram:

The diagram illustrates that the Messenger component provides three facets,
Runnable, Publication, and History. Each facet is an IDL interface. The
Messenger component also publishes Message events. Each Message event
is a value-based event type. The Receiver component has a receptacle that
connects to the Messenger’s History facet. It also consumes Message events
published by the Messenger. Finally, the Administrator component has two

Figure 23-4 Messenger Component Diagram

712 o c i w e b . c o m

C I A O a n d C C M

receptacles connected to the Messenger’s Runnable and Publication
facets, respectively.
The Messenger doesn’t start publishing messages immediately at startup. The
Administrator connects to the Messenger’s Runnable facet and calls
start() on it to trigger message publication. Upon receiving a start()
request, the Messenger publishes messages to all connected Receivers until
the Administrator tells it to stop(). The "start publication" collaboration is
illustrated in the following interaction diagram:

23.2.1 The Messenger Application’s IDL Interfaces
The first task is to specify the Messenger application’s interfaces using IDL.
Or, more accurately, using IDL3. Next, we create a component type
specification for the Messenger, Receiver, and Administrator. After that, we
specify standard IDL interfaces for each of the facets provided by the

Figure 23-5 Start Message Publication

o c i w e b . c o m 713

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

Messenger, namely the History, Runnable, and Publication. Finally, we
create a Message event type whose instances the Messenger publishes.

23.2.1.1 The Messenger Component and Facets
The Messenger component provides facets that implement the Runnable,
Publication, and History interfaces. It also publishes a Message. Each
Receiver component consumes the Messages published by the Messenger and
uses the History facet provided by the Messenger. The Administrator
component uses the Runnable and Publication facets provided by the
Messenger.
First, we specify IDL interfaces for the Runnable and Publication facets.
Both of these are IDL2 interfaces that would be recognized by any CORBA
client:

// file Runnable.idl
interface Runnable {
 void start();
 void stop();
};

// file Publication.idl
interface Publication {
 attribute string text;
 attribute unsigned short period;

Figure 23-6 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

714 o c i w e b . c o m

C I A O a n d C C M

};

We put each IDL interface in its own file as a programming convention. The
Runnable interface provides control over starting and stopping of message
publication. The Publication interface provides control over the published
message text and the period, in seconds, between messages.
The Messenger component publishes Message events. We define the
Message type using the new IDL3 keyword eventtype. An eventtype is
an IDL value type that inherits from the abstract value type
Components::EventBase. Our Message event type has three public string
members: subject, user, and text.

// file Message.idl
#include <Components.idl>

eventtype Message {
 public string subject;
 public string user;
 public string text;
};
typedef sequence<Message> Messages;

We must include the IDL file Components.idl to use IDL3 keywords such
as eventtype. Like any IDL value type, The Message event type may
contain operations and a factory. For more information on value types, see
Chapter 11.
However, we can simplify our event type implementation by restricting the
contents of the event type to public data members. For such an event type, the
IDL compiler generates a full event type implementation and automatically
registers the event type factory for us. Therefore, we do not add operations or
a factory to the event type.
The History facet contains operations to retrieve published Message events.

// file History.idl
#include <Components.idl>
#include <Message.idl>

interface History {
 Messages get_all();
 Message get_latest();
};

o c i w e b . c o m 715

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The implementation of the History facet must keep track of each message
that it publishes for later retrieval by clients.
Finally, we declare the Messenger component. The Messenger declaration
illustrates several of the new IDL3 keywords introduced for component-based
programming.

// file Messenger.idl

#include <Components.idl>
#include <Runnable.idl>
#include <Publication.idl>
#include <Message.idl>
#include <History.idl>

component Messenger {
 attribute string subject;

 provides Runnable control;
 provides Publication content;

 publishes Message message_publisher;
 provides History message_history;
};

home MessengerHome manages Messenger {};

The Messenger’s component specification must include Components.idl to
make the IDL3 keywords available. It also includes IDL files for each of its
three facets and for the Message events it publishes.
The keyword component is a new IDL3 keyword that is used to define a
component.

component Messenger {

The component’s definition can contain IDL attributes just like an IDL2
interface. However, the component’s definition may not contain IDL
operations.
The Messenger component contains one attribute, the subject.

 attribute string subject;

716 o c i w e b . c o m

C I A O a n d C C M

Despite of the fact that the subject attribute is writable it is not exposed to
the Messenger’s clients.
The Messenger component provides three facets.

 provides Runnable control;
 provides Publication content;
 provides History message_history;

Each facet is an IDL interface. A component uses the provides keyword to
indicate the services that it offers. In the example, the Messenger’s three facets
are a Runnable facet called control for starting and stopping message
publication, a Publication facet called content for control over the
message content and publication period, and a History facet called
message_history for access to all messages published by the component.
There is no limit to the number of clients that may access the Messenger’s
facets.
The Messenger component publishes events:

 publishes Message message_publisher;
};

Recall that a Message is an event type. Published events are strongly typed.
There is no limit to the number of subscribers for a published event. The
Messenger component has neither direct knowledge of the event’s subscribers
nor knowledge of the underlying messaging mechanism.
A publishes port may publish to an unlimited number of subscribers. A
second kind of publisher, called an emitter, is limited to one subscriber. An
emitter uses the emits keyword instead of the publishes keyword. The
CCM deployment framework enforces the emitter’s limitation to one
subscriber at deployment time. Aside from the keyword, the emitter’s IDL
syntax is the same as the publisher’s. For example:

 emits Message message_publisher;

The home, called MessengerHome, manages the lifecycle of the component.

home MessengerHome manages Messenger {};

o c i w e b . c o m 717

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

Each component has a corresponding home. The component server uses the
home to create and destroy component instances. Our Messenger’s home is the
simplest possible home, implicitly defining a create() operation. The home
construct will be discussed in more detail later.

23.2.1.2 The Receiver Component
The Receiver component receives Message events from the Messenger and
retrieves the message History from the Messenger.

// file Receiver.idl
#include <Components.idl>
#include <Messsage.idl>
#include <History.idl>

component Receiver {
 consumes Message message_consumer;
 uses History message_history;
};

home ReceiverHome manages Receiver {};

The Receiver does not expose any facets, but instead indicates what it requires
via a uses specification. The Receiver uses a History facet, and consumes
Message events. The specification of not only what a component offers but
also what it requires is a significant step forward, as it enables connection of
components at deployment time. Both of these Receiver receptacles are
connected to corresponding facets on the Messenger component at
deployment.
The Receiver also has a home, ReceiverHome, which is responsible for
creating and destroying Receiver component instances. Again, this is the
simplest possible home declaration.

home ReceiverHome manages Receiver {};

Note The Receiver’s IDL file does not have a dependency on the Messenger. The
Receiver knows about Message and History, but it does not need to know
anything about the component that provides those services. A component may
depend on IDL interfaces and event types, but it need not depend on other
components.

718 o c i w e b . c o m

C I A O a n d C C M

23.2.1.3 The Administrator Component
Finally, the third component type, an Administrator, triggers the Messenger’s
event publication and controls the period of its publication and the text that it
publishes.

// file Administrator.idl
#include <Components.idl>
#include <Runnable.idl>
#include <Publication.idl>

component Administrator {
 uses multiple Runnable runnables;
 uses multiple Publication content;
};

home AdministratorHome manages Administrator {};

The Administrator uses both the Runnable and Publication facets
provided by the Messenger. These two receptacles are later connected to
corresponding facets provided by the Messenger. The Administrator’s home is
responsible for creating and destroying the Administrator component instance
at run time.
The uses multiple keyword on the Administrator’s runnables and
content receptacles indicates that the Administrator can connect to more
than one Runnable facet and more than one and Publication facet. These
facets may be provided by the same component or by different components;
the Administrator does not need to know. In our sample deployment the
Administrator connects to one Runnable facet and one Publication facet,
both from the same Messenger component.

Note The Administrator’s IDL file does not have a dependency on the Messenger.
The Administrator knows about Runnable and Publication, but it does not
need to know anything about the component that provides those services.

The Administrator, like all components, has a home to manage its lifecycle:

home AdministratorHome manages Administrator {};

o c i w e b . c o m 719

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The homes in our example are the simplest possible. The default home
contains a factory that acts like a default constructor. It is possible to override
that factory and provide parameters to be passed into it.
To summarize, we’ve been exposed to several new IDL3 keywords:

23.2.2 Implementing the Components
The CORBA Component Model specification defines a Component
Implementation Framework (CIF) consisting of tools to simplify and automate
the implementation of components. A significant part of the CIF is the
Component Implementation Definition Language (CIDL), through which a
component developer provides implementation details for each component
type. The CIDL compiler compiles the CIDL files and generates a significant
portion of the C++ implementation code. The developer is left to concentrate
on application logic.

Table 23-1 IDL3 Keywords

IDL3 Keyword Description

component
Declares a component that can provide and use facets,
publish and consume events

provides
Declares an IDL interface that the component offers; the
interface defines a service offered

uses Declares an IDL interface that the component requires

uses multiple
Declares that the component can connect to one or more
instances of the required interface

eventtype
Declares an event type that the component publishes; the
eventtype is an IDL valuetype

publishes
Declares that the component publishes instances of an event
type to a potentially unlimited number of consumers

emits
Declares that the component publishes instances of an event
type to exactly one consumer

consumes
Declares that the component expects the event type to be
published to it by one or more publishers

home
Declares an interface used by the component container to
manage the component’s lifecycle

manages Declares which component is managed by the home

720 o c i w e b . c o m

C I A O a n d C C M

We write CIDL files for the Messenger, Receiver, and Administrator
component types. Each CIDL file contains a component composition.

23.2.2.1 The Messenger Composition
The primary entity of a CIDL file is a composition. A composition
describes how a component is connected to its home. A component can be
instantiated by more than one home; the composition designates the home
responsible for the component.
The declaration of the Messenger’s composition follows:

// file Messenger.cidl
#include <Messenger.idl>

composition session Messenger_Impl
{
 home executor MessengerHome_Exec
 {
 implements MessengerHome;
 manages Messenger_Exec;
 };
};

The session is the component’s life cycle category. A session composition
provides transient object references and maintains its transient state for the

Figure 23-7 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

o c i w e b . c o m 721

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

lifetime of the session. Once the component is destroyed, its object references
are invalidated and its state is lost. The other valid composition life cycle
categories are entity, service, and process. They are discussed later.
The name of the composition is Messenger_Impl. The CIDL compiler
generates its implementation code into a C++ namespace called
Messenger_Impl. The composition can have any name; it is customary to
end the name with _Impl.
An implementation of a component or a home is called an executor. A CCM
developer implements an executor rather than a servant. The CIDL compiler
generates two abstract C++ executor classes, one for the component and one
for its home, using the names Messenger_Exec and MessengerHome_Exec
specified in the CIDL composition. The Messenger executors may have any
name; it is customary to end the each with the suffix _Exec.

 home executor MessengerHome_Exec
 {
 implements MessengerHome;
 manages Messenger_Exec;
 };

The home executor defines which home is used to manage the life cycle of
the Messenger component.
The implements declaration declares which of the component’s homes
manages the component’s lifecycle. The Messenger component only has one
home, the MessengerHome, so that is the home we’ll use. Note that we don’t
need to indicate that the MessengerHome manages the Messenger
component; that relationship is defined in the MessengerHome’s declaration.
The component developer overrides pure virtual methods in the generated
executor classes to provide the component implementation. The CIDL
compiler can optionally generate a default implementation of each C++
executor class. By default, it appends _i to the executor class name. The
default implementation of the Messenger executor is Messenger_exec_i,
and the default implementation of the MessengerHome executor is
MessengerHome_exec_i. The component developer fills the application
logic into the generated Messenger executor implementation. The CIDL
compiler generates a full implementation for the MessengerHome’s executor,
so no developer intervention is required.

722 o c i w e b . c o m

C I A O a n d C C M

23.2.2.2 The Receiver and Administrator Compositions
The Receiver and Administrator compositions are similar to the Messenger
composition.

// file Receiver.cidl
#include <Receiver.idl>

composition session Receiver_Impl
{
 home executor ReceiverHome_Exec
 {
 implements ReceiverHome;
 manages Receiver_Exec;
 };
};

The Receiver’s composition is called Receiver_Impl, and it’s home
executor implements the ReceiverHome. CIDL compiler generates an
abstract executor class for the ReceiverHome called ReceiverHome_Exec
and an abstract executor class for the Receiver component called
Receiver_Exec. Optionally, the CIDL compiler can generate default
implementations of the two executors.

// file Administrator.cidl
##include <Administrator.idl>

composition session Administrator_Impl
{
 home executor AdministratorHome_Exec
 {
 implements AdministratorHome;
 manages Administrator_Exec;
 };
};

The Administrator’s composition is called Administrator_Impl, and its
home executor implements the AdministratorHome. The CIDL compiler
generates an abstract executor class for the AdministratorHome called
AdministratorHome_Exec and an abstract executor class for the
Administrator component called Administrator_Exec.

o c i w e b . c o m 723

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

To summarize, we’ve been exposed to several new CIDL keywords:

23.2.3 Compiling the IDL and CIDL
We compile the IDL files with TAO’s IDL compiler. The TAO 1.4a IDL
compiler recognizes IDL3 constructs such as component and eventtype.
Additional information on compiling the Messenger’s IDL files is contained
in 23.2.6.
We compile the CIDL files with CIAO’s CIDL compiler. Additional
information on compiling the Messenger’s CIDL files is also contained in
23.2.6. The CIDL Compiler Reference in 23.5 contains more extensive
information on using the CIDL compiler.
This section concentrates on the output of the IDL and CIDL compilers rather
than the mechanics of executing the IDL and CIDL compilers.

The CIDL compiler can generate most of the code for home, component, and
facet executor implementations through its --gen-exec-impl
command-line option. For each component, home, or facet it generates a C++
class that inherits from a generated abstract executor class, leaving the
component developer to fill in the application logic.

Table 23-2 CIDL Keywords

CIDL Keyword Description

composition
Declares a set of entities that work together to manage the
component’s lifecycle and implement the component’s
behavior

session
A component category characterized by transient state and
transient object identity

service
A component category characterized by objects having no
duration beyond the lifetime of a single client interaction

entity
A component category characterized by persistent state that
is visible to the user and persistent object identity

process
A component category characterized by persistent state that
is not visible to the user and persistent object identity

executor
Declares the name of the abstract component home executor
class

implements Declares the home that manages the component
manages Declares the name of the abstract component executor class

724 o c i w e b . c o m

C I A O a n d C C M

The diagram shows the files that the CIDL compiler generates when it
compiles Messenger.cidl.

We show both Messenger.cidl and Messenger.idl as inputs to the CIDL
compiler because the Messenger.cidl file includes Messenger.idl.

Figure 23-8 Running the CIDL Compiler

o c i w e b . c o m 725

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The CIDL compiler generates an IDL file, MessengerE.idl, containing
local interfaces for the Messenger’s component, home, and facet executors.
We compile this IDL file with the IDL compiler to generate an abstract C++
executor class for each component and facet. Each component, home, and
facet executor implementation implements one of the local interfaces declared
in MessengerE.idl.
The CIDL compiler also generates complete C++ header and implementation
files for the servant classes. There is a servant class for each component,
home, and facet executor class. The CCM developer does not directly
instantiate servants; instead, the component container instantiates servants and
registers them with the Portable Object Adapter automatically.
The CIDL compiler optionally generates default component, home, and facet
executor implementation classes in files called Messenger_exec.h and
Messenger_exec.cpp. Those files contain definitions for five classes:
Messenger_exec_i, MessengerHome_exec_i, Runnable_exec_i,
Publication_exec_i, and History_exec_i. The latter three classes are
executors for the Messenger’s Runnable, Publication, and History
facets. For safety, copy the Messenger_exec.h and Messenger_exec.cpp
files to something like Messenger_exec_i.h and
Messenger_exec_i.cpp. You may also want to break the implementations
for History_exec_i, Runnable_exec_i, etc., into different header and
implementation files as we’ve done in our sample code.

726 o c i w e b . c o m

C I A O a n d C C M

The diagram illustrates the Messenger executor’s classes.

The table summarizes the Messenger’s executor implementation classes.

Figure 23-9 The Messenger Executor’s Classes

Table 23-3 Executor Implementation Classes

Executor
Implementation
Class Description
Messenger_exec_i Implements the Messenger component
MessengerHome_exec_i Implements the MessengerHome
Runnable_exec_i Implements the Runnable facet
Publication_exec_i Implements the Publication facet
History_exec_i Implements the History facet

o c i w e b . c o m 727

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

23.2.4 Implementing the Executors
The CIAO CIDL compiler generates an empty implementation of each
component and facet executor. In the following sections, we implement the
facet executors for the Runnable, Publication, and History facets and
the component executors for the Messenger, Receiver, and Administrator
components.

Figure 23-10 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and face t

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

728 o c i w e b . c o m

C I A O a n d C C M

23.2.4.1 The Runnable Facet Executor
The Runnable facet is provided by the Messenger component and permits a
client to start and stop message publication. The component diagram
highlights the role of the Messenger’s Runnable facet.

Recall that the Runnable IDL interface is as follows:

// file Runnable.idl
interface Runnable {
 void start();
 void stop();
};

Figure 23-11 The Messenger’s Runnable Facet

o c i w e b . c o m 729

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The CIDL compiler generates a default Runnable executor with empty
implementations of start() and stop(). The class diagram illustrates the
Runnable executor’s class hierarchy.

The IDL compiler generates a Runnable stub. The CIDL compiler generates
an abstract executor base class, CCM_Runnable, and optionally generates an
empty executor implementation, Runnable_exec_i. The CIDL compiler
generates a default constructor, a destructor, and a virtual method for each of
Runnable’s IDL operations and attributes.

Figure 23-12 Class Diagram for the Runnable Executor

730 o c i w e b . c o m

C I A O a n d C C M

Note For each IDL interface "MyInterface" that is a facet of a component, the
CIDL compiler generates an abstract facet executor class called
"CCM_MyInterface."

An executor is a local CORBA object. Its generated implementation class also
inherits from a TAO-specific class called TAO_Local_RefCounted_Object
that marks Runnable_exec_i as a CORBA::LocalObject and provides
reference counting that we’ll use in the Messenger executor implementation.
Additional information on local objects can be found in Chapter 13.
The Messenger component only publishes messages when it can acquire the
Runnable executor’s run_lock. If the Messenger cannot acquire the run
lock, it blocks waiting for it to be released. A client of the Runnable facet
controls the run lock via the start() and stop() operations.
The Runnable executor implementation follows. Changes to the
CIDL-generated empty executor implementation are in bold:

// file Runnable_exec_i.h

#include "Messenger_svnt.h"
#include "tao/LocalObject.h"
#include <ace/Synch.h>

namespace Messenger_Impl
{
 class MESSENGER_EXEC_Export Runnable_exec_i
 : public virtual ::CCM_Runnable,
 public virtual TAO_Local_RefCounted_Object
 {
 public:
 Runnable_exec_i (void);
 virtual ~Runnable_exec_i (void);

 // Operations from ::Runnable

 virtual void start ()
 throw (CORBA::SystemException);

 virtual void stop ()
 throw (CORBA::SystemException);

 ACE_Mutex& get_run_lock();

 private:
 ACE_Mutex run_lock_;

o c i w e b . c o m 731

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 };
}

The included Messenger_svnt.h header file contains the servant class
definitions for the Runnable, Publication, History, Messenger, and
MessengerHome. A component developer does not implement servant
classes; instead, the CIDL compiler generates servant classes and the
component container automatically instantiates them at run time. A
component developer implements executor classes that have no relationship to
the server’s POA. The automatically-generated servant class delegates its
execution to the developer-written local executor object.
The executor implementation inherits from the generated abstract executor
base class, CCM_Runnable, and from TAO_Local_RefCounted_Object.
CCM_Runnable, in turn, inherits from the generated Runnable stub class that
the client uses. Thus, the executor implements the Runnable interface
generated by the IDL compiler. The start() and stop() operations are
declared as pure virtual methods in the CCM_Runnable class, forcing the
executor to implement them.
Note the lack of inheritance from a POA_Runnable class; instead, the CIDL
compiler generates a Runnable_Servant class for us.
The inheritance from TAO_Local_RefCounted_Object enforces two
behaviors: first, the executor is a CORBA::LocalObject, meaning that it can
only be used from within the server process; second the executor has reference
counting, meaning that the inherited _add_ref() and _remove_ref()
operations must be used to manage the executor’s memory.
Our Runnable implementation contains a private ACE_Mutex lock and a
public accessor method to retrieve it. The Messenger acquires this run_lock
before publishing each message and releases it after publishing each message.
If the Messenger cannot acquire the run_lock, it blocks until the lock is
released. A Runnable client can acquire and release the run_lock through
the start() and stop() operations. In this way, a client can control whether
or not the Messenger publishes any messages.
The CIDL compiler also generates an empty, default implementation of the
Runnable_exec_i class. We implement a constructor, the start() and
stop() operations, and an accessor for the mutex lock. Changes to the
CIDL-generated default executor implementation code are in bold.

732 o c i w e b . c o m

C I A O a n d C C M

// file Runnable_exec_i.cpp

#include "Messenger_exec_i.h"
#include "ciao/CIAO_common.h"

namespace Messenger_Impl
{
 //==
 // Facet Executor Implementation Class: Runnable_exec_i
 //==

 Runnable_exec_i::Runnable_exec_i (void)
 {
 // initially, the Messenger does not publish
 this->stop();
 }

 Runnable_exec_i::~Runnable_exec_i (void)
 {
 }

 // Operations from ::Runnable

 void
 Runnable_exec_i::start ()
 throw (CORBA::SystemException)
 {
 // Your code here.

 // allows the Messenger to acquire the lock and publish
 this->run_lock_.release()
 }

 void
 Runnable_exec_i::stop ()
 throw (CORBA::SystemException)
 {
 // Your code here.

 // prevents the Messenger from acquiring the lock; can’t publish
 this->run_lock_.acquire()
 }

 ACE_Mutex&
 Runnable_exec_i::get_run_lock()
 {
 return this->run_lock_;
 }
}

o c i w e b . c o m 733

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The Runnable executor creates an ACE_Mutex lock for the Messenger to
acquire in its event loop before publishing messages. If the Messenger can’t
acquire the lock, then it does not publish messages. This agreement between
the Runnable executor and the Messenger executor controls the suspension
and resumption of message publication. Initially, the Runnable executor
holds the lock. The implementations of start() and stop() release and
acquire the lock, respectively. The get_run_lock() accessor exposes the
lock to the Messenger executor.
The CIDL compiler also generates executor implementations for the
Publication and History interfaces and the Messenger, Receiver, and
Administrator components.

23.2.4.2 The Publication Facet Executor
The Publication facet is provided by the Messenger component and
permits a client to modify the text published and the period (in seconds)
between published messages.
Recall that the Publication IDL interface is as follows:

interface Publication {
 attribute string text;
 attribute unsigned short period;
};

The CIDL compiler generates an empty implementation of the Publication
executor. We add private class attributes to keep track of the message subject,
text, and period. Changes to the CIDL-generated code are in bold.

#include <string>
#include <ace/Synch.h>

namespace Messenger_Impl
{
 class MESSENGER_EXEC_Export Publication_exec_i
 : public virtual ::CCM_Publication,
 public virtual TAO_Local_RefCounted_Object
 {
 public:
 Publication_exec_i (const char* text,
 CORBA::UShort period);
 virtual ~Publication_exec_i (void);

734 o c i w e b . c o m

C I A O a n d C C M

 // Operations from ::Publication

 virtual char* text ()
 throw (CORBA::SystemException);

 virtual void text (const char* text)
 throw (CORBA::SystemException);

 virtual CORBA::UShort period ()
 throw (CORBA::SystemException);

 virtual void period (CORBA::UShort period)
 throw (CORBA::SystemException);

 private:
 std::string text_;
 CORBA::UShort period_;

 ACE_Mutex lock_;
 };
}

The pattern is similar to the Runnable executor’s. The
Publication_exec_i executor inherits from both the generated
CCM_Publication class and TAO’s TAO_Local_RefCounted_Object
class. The accessor and modifier for the text and period attributes are
declared as pure virtual methods in the CCM_Publication class, forcing us
to implement them in our executor.
The text_ and period_ class members hold information about the
publication. Because clients can modify the text and period, the executor uses
an ACE_Mutex lock to protect them from simultaneous access. We have to
assume that a provided facet might be accessed by multiple threads at the
same time.
The implementation of the Publication executor follows. Again, changes to
the CIDL-generated default executor implementation code are in bold.

#include "Publication_exec_i.h"
#include "ciao/CIAO_common.h"

namespace Messenger_Impl
{
 //==
 // Facet Executor Implementation Class: Publication_exec_i
 //==

o c i w e b . c o m 735

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 Publication_exec_i::Publication_exec_i (const char* text,
 CORBA::UShort period)
 : text_(text),
 period_(period)
 {
 }

 Publication_exec_i::~Publication_exec_i (void)
 {
 }

 // Operations from ::Publication

 char*
 Publication_exec_i::text ()
 throw (CORBA::SystemException)
 {
 ACE_Guard<ACE_Mutex> guard(this->lock_);
 return CORBA::string_dup(this->text_.c_str());
 }

 void
 Publication_exec_i::text (const char* text)
 throw (CORBA::SystemException)
 {
 ACE_Guard<ACE_Mutex> guard(this->lock_);

 this->text_ = text;
 ACE_DEBUG((LM_INFO, ACE_TEXT("publication text changed to %s\n"), text));
 }

 CORBA::UShort
 Publication_exec_i::period ()
 throw (CORBA::SystemException)
 {
 ACE_Guard<ACE_Mutex> guard(this->lock_);
 return this->period_;
 }

 void
 Publication_exec_i::period (CORBA::UShort period)
 throw (CORBA::SystemException)
 {
 ACE_Guard<ACE_Mutex> guard(this->lock_);

 if (period > 0) {
 this->period_ = period;
 ACE_DEBUG((LM_INFO,
 ACE_TEXT("publication period changed to %d seconds\n"), period));
 } else {

736 o c i w e b . c o m

C I A O a n d C C M

 ACE_DEBUG((LM_INFO,
 ACE_TEXT("ignoring a non-positive period of %d\n"), period));
 }
 }
}

The Publication executor contains text and a publication period. Because
the client may change either the text or publication period, we protect both
with a mutex lock. The constructor sets the text and period values. The
attribute accessors and modifiers are straightforward, protecting those values
with the mutex lock. The period modifier ensures that the new period is a
positive number.

23.2.4.3 The History Facet Executor
The Messenger component stores the messages that it publishes in a History
executor. The History executor contains an STL list of published Message
events. We protect access to the list with an ACE_Mutex lock because multiple
threads might add to and query the History list simultaneously. We must
assume that simultaneous access will happen.
Recall that the History IDL interface is as follows, where Message is an
event type:

#include <Message.idl>

interface History {
 Messages get_all();
 Message get_latest();
};

The CIDL-generated History executor implementation follows, with our
changes in bold.

#include "Messenger_svnt.h"
#include "Messenger_exec_export.h"
#include "tao/LocalObject.h"

#include <list>
#include <ace/Synch.h>

namespace Messenger_Impl
{
 class MESSENGER_EXEC_Export History_exec_i

o c i w e b . c o m 737

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 : public virtual ::CCM_History,
 public virtual TAO_Local_RefCounted_Object
 {
 public:
 History_exec_i (void);
 virtual ~History_exec_i (void);

 // Operations from ::History

 virtual ::Messages* get_all ()
 throw (::CORBA::SystemException);

 virtual ::Message* get_latest ()
 throw (::CORBA::SystemException);

 void add(::Message* message);

 private:
 ACE_Mutex lock_;

 typedef std::list<::Message_var> MessageList;
 MessageList messages_;
 };
}

We add a mutex lock and an STL list of messages as private class attributes.
The lock protects the message list from simultaneous access by multiple
threads. The STL list stores Message_vars to properly handle reference
counting and memory ownership. The Messenger component uses the public
add() method to add messages to the history as it publishes them.
The History executor implementation follows. As always, changes to the
CIDL-generated default executor implementation code are in bold. Comments
are interspersed with the code.

namespace Messenger_Impl
{
 //==
 // Facet Executor Implementation Class: History_exec_i
 //==

 History_exec_i::History_exec_i (void)
 {
 }

 History_exec_i::~History_exec_i (void)
 {
 }

738 o c i w e b . c o m

C I A O a n d C C M

 // Operations from ::History

The implementation of the history’s get_all() operation is the most
challenging. It converts the STL list of Message_vars into an IDL sequence
of Messages.

 ::Messages*
 History_exec_i::get_all ()
 throw (::CORBA::SystemException)
 {
 // Your code here.

 ACE_Guard<ACE_Mutex> guard(this->lock_);

 ACE_DEBUG((LM_INFO, ACE_TEXT("History_i::get_all\n")));

 // create a Messages sequence, set its length
 ::Messages* retval = new ::Messages();
 retval->length(this->messages_.size());

 // iterate through the MessageList, copying messages into the return sequence
 int i = 0;
 for (MessageList::iterator messageItr = this->messages_.begin();
 messageItr != this->messages_.end();
 ++messageItr) {

 // because the MessageList contains Message_vars, reference counting
 // upon assignment into the sequence is handled properly for us.
 (*retval)[i++] = *messageItr;
 }
 return retval;
 }

The get_all() operation creates a new Messages sequence, setting its
length. It then iterates through the internal STL list of Message_var, adding
each Message to the sequence. Because the STL list stores Message_vars
the assignment of each Message from the STL list to the sequence handles
memory management properly for us by incrementing the reference count on
each returned Message.
The get_latest() operation simply retrieves the last Message added to the
list and returns it.

 ::Message*
 History_exec_i::get_latest ()

o c i w e b . c o m 739

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 throw (::CORBA::SystemException)
 {
 // Your code here.

 ACE_Guard<ACE_Mutex> guard(this->lock_);

 ACE_DEBUG((LM_INFO, ACE_TEXT("History_i::get_latest\n")));

 // just get the last message from the history. because the MessageList
 // contains Message_vars, _var to _var assigmnent handles the reference
 // counting properly for us.
 ::Message_var retval = this->messages_.back();
 return retval._retn();
 }

We extract the last Message into a Message_var and return it with the
_retn() operation to handle the reference counting of the Message properly.
We give up ownership of the Message when we return it, but we also want to
keep the Message in the internal list. The reference counting handles that for
us.
The Messenger calls the local add() method to store published Messages.

 void History_exec_i::add (::Message* message)
 {
 ACE_Guard<ACE_Mutex> guard(lock_);

 // bump up the reference count; we don't own the parameter.
 // the _var in the STL list takes ownership of the "copy"
 message->_add_ref();
 this->messages_.push_back(message);
 }
}

It increments the reference count of the Message and stores it in the class’s
STL list. If we do not increment the reference count, then the STL list would
attempt to take ownership of a Message that it does not own.
The get_all() and get_latest() operations are exposed to clients
through the History interface. The add() method is not part of the IDL
interface and is visible only through the Messenger implementation.

740 o c i w e b . c o m

C I A O a n d C C M

23.2.4.4 The Messenger Component Executor
The Messenger component provides the Runnable, Publication, and
History facets and publishes Message events. It delegates much of its work
to the Runnable, Publication, and History executors.

Recall that the Messenger’s IDL specification is as follows:

component Messenger {
 attribute string subject;

 provides Runnable control;
 provides Publication content;

 publishes Message message_publisher;
 provides History message_history;
};

home MessengerHome manages Messenger {};

Figure 23-13 The Messenger Component

o c i w e b . c o m 741

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The Messenger’s component executor contains a get_<facet_name>()
operation for each of its three provided facets to expose the facet to the
component container. As a general rule, for each IDL3 statement of the form

provides <facet_interface> <facet_name>;

the CIDL compiler generates a operation of the form

::CCM_<facet_interface>_ptr get_<facet_name>();

Thus, the IDL statement

provides Publication content;

causes the CIDL compiler to generate an operation in the Messenger executor
with the signature

::CCM_Publication_ptr get_content();

The Messenger’s MessengerHome manages the Messenger’s lifecycle. The
component container creates an instance of the Messenger executor through
its MessengerHome.
Recall that the Messenger’s CIDL composition is as follows:

composition session Messenger_Impl
{
 home executor MessengerHome_Exec
 {
 implements MessengerHome;
 manages Messenger_Exec;
 };
};

The CIDL compiler uses both the Messenger’s IDL interface and its CIDL
composition to generate an implementation of its executor. It generates a
default Messenger executor with empty implementations of the
get_control(), get_content(), and get_message_history() facet

742 o c i w e b . c o m

C I A O a n d C C M

accessors. The class diagram illustrates the Messenger executor class
hierarchy.

The IDL compiler does not generate a Messenger stub. The Messenger
component is not an IDL2 interface. The CIDL compiler generates an abstract
executor base class, CCM_Messenger, just as it did for the Runnable facet.
The CIDL compiler also generates a Messenger_exec class that identifies
the Messenger as a session component. A session component exports

Figure 23-14 Messenger Executor Class Diagram

o c i w e b . c o m 743

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

transient object references and is responsible for managing its own persistent
state if it has any.
The CIDL compiler optionally generates an empty executor implementation,
Messenger_exec_i. The CIDL compiler generates a default constructor, a
destructor, and a virtual method for each of the Messenger’s facets.
The executor implementation class also inherits from
TAO_Local_RefCounted_Object, marking the Messenger_exec_i as a
CORBA::LocalObject and allowing the component container to manage the
executor’s memory through reference counting.
The CIDL-generated executor implementation is as follows; as always, our
changes are in bold. Comments are interspersed through the class definition.

#include "Messenger_svnt.h"
#include "Messenger_exec_export.h"
#include "tao/LocalObject.h"

#include <string>
#include <ace/Task.h>

namespace Messenger_Impl
{
 // forward declarations for executor implementations referenced
 // in the Messenger_exec_i class definition
 class Runnable_exec_i;
 class Publication_exec_i;
 class History_exec_i;

The Messenger executor is an active object, publishing messages in its own
thread. It inherits from ACE_Task_Base to realize the active object behavior.
There will be more on the implications of this later.

 class MESSENGER_EXEC_Export Messenger_exec_i
 : public virtual Messenger_Exec,
 public virtual TAO_Local_RefCounted_Object,
 public virtual ACE_Task_Base
 {
 public:

The CIDL compiler generates a default constructor and destructor. There is no
reason to change the signatures of these methods.

 Messenger_exec_i (void);
 virtual ~Messenger_exec_i (void);

744 o c i w e b . c o m

C I A O a n d C C M

The CIDL compiler generates an empty accessor and modifier for the
subject attribute.

 virtual char* subject ()
 throws (CORBA::SystemException);

 virtual void subject (const char* subject)
 throws (CORBA::SystemException);

The CIDL compiler generates a get_ operation for each of the Messenger’s
three provided facets.

 virtual ::CCM_Runnable_ptr get_control ()
 throw (CORBA::SystemException);

 virtual ::CCM_Publication_ptr get_content ()
 throw (CORBA::SystemException);

 virtual ::CCM_History_ptr get_message_history ()
 throw (CORBA::SystemException);

The Messenger has three facets: a Runnable facet called control, a
Publication facet called content, and a History facet called
message_history.

 // Operations from Components::SessionComponent

The CIDL compiler generates a callback operation to set the component’s
session context. It generates a session context class that is specific to the
component type. The component container instantiates and sets the
component instance’s session context at application startup.
The session context contains methods that enable the component to interact
with the other components to which it is connected. Contexts are the glue that
plug collaborating components together. As we’ll see later, the Messenger
component publishes Message events to interested consumers through its
context.

 virtual void set_session_context (::Components::SessionContext_ptr ctx)
 throw (::CORBA::SystemException,::Components::CCMException);

o c i w e b . c o m 745

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The component container calls set_session_context() after it instantiates
the component executor instance. The CIDL compiler also generates a
protected class member called context_ to store the context and generates
the implementation of the set_session_context() operation. No work is
required on the part of the component developer.
The CIDL compiler generates three callback operations through which the
component container indicates when the component is being activated,
passivated, or removed.

 virtual void ccm_activate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_passivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_remove ()
 throw (::CORBA::SystemException,::Components::CCMException);

The component container calls ccm_activate() to notify component that it
has been activated. The ccm_activate() call completes before any other
component operations are invoked. The component executor may perform its
initialization in ccm_activate(). The component developer can assume that
the session context has been initialized when the component container calls
ccm_activate(). The Messenger’s implementation of ccm_activate()
calls ACE_Task_Base::activate() to launch a message-publishing thread.
The component container calls ccm_passivate() to notify the component
that it has been deactivated. Here, the component executor should release any
resources acquired in ccm_activate(). The component container then calls
ccm_remove() when the component executor is about to be destroyed. The
component developer can assume that the session context is still available
when the component container calls ccm_passivate() or ccm_remove().
The ccm_activate(), ccm_passivate(), and ccm_remove() operations
are required by the OMG CORBA Component Model specification.

The generated ciao_preactivate() and ciao_postactivate()
operations are CIAO-specific.

 virtual void ciao_preactivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ciao_postactivate ()

746 o c i w e b . c o m

C I A O a n d C C M

 throw (::CORBA::SystemException,::Components::CCMException);

The component container calls ciao_preactivate(), then
ccm_activate(), then ciao_postactivate() when activating a
component. All three calls happen in the same thread.
If the component container is activating more than one component, it first
calls ciao_preactivate() on each component being activated, then calls
ccm_activate() on each component being activated, and finally calls
ciao_postactivate() on each component being activated.
The svc() method is an implementation detail that is specific to our
implementation of the Messenger executor.

 virtual int svc();

It is overridden from the inherited ACE_Task_Base class. Our
implementation of ccm_activate() calls ACE_Task_Base::activate()
to launch a thread that executes the svc() method. The implementation of the
svc() method publishes Message events to interested consumers.
The CIDL compiler automatically generates a context_ class member.

 protected:
 CIAO_GLUE::Messenger_Context *context_;

The component container calls set_session_context() to set the context
when it initializes the component executor. The Messenger publishes its
Message events through the context.
The component developer may add additional class members required to
implement the component executor. We add several.

 private:
 Runnable_exec_i* control_;
 Publication_exec_i* content_;
 History_exec_i* history_;

 std::string subject_;
 const std::string user_;
 };
}

o c i w e b . c o m 747

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The private control_, content_, and history_ class members will be
initialized by the user’s code to contain pointers to the facet executors for the
Runnable, Publication, and History facets of the Messenger component.
The user_ class member is a string that contains a username that the
Messenger embeds into each Message it publishes.
The Messenger executor implementation follows. As always, changes to the
CIDL-generated default executor implementation code are in bold. Comments
are interspersed with the code.

#include "Messenger_exec_i.h"
#include "ciao/CIAO_common.h"

The Messenger executor includes the executor class definitions for its
History, Runnable, and Publication facets.

#include <ace/OS.h>
#include "History_exec_i.h"
#include "Runnable_exec_i.h"
#include "Publication_exec_i.h"

namespace Messenger_Impl
{
 //==
 // Component Executor Implementation Class: Messenger_exec_i
 //==

The constructor creates executors for each of the Messenger’s three facets
and initializes a "username".

 Messenger_exec_i::Messenger_exec_i ()
 : subject_("Test Subject"),
 user_("ciao_user")
 {
 // initialize user-defined data members
 this->control_ = new Runnable_exec_i();
 this->history_ = new History_exec_i();
 this->content_ = new Publication_exec_i(
 "Test Subject",
 "The quick brown fox jumped over the lazy dog",
 2);
 }

748 o c i w e b . c o m

C I A O a n d C C M

The destructor releases the memory for the Messenger’s three facet executors.
Because an executor is reference counted, we call _remove_ref() to release
the memory of the executor rather than use the C++ delete operation.

 Messenger_exec_i::~Messenger_exec_i (void)
 {
 this->control_->_remove_ref();
 this->history_->_remove_ref();
 this->content_->_remove_ref();
 }

The bulk of the Messenger’s logic is in the svc() method.

 int Messenger_exec_i::svc() {

 ACE_DEBUG((LM_INFO, ACE_TEXT("svc()\n")));

 while (1)
 {
 ACE_OS::sleep(this->content_->period());

 // get the run_lock from the Runnable executor; we have an
 // agreement with the Runnable executor that we must wait for
 // the run_lock to be released before we publish.
 ACE_Guard<ACE_Mutex> guard(this->control_->get_run_lock());

 // create a message to publish
 ::Message_var msg = new ::OBV_Message();
 msg->subject(this->subject());
 msg->text(this->content_->text());
 msg->user(CORBA::string_dup(this->user_.c_str()));

 // add the message to the message history
 this->history_->add(msg.in());

 ACE_DEBUG((LM_INFO,
 ACE_TEXT("Messenger_exec_i::svc: publishing message\n")));

 // publish to all interested consumers
 this->context_->push_message_publisher(msg.in());

 ACE_DEBUG((LM_INFO,
 ACE_TEXT("Published Message on subject %s\n User %s\n Text %s\n"),
 msg->subject(),
 msg->user(),
 msg->text()));
 }

 // not reached

o c i w e b . c o m 749

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 return 0;
 }

We override the svc() method from the inherited ACE_Task_Base class.
Our implementation of ccm_activate() calls the
ACE_Task_Base::activate() method which launches the svc() method
in a new thread. This method performs the bulk of the Messenger’s work,
looping continuously and publishing messages.
First, the svc() method sleeps for the period of time defined by the period
attribute of the Messenger’s Publication executor. Next, the svc() method
attempts to acquire a lock from its Runnable executor. The Messenger
executor and the Runnable executor have an agreement that the Messenger
will not publish messages unless it can acquire the Runnable executor’s
ACE_Mutex lock. This permits the Runnable executor to start and stop
message publication.
Once the Messenger acquires the Runnable’s lock, it publishes a message
through its context_. The context acts like a proxy representing all interested
consumers.
The CIDL compiler generates an empty accessor and modifier for the
subject attribute. We add an implementation to each.

 char*
 Messenger_exec_i::subject ()
 throws (CORBA::SystemException)
 {
 return CORBA::string_dup(this->subject_.c_str());
 }

 void
 Messenger_exec_i::subject (const char* subject)
 throws (CORBA::SystemException)
 {
 this->subject_ = CORBA::string_dup(subject);
 }

The CIDL compiler generates an empty implementation of each of the
get_content(), get_control(), and get_message_history() facet
accessor operations. We modify each to return the appropriate facet executor,
incrementing its reference count before returning it.

 ::CCM_Publication_ptr

750 o c i w e b . c o m

C I A O a n d C C M

 Messenger_exec_i::get_content ()
 throw (CORBA::SystemException)
 {
 // Your code here.

 // bump up ref count because we give up ownership when we return this
 this->content_->_add_ref();
 return this->content_;
 }

The Publication facet controls the Messenger’s message text and
publication period. It is important to increment the reference count before
returning the facet executor because we give up ownership of the facet
executor when we return it. This behavior is consistent with the CORBA’s
memory management rules. Notice that we do not need to convert the
executor to an object reference; we merely return it an allow the component
container to do the heavy lifting.
The implementation of the get_control() facet accessor is nearly
identical...

 ::CCM_Runnable_ptr
 Messenger_exec_i::get_control ()
 throw (CORBA::SystemException)
 {
 // Your code here.

 // bump up ref count because we give up ownership when we return this
 this->control_->_add_ref();
 return this->control_;
 }

...as is the implementation of get_message_history().

 ::CCM_History_ptr
 Messenger_exec_i::get_message_history ()
 throw (CORBA::SystemException)
 {
 // Your code here.

 // bump up ref count because we give up ownership when we return this
 this->history_->_add_ref();
 return this->history_;
 }

o c i w e b . c o m 751

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The CIDL compiler generates a complete implementation of the
set_session_context() operation.

 // Operations from Components::SessionComponent

 void
 Messenger_exec_i::set_session_context (::Components::SessionContext_ptr ctx)
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 this->context_ = CIAO_GLUE::Messenger_Context::_narrow (ctx);

 if (this->context_ == 0)
 {
 throw CORBA::INTERNAL ());
 }
 }

The component container calls this operation immediately after it instantiates
the Messenger executor. The component container calls ccm_activate() to
notify the component that it has been activated.

 void
 Messenger_exec_i::ccm_activate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 ACE_DEBUG((LM_INFO, ACE_TEXT("Messenger_exec_i::ccm_activate\n")));
 this->activate();
 }

The container does not send any requests to the component until
ccm_activate() completes. This is typically where the component executor
initializes itself. The Messenger executor calls the
ACE_Task_Base::activate() method to spawn a thread running the
svc() method.
The component container calls ccm_passivate() to notify the component
that it has been deactivated and the component container will call
ccm_remove() when the component executor is about to be destroyed. Once
ccm_passivate() is called, the component instance cannot be reactivated.

 void
 Messenger_exec_i::ccm_passivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {

752 o c i w e b . c o m

C I A O a n d C C M

 // Your code here.
 }

 void
 Messenger_exec_i::ccm_remove ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

Typically, a component executor cleans up after itself in ccm_passivate(),
where it is guaranteed that the container hasn’t started destroying its other
component executors yet. Our executor has nothing to clean up.
The CIDL compiler generates CIAO-specific ciao_preactivate() and
ciao_postactivate() operations.

 void
 Messenger_exec_i::ciao_preactivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Messenger_exec_i::ciao_postactivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

The component container calls these CIAO-specific operations before and
after it calls ccm_activate(), respectively. The CIDL compiler generates
these methods with empty implementations. We leave them empty for this
example.

23.2.4.5 The MessengerHome Executor
The CIDL compiler generates an implementation of the Messenger’s home.
Recall that the MessengerHome’s IDL3 interface is as follows:

component Messenger { ... };

home MessengerHome manages Messenger {};

o c i w e b . c o m 753

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

and the Messenger’s CIDL composition is as follows:

composition session Messenger_Impl
{
 home executor MessengerHome_Exec
 {
 implements MessengerHome;
 manages Messenger_Exec;
 };
};

The CIDL compiler generates a complete implementation of the
MessengerHome executor and a library entry point function. The component
container instantiates the MessengerHome through the entry point function
when it dynamically loads the Messenger’s library. It generates the
MessengerHome executor in the same file as the Messenger component
executor.
The MessengerHome is responsible for creating and destroying instances of
the Messenger executor. The component container instantiates the Messenger
executor through its home when it activates the Messenger. In our example the
component developer does not need to modify any of the generated
MessengerHome code nor the library entry point function.

754 o c i w e b . c o m

C I A O a n d C C M

The class diagram illustrates the MessengerHome executor class hierarchy.

Both the class definition and the implementation of the MessengerHome and
its entry point function are as follows. We make no changes to the generated
code; thus, nothing is shown in bold. Comments are interspersed.

namespace Messenger_Impl
{

Like the Messenger executor, the MessengerHome executor inherits from a
generated executor base class.

Figure 23-15 Messenger Home Executor Class Diagram

o c i w e b . c o m 755

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 class MESSENGER_EXEC_Export MessengerHome_exec_i
 : public virtual MessengerHome_Exec,
 public virtual TAO_Local_RefCounted_Object

 {
 public:

The CIDL compiler generates a default constructor and destructor.

 MessengerHome_exec_i (void);
 virtual ~MessengerHome_exec_i (void);

The CIDL compiler generates a default create() operation. The component
container calls this create() operation to instantiate the Messenger
component executor.

 virtual ::Components::EnterpriseComponent_ptr create ()
 throw (::CORBA::SystemException,::Components::CCMException);

 };

Finally, the CIDL compiler generates a library entry point function. The
component container’s underlying ACE Service Configurator calls this entry
point function to instantiate the MessengerHome executor when it
dynamically loads the component’s library. The entry point function must
have "C" linkage to prevent C++ name mangling. The name of the function is
CIAO-specific, but every CCM implementation generates an entry point
function with this signature.

 extern "C" MESSENGER_EXEC_Export ::Components::HomeExecutorBase_ptr
 createMessengerHome_Impl (void);
}

As you can see, we also make no changes to the generated MessengerHome
implementation, which follows:

 //==
 // Home Executor Implementation Class: MessengerHome_exec_i
 //==

The CIDL compiler generates a default constructor and an empty destructor.
The component developer may modify these. However, if the developer
modifies the signature of the constructor, the developer must modify the

756 o c i w e b . c o m

C I A O a n d C C M

implementation of the component home’s library entry point function to pass
the appropriate constructor arguments. The library entry point function will be
shown in a few paragraphs.

 MessengerHome_exec_i::MessengerHome_exec_i (void)
 {
 }

 MessengerHome_exec_i::~MessengerHome_exec_i (void)
 {
 }

The Messenger’s home has one operation, create(). The CIDL-generated
implementation of create() simply invokes the Messenger executor’s
default constructor.

 ::Components::EnterpriseComponent_ptr
 MessengerHome_exec_i::create ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 ::Components::EnterpriseComponent_ptr retval =
 ::Components::EnterpriseComponent::_nil ();

 ACE_NEW_THROW_EX (retval,
 Messenger_exec_i,
 CORBA::NO_MEMORY ());
 ACE_CHECK_RETURN (::Components::EnterpriseComponent::_nil ());

 return retval;
 }

Finally, the CIDL compiler generates a library entry point function for the
Messenger. This function simply creates an instance of the Messenger’s home
executor. The component container calls this function to create a
MessengerHome when it loads the Messenger’s dynamic library.

 extern "C" MESSENGER_EXEC_Export ::Components::HomeExecutorBase_ptr
 createMessengerHome_Impl (void)
 {
 ::Components::HomeExecutorBase_ptr retval =
 ::Components::HomeExecutorBase::_nil ();

 ACE_NEW_RETURN (retval,
 MessengerHome_exec_i,
 ::Components::HomeExecutorBase::_nil ());

o c i w e b . c o m 757

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 return retval;
 }
}

23.2.4.6 The Receiver Component Executor
The Receiver component connects to the Messenger component in two ways.
First, its message_consumer port connects to the Messenger’s
message_publisher port. Second, its message_history receptacle
connects to the Messenger’s message_history facet.

Recall that the Receiver’s IDL specification is as follows:

component Receiver {
 consumes Message message_consumer;
 uses History message_history;
};

home ReceiverHome manages Receiver {};

Figure 23-16 The Receiver Component

758 o c i w e b . c o m

C I A O a n d C C M

The Receiver component subscribes to Message events and uses a History
facet through which it retrieves a history of messages published. Both of these
facets happen to be provided by the Messenger component, but the Receiver
does not know that and does not need to know that. In fact, the Message
events could be published by several different suppliers without the Receiver
being aware of it.
The Receiver’s ReceiverHome manages the Receiver’s lifecycle. The
component container creates an instance of the Receiver executor through its
ReceiverHome.
Recall that the Receiver’s composition is as follows:

composition session Receiver_Impl
{
 home executor ReceiverHome_Exec
 {
 implements ReceiverHome;
 manages Receiver_Exec;
 };
};

There are many similarities between the Receiver’s executor and the
Messenger’s executor. As with the Messenger, the CIDL compiler uses both
the Receiver’s IDL interface and its CIDL composition to generate its
executor. The CIDL compiler generates a class definition for the Receiver
executor, another for the ReceiverHome, and a library entry point function.
The CIDL compiler generates the Receiver’s executor classes into the
Receiver_Impl C++ namespace as specified by the Receiver’s CIDL
composition.
The most noticeable difference between the Messenger and the Receiver
executors is the Receiver’s message consumption callback operation. As a
general rule, an IDL3 statement of the form

consumes <event_type> <facet_name>;

causes the CIDL compiler to generate a callback operation in the component’s
executor of the form:

virtual void push_<facet_name>(<event_type>* ev);

In our example, the IDL statement

o c i w e b . c o m 759

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

consumes Message message_consumer;

causes the CIDL compiler to generate a callback operation with the signature

virtual void push_message_consumer(Message* ev);

The component container calls this operation when a connected Message
supplier (in our case, the Messenger) publishes a Message event. The
component container connects the suppliers and consumers dynamically at
deployment time.
The CIDL-generated Receiver and ReceiverHome executor
implementation class definitions are as follows. We make no changes to the
generated Receiver executor class definition. Comments are interspersed.

#include "Receiver_svnt.h"
#include "Receiver_exec_export.h"
#include "tao/LocalObject.h"

namespace Receiver_Impl
{

The Receiver’s executor implements the abstract executor base class
Receiver_exec.

 class RECEIVER_EXEC_Export Receiver_exec_i
 : public virtual Receiver_Exec,
 public virtual TAO_Local_RefCounted_Object
 {

The CIDL compiler generates a default constructor and a destructor.

 public:
 Receiver_exec_i (void);
 virtual ~Receiver_exec_i (void);

The component container calls push_message_consumer() on the
Receiver when the Messenger publishes a Message.

 virtual void push_message_consumer (::Message *ev)
 throw (CORBA::SystemException);

760 o c i w e b . c o m

C I A O a n d C C M

Like the Messenger component, the Receiver component has a
CIDL-generated set_session_context() callback operation. Again, the
component container calls this operation after it instantiates the Receiver
executor.

 virtual void set_session_context (::Components::SessionContext_ptr ctx)
 throw (::CORBA::SystemException,::Components::CCMException);

The CIDL compiler also generates standard ccm_activate(),
ccm_passivate(), and ccm_remove() operations and CIAO-specific
ciao_preactivate() and ciao_postactivate() operations.

 virtual void ccm_activate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_passivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_remove ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ciao_preactivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ciao_postactivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

Finally, the CIDL compiler generates type-specific context member for the
Receiver component.

 protected:
 CIAO_GLUE::Receiver_Context *context_;
 };

Our Receiver executor has no state nor private methods, so we make no
changes to the CIDL-generated Receiver executor class definition.
The CIDL compiler also generates an implementation of the Receiver execu-
tor. The bulk of the work in implementing the Receiver executor is in the
push_message_consumer() operation. The push_message_consumer()
implementation uses the Receiver’s message_history facet to get a list of
all Message events published. The Receiver accesses the message_history
facet through its session context.

As a general rule, an IDL3 statement of the form

o c i w e b . c o m 761

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

uses <facet_interface> <facet_name>;

is mapped to a C++ operation in the component’s session context with the
signature

::<facet_interface>_ptr get_connection_<facet_name>();

Thus, the Receiver’s IDL3 statement

uses History message_history;

is mapped to a C++ operation in the Receiver’s context with the signature

::History_ptr get_connection_message_history();

Note The Receiver specifies the services that it requires through the uses
statement. This syntax enables the dynamic connection of service providers
and service users at run time.

The Receiver executor implementation follows. Changes to CIDL-generated
executor implementation code are noted in bold:

#include "Receiver_exec_i.h"
#include "ciao/CIAO_common.h"

namespace Receiver_Impl
{
 //==
 // Component Executor Implementation Class: Receiver_exec_i
 //==

 Receiver_exec_i::Receiver_exec_i (void)
 {
 }

 Receiver_exec_i::~Receiver_exec_i (void)
 {
 }

The component container invokes the push_message_consumer()
operation a connected supplier publishes a Message event.

762 o c i w e b . c o m

C I A O a n d C C M

 void
 Receiver_exec_i::push_message_consumer (::Message * ev)
 throw (CORBA::SystemException)
 {
 // Your code here.

 CORBA::String_var subject = ev->subject();
 CORBA::String_var user = ev->user();
 CORBA::String_var text = ev->text();

 ACE_DEBUG(
 (LM_INFO,
 ACE_TEXT("Received Message:\n Subject: %s\n User: %s\n Text: %s\n"),
 subject.in(),
 user.in(),
 text.in()));

 // Use the history to (inefficiently) get the total number of messages
 // published on this item so far
 ::History_var history = this->context_->get_connection_message_history();
 ::Messages_var messages = history->get_all();
 ACE_DEBUG((LM_INFO,
 ACE_TEXT(" Subject \"%s\" has published %d messages so far\n"),
 subject.in(),
 messages->length()));
 }

The implementation of push_message_consumer() prints out the
message’s subject, user, and text. Then, it gets the component’s
message_history facet, gets a list of all Message events published, and
prints out the number of messages published so far.
As with the Messenger component, the CIDL compiler generates a complete
implementation of the set_session_context() method.

 // Operations from Components::SessionComponent

 void
 Receiver_exec_i::set_session_context (::Components::SessionContext_ptr ctx)
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 this->context_ = CIAO_GLUE::Receiver_Context::_narrow (ctx)

 if (this->context_ == 0)
 {
 throw CORBA::INTERNAL();
 }
 }

o c i w e b . c o m 763

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The component container calls the set_session_context() operation to
set the Receiver’s context immediately after it instantiates the Receiver
executor. The Receiver uses this context to access its connected
message_history facet. We do not make any changes to this method.
The CIDL compiler generates empty implementations of ccm_activate(),
ccm_passivate(), and ccm_remove() as well as empty implementations
of CIAO-specific methods ciao_preactivate() and
ciao_postactivate(). We do not modify any of these methods.

 void
 Receiver_exec_i::ccm_activate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Receiver_exec_i::ccm_passivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Receiver_exec_i::ccm_remove ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Receiver_exec_i::ciao_preactivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Receiver_exec_i::ciao_postactivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

764 o c i w e b . c o m

C I A O a n d C C M

23.2.4.7 The ReceiverHome Executor
Recall that the ReceiverHome’s IDL3 interface is as follows:

component Receiver { ... };

home ReceiverHome manages Receiver {};

and the Receiver’s CIDL composition is as follows:

composition session Receiver_Impl
{
 home executor ReceiverHome_Exec
 {
 implements ReceiverHome;
 manages Receiver_Exec;
 };
};

The ReceiverHome class definition and implementation are nearly identical
to the MessengerHome class definition and implementation. We make no
changes to the CIDL-generated code.

 class RECEIVER_EXEC_Export ReceiverHome_exec_i
 : public virtual ReceiverHome_Exec,
 public virtual TAO_Local_RefCounted_Object
 {
 public:
 ReceiverHome_exec_i (void);
 virtual ~ReceiverHome_exec_i (void);

 virtual ::Components::EnterpriseComponent_ptr create ()
 throw ((::CORBA::SystemException,::Components::CCMException);
 };

 extern "C" RECEIVER_EXEC_Export ::Components::HomeExecutorBase_ptr
 createReceiverHome_Impl (void);
}

Finally, the CIDL compiler generates implementations of the ReceiverHome
executor and the Receiver’s library entry point function. We do not modify
these implementations.

 //==
 // Home Executor Implementation Class: ReceiverHome_exec_i
 //==

o c i w e b . c o m 765

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 ReceiverHome_exec_i::ReceiverHome_exec_i (void)
 {
 }

 ReceiverHome_exec_i::~ReceiverHome_exec_i (void)
 {
 }

 ::Components::EnterpriseComponent_ptr
 ReceiverHome_exec_i::create ()
 ACE_THROW_SPEC ((::CORBA::SystemException,::Components::CCMException))
 {
 ::Components::EnterpriseComponent_ptr retval =
 ::Components::EnterpriseComponent::_nil ();

 ACE_NEW_THROW_EX (retval,
 Receiver_exec_i,
 CORBA::NO_MEMORY ());
 ACE_CHECK_RETURN (::Components::EnterpriseComponent::_nil ());

 return retval;
 }

 extern "C" RECEIVER_EXEC_Export ::Components::HomeExecutorBase_ptr
 createReceiverHome_Impl (void)
 {
 ::Components::HomeExecutorBase_ptr retval =
 ::Components::HomeExecutorBase::_nil ();

 ACE_NEW_RETURN (retval,
 ReceiverHome_exec_i,
 ::Components::HomeExecutorBase::_nil ());

 return retval;
 }
}

23.2.4.8 The Administrator Component Executor
The Administrator component starts and stops the Messenger’s message
publication and controls the published text and the publication period. The
Administrator component demonstrates use of the uses multiple
mechanism of connecting a component receptacle to multiple facets
simultaneously.

766 o c i w e b . c o m

C I A O a n d C C M

Recall that the Administrator’s IDL3 interface is as follows:

component Administrator {
 uses multiple Runnable runnables;
 uses multiple Publication content;
};

home AdministratorHome manages Administrator {};

At deployment time, we connect the Administrator’s runnables and
content receptacles to the Messenger’s Runnable and Publication
facets. The Administrator controls the starting and stopping of message
publication through the Runnable facet and controls the message text
published and the publication period through the Publication facet.
The uses multiple modifier on the runnables and content receptacles
permits the Administrator to connect an unlimited number of Runnable and
Publication facets. This type of receptacle is a multiplex receptacle. Our
example uses only one of each; however, an application deployer may add

Figure 23-17 The Administrator Component

o c i w e b . c o m 767

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

additional Messengers into the application through XML-based configuration
at deployment time. More information on deployment is available in 23.2.5.
Recall that the Administrator’s composition, describing the implementation of
the Administrator component, is as follows:

composition session Administrator_Impl
{
 home executor AdministratorHome_Exec
 {
 implements AdministratorHome;
 manages Administrator_Exec;
 };
};

The CIDL compiler generates the Administrator’s executor implementation
code into an Administrator_Impl namespace. It generates an
Administrator_exec executor base class for the Administrator and an
AdministratorHome_exec executor base class for the Administrator’s
home. In addition, the CIDL compiler optionally generates default
implementations of the executors. These are analogous to the CIDL-generated
classes for the Messenger and Receiver components.
It is not surprising that there are many similarities between the Administrator
executor and the Messenger and Receiver executors. The most noticeable
change we make to the CIDL-generated executor implementation is to add
inheritance from the ACE_Task_Base class and override the
ACE_Task_Base::svc() method. The Administrator’s implementation
launches a thread that displays a simple text menu to start, stop, and otherwise
control the Messenger’s message publication. A more realistic application
might use a GUI of some kind. The purpose of this example implementation is
to demonstrate that a user can manually interact with a deployed component.
The Administrator’s IDL3 interface introduces the uses multiple
receptacle, or multiplex receptacle. A multiplex receptacle can connect to an
unlimited number of type-compatible facets. The mapping from IDL to C++ is
different for a multiplex receptacle than for a simplex receptacle, which
connects to exactly one facet.
You might remember that for a receptacle of the form

uses <facet_interface> <facet_name>;

768 o c i w e b . c o m

C I A O a n d C C M

the CIDL compiler generates a C++ operation in the component’s context with
the signature

::<facet_interface>_ptr get_connection_<facet_name>();

For example,

uses History message_history;

is mapped to a C++ operation in the component’s context with the signature

::History_ptr get_connection_message_history();

This type of receptacle is called a simplex receptacle because it connects to
exactly one facet. However, a multiplex receptacle of the form

uses multiple <facet_interface> <facet_name>;

causes the IDL and CIDL compilers to generate the following:
• A C++ struct called <facet_name>Connection:

struct <facet_name>Connection
{
 typedef <facet_name>Connection_var _var_type;
 <facet_type>_var objref;
 Components::Cookie_var ck;
};

• A typedef for a sequence of <facet_name>Connection elements called
<facet_name>Connections. We illustrate with the equivalent IDL2:

typedef sequence< <facet_name>Connection > <facet_name>Connections;

• A facet accessor C++ operation through which the component retrieves a
sequence of connected facets:

::<component name>::<facet_name>Connections* get_connections_<facet_name>();

In our example, the multiplex Runnables receptacle

uses multiple Runnable runnables;

o c i w e b . c o m 769

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

causes the IDL and CIDL compilers to generate the following:
• A C++ struct called runnablesConnection:

struct runnablesConnection
{
 typedef runnablesConnection_var _var_type;
 Runnable_var objref;
 Components::Cookie_var ck;
};

• A C++ sequence type of runnablesConnection elements called
runnablesConnections. Again, we illustrate with the equivalent IDL2:

typedef sequence< runnablesConnection > runnablesConnections;

• A facet accessor C++ operation through which the component retrieves a
sequence of connected Runnable facets:

::Administrator::runnablesConnections* get_connections_runnables();

The startPublishing(), stopPublishing(),
changePublicationText(), and changePublicationPeriod() helper
methods illustrate the usage of the multiplex receptacle.
The Administrator executor follows. Changes to CIDL-generated code are
in bold.

#include "Administrator_svnt.h"
#include "Administrator_exec_export.h"
#include "tao/LocalObject.h"
#include <ace/Task.h>

namespace Administrator_Impl
{

The executor inherits from ACE_Task_Base to realize the active object
pattern.

 class ADMINISTRATOR_EXEC_Export Administrator_exec_i
 : public virtual Administrator_Exec,
 public virtual ACE_Task_Base,
 public virtual TAO_Local_RefCounted_Object
 {
 public:

770 o c i w e b . c o m

C I A O a n d C C M

The remainder of the executor class definition is the analogous to the
Messenger’s and Receiver’s...

 Administrator_exec_i (void);
 virtual ~Administrator_exec_i (void);

 virtual void set_session_context (::Components::SessionContext_ptr ctx)
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_activate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_passivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ccm_remove ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ciao_preactivate ()
 throw (::CORBA::SystemException,::Components::CCMException);

 virtual void ciao_postactivate ()
 throw (::CORBA::SystemException,::Components::CCMException));

 protected:
 CIAO_GLUE::Administrator_Context *context_;

...except that we override the ACE_Task_Base::svc() method and add
several private helper methods to control the connected Runnable and
Publication facets.

 public:
 // Overridden from ACE_Task_Base
 int svc();

 private:
 void startPublishing();
 void stopPublishing();
 void changePublicationPeriod();
 void changePublicationText();
 };

The Administrator’s executor implementation follows, with changes to
CIDL-generated code in bold:

#include "Administrator_exec_i.h"
#include "ciao/CIAO_common.h"

o c i w e b . c o m 771

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

#include <iostream>
#include <string>

namespace Administrator_Impl
{
 //==
 // Component Executor Implementation Class: Administrator_exec_i
 //==

 Administrator_exec_i::Administrator_exec_i (void)
 {
 }

 Administrator_exec_i::~Administrator_exec_i (void)
 {
 }

As usual, we have no need to modify the generated
set_session_context() callback operation.

 void
 Administrator_exec_i::set_session_context (
 ::Components::SessionContext_ptr ctx)
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 this->context_ = CIAO_GLUE::Administrator_Context::_narrow (ctx);

 if (this->context_ == 0)
 {
 throw CORBA::INTERNAL ();
 }
 }

In the ccm_activate() implementation, the executor calls
ACE_Task_Base::activate() to launch its svc() method in a thread.

 void
 Administrator_exec_i::ccm_activate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.

 // Activate the Task, triggering its svc() method
 this->activate();
 }

772 o c i w e b . c o m

C I A O a n d C C M

 We have no need to modify any of the remaining generated operations.

 void
 Administrator_exec_i::ccm_passivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Administrator_exec_i::ccm_remove ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Administrator_exec_i::ciao_preactivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

 void
 Administrator_exec_i::ciao_postactivate ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 // Your code here.
 }

The Administrator’s implementation of the ccm_activate() launches a
thread and calls svc(). The svc() method creates a small text menu through
which a user can start and stop message publication, change the message text,
and change the publication period for every Messenger attached to the
Administrator. Helper methods implement those behaviors. Nothing in the
implementation of the svc() method involves the CORBA Component
Model. Code relevant to CCM is in the helper methods, described later.

 int
 Administrator_exec_i::svc()
 {
 enum SelectionType { START=1, STOP, CHANGE_PERIOD, CHANGE_TEXT };

 while (1) {
 std::cout << "\nWhat do you want to do to the Messenger(s)?" << std::endl;
 std::cout << START << ". Start" << std::endl;
 std::cout << STOP << ". Stop" << std::endl;

o c i w e b . c o m 773

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 std::cout << CHANGE_PERIOD << ". Change Publication Period" << std::endl;
 std::cout << CHANGE_TEXT << ". Change Publication Text" << std::endl;

 char selection_text[10];
 std::cout << "Please enter a selection: ";
 std::cin.getline(selection_text, sizeof(selection_text));
 int selection = ACE_OS::atoi(selection_text);

 switch (selection) {
 case START:
 startPublishing();
 break;
 case STOP:
 stopPublishing();
 break;
 case CHANGE_PERIOD:
 changePublicationPeriod();
 break;
 case CHANGE_TEXT:
 changePublicationText();
 break;
 default:
 std::cout << "Please enter a valid option" << std::endl;
 }
 }
 return 0;
 }

The following four developer-written methods are helper methods invoked by
svc() in response to user interaction. The first method,
startPublishing(), retrieves the Runnable facets connected to the
Administrator’s runnables receptacle and invokes start() on each one.

 void Administrator_exec_i::startPublishing()
 {
 // Get the attached Runnable facet(s)
 ::Administrator::runnablesConnections_var connections =
 this->context_->get_connections_runnables();

 std::cout << "Starting Publication" << std::endl;
 for (unsigned int i = 0; i < connections->length(); ++i) {
 Runnable_var runnable = (*connections)[i].objref;
 runnable->start();
 }
 }

In startPublishing(), we use the Administrator context’s
get_connections_runnables() method to get a list of the Runnable

774 o c i w e b . c o m

C I A O a n d C C M

facets connected to the Administrator’s runnables receptacle. That method
returns a sequence of runnablesConnection structs. One of the members
of the runnablesConnection struct is a Runnable object reference called
objref. We pull the object reference out of the struct and call start() on it
to start message publication.
The stopPublishing() method is almost identical to the
startPublishing() method...

 void Administrator_exec_i::stopPublishing()
 {
 // Get the attached Runnable facet(s)
 ::Administrator::runnablesConnections_var connections =
 this->context_->get_connections_runnables();

 std::cout << "Stopping Publication" << std::endl;
 for (unsigned int i = 0; i < connections->length(); ++i) {
 Runnable_var runnable = (*connections)[i].objref;
 runnable->stop();
 }
 }

..., except it calls stop() on each connected Runnable facet instead of
start().
The changePublicationPeriod() and changePublicationText()
methods are similar to startPublishing() and stopPublishing(). The
main difference is that they operate on the Publication receptacle rather
than the Runnables receptacle.

 void Administrator_exec_i::changePublicationPeriod()
 {
 // Get the attached Publication facet(s)
 ::Administrator::contentConnections_var contents =
 this->context_->get_connections_content();

 char period[10];
 std::cout << "Please enter a new period in seconds: ";
 std::cin.getline(period, sizeof(period));
 for (unsigned int i = 0; i < contents->length(); ++i) {
 Publication_var publication = (*contents)[i].objref;
 publication->period(ACE_OS::atoi(period));
 }
 }

o c i w e b . c o m 775

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

In changePublicationPeriod(), we use the Administrator context’s
get_connections_content() operation to get a list of the Publication
facets connected to the Administrator’s content receptacle. That method
returns a sequence of contentConnection structs. One of the members of
the contentConnection struct is a Publication object reference called
objref. We pull the object reference out of the struct and call period() on
it to change the message publication period.
The changePublicationText() method is nearly identical to
changePublicationPeriod()...

 void Administrator_exec_i::changePublicationText()
 {
 // Get the attached Publication facet(s)
 ::Administrator::contentConnections_var contents =
 this->context_->get_connections_content();

 char buffer[1024];
 std::cout << "Please enter new text: ";
 std::cin.getline(buffer, sizeof(buffer));
 for (unsigned int i = 0; i < contents->length(); ++i) {
 Publication_var publication = (*contents)[i].objref;
 publication->text(buffer);
 }
 }

... except it calls the text() method on each Publication object reference
to change the published text.

23.2.4.9 The AdministratorHome Executor
Recall that the AdministratorHome’s IDL3 interface is as follows:

component Administrator { ... };

home AdministratorHome manages Administrator {};

and the Administrator’s CIDL composition is as follows:

composition session Administrator_Impl
{
 home executor AdministratorHome_Exec
 {
 implements AdministratorHome;
 manages Administrator_Exec;

776 o c i w e b . c o m

C I A O a n d C C M

 };
};

The AdministratorHome class definition and implementation are nearly
identical to the MessengerHome and ReceiverHome class definition and
implementation. As with those, the CIDL compiler can optionally generate the
full class definition, implementation, and library entry point function.

 class ADMINISTRATOR_EXEC_Export AdministratorHome_exec_i
 : public virtual AdministratorHome_Exec,
 public virtual TAO_Local_RefCounted_Object
 {
 public:
 AdministratorHome_exec_i (void);
 virtual ~AdministratorHome_exec_i (void);

 virtual ::Components::EnterpriseComponent_ptr create ()
 throw (::CORBA::SystemException,::Components::CCMException);
 };

 extern "C" ADMINISTRATOR_EXEC_Export ::Components::HomeExecutorBase_ptr
 createAdministratorHome_Impl (void);
}

The implementation of the class and the library entry point function follows.

 //==
 // Home Executor Implementation Class: AdministratorHome_exec_i
 //==

 AdministratorHome_exec_i::AdministratorHome_exec_i (void)
 {
 }

 AdministratorHome_exec_i::~AdministratorHome_exec_i (void)
 {
 }

 ::Components::EnterpriseComponent_ptr
 AdministratorHome_exec_i::create ()
 throw (::CORBA::SystemException,::Components::CCMException)
 {
 ::Components::EnterpriseComponent_ptr retval =
 ::Components::EnterpriseComponent::_nil ();

 ACE_NEW_THROW_EX (retval,
 Administrator_exec_i,

o c i w e b . c o m 777

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 CORBA::NO_MEMORY ());
 ACE_CHECK_RETURN (::Components::EnterpriseComponent::_nil ());

 return retval;
 }

 extern "C" ADMINISTRATOR_EXEC_Export ::Components::HomeExecutorBase_ptr
 createAdministratorHome_Impl (void)
 {
 ::Components::HomeExecutorBase_ptr retval =
 ::Components::HomeExecutorBase::_nil ();

 ACE_NEW_RETURN (retval,
 AdministratorHome_exec_i,
 ::Components::HomeExecutorBase::_nil ());

 return retval;
 }
}

23.2.4.10 Summary of the Code
The code for our Messenger example is complete. We have implemented
executors for the Messenger, Receiver, and Administrator components. We
also implemented executors for the Runnable, Publication, and History
facets of the Messenger component.
We have seen how the component container injects a context into each
component executor to facilitate connections between facets and receptacles
and between publishers and consumers.
Consider what we have not done. We have not written a main(). We have not
interacted with the Portable Object Adapter, nor have we been exposed to any
classes with the prefix POA_. We have not written any code that attempts to
find another component or object; instead, those connections are provided
through each component’s context.
In the following sections we deploy the Messenger example through CIAO’s
implementation of the CCM Deployment and Configuration specification.

23.2.5 Deploying the Messenger Application
As the previous sections have demonstrated, a CCM-based application
consists of small, self-contained, reusable software components defined using
IDL3. A component defines its interactions with other components via ports
indicating provided and required interfaces and messages published and

778 o c i w e b . c o m

C I A O a n d C C M

consumed. The deployment activity separates business application logic from
process and interaction details.

An assembly is a set of interconnected component instances. Each assembly is
itself a component; an assembly may be deployable as a full application, or
may represent a higher-level component for use in a larger application. An
assembly is a realizations of the composite pattern; an assembly may be
composed of other assemblies and may be a part of other assemblies.
A component deployer deploys an assembly into one or more application
servers that might be distributed across a network. XML descriptor files
describe how the components are plugged together into an assembly and how
each component of the assembly is mapped to an application server process.
Thus, component assembly and deployment is completely independent of
component implementation, achieving a separation of concerns.
Each component may be platform-specific, but an assembly may be
heterogeneous. A component implementation neither knows nor cares which
assemblies it may be a part of nor knows to which other components it may
connect.

Figure 23-18 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

o c i w e b . c o m 779

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

Our deployment of the Messenger application is described by the following
UML deployment diagram.

The deployment consists of one Messenger instance, two Receiver instances,
and one Administrator instance. We deploy each instance in its own
component server, although it is not necessary to do that. In our deployment,
the four component servers execute on the same host, although we could
distribute them across the network with no code changes and minimal
configuration changes.
The "Deployment and Configuration of Component-based Distributed
Applications" specification (OMG Document ptc/03-07-08) prescribes how
components are instantiated, connected, and assigned to processes in a

Figure 23-19 Deployment of the Messenger Application

780 o c i w e b . c o m

C I A O a n d C C M

distributed software system. The following sections illustrate the salient points
of the D&C specification through the deployment of the Messenger
application.
The example’s XML descriptor files ares in the
$TAO_ROOT/DevGuideExamples/CIAO/Messenger/descriptors
directory.

23.2.5.1 Deployment and Configuration Specification
The OMG’s specification for the "Deployment and Configuration of
Component-based Distributed Applications" is a deployment and
configuration specification that is independent of the CORBA Component
Model. It describes a general-purpose deployment and configuration
framework for use by any component-based application. The specification
defines IDL interfaces and XML descriptor file formats for configuring
individual components and component assemblies for deployment.
This Deployment and Configuration specification supersedes the "Packaging
and Deployment" chapter of the OMG CORBA Component Model (CCM)
(formal/02-06-65) specification.
CIAO’s realization of the Deployment and Configuration specification is
called DAnCE (Deployment And Configuration Engine). DAnCE supersedes
CIAO’s implementation of the CCM specification’s "Packaging and
Deployment" chapter. We deploy the Messenger application using DAnCE in
this section.

23.2.5.2 Deployment Descriptors
The Deployment and Configuration specification presents a set of XML
descriptors for describing deployment aspects of a software system. Each
component has a set of descriptors to define its libraries, exposed ports, and
implementation. Each application consists of one or more assemblies that
describe the application’s packaging and deployment onto component servers.

A CCM application deployer writes many deployment descriptor files to
describe the application’s deployment. These files are written by hand.
Usually, an application deployer copies and edits an existing set of XML
deployment descriptors to describe a new application’s deployment. In the
future, we might expect tools such as Vanderbilt’s CoSMIC or Kansas State’s

o c i w e b . c o m 781

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

Cadena to generate the bulk of our CIAO application’s deployment
descriptors.
A component such as the Messenger component describes its deployment
using the following descriptors:
• An Implementation Artifact Descriptor (.iad) file for each of the

Messenger’s libraries.
• A CORBA Component Descriptor (.ccd) file defining the Messenger’s

exposed ports and attributes.
• A Component Implementation Descriptor (.cid) file describing the

component’s implementation in terms of its Implementation Artifact
Descriptors and its CORBA Component Descriptor.

• A Component Package Descriptor (.cpd) file describing one or more
implementations of the component.

An assembly is a composite component, consisting of interconnected
subcomponents. We assemble a Messenger component instance, two Receiver
component instances, and an Administrator component instance into a
deployable assembly. The assembly describes its deployment using the
following descriptors:
• Another CORBA Component Descriptor (.ccd) file defining the

assembly’s exposed ports and attributes, if any.
• Another Component Implementation Descriptor (.cid) file describing the

assembly’s implementation in terms of its subcomponents and the
connections between their ports.

• Another Component Package Descriptor (.cpd) file describing one or
more implementations of the assembly.

An application consists of one or more assemblies. The application describes
its deployment using the following descriptors:
• A Package Component Descriptor (.pcd) that describes a deployable

component package.
• A Top-level Package Descriptor (package.tpd) that contains one or more

Package Component Descriptors.

782 o c i w e b . c o m

C I A O a n d C C M

• A Component Deployment Plan (.cdp) that maps each component instance
in the assembly’s Component Implementation Description to a logical
node.

• A Component Domain Descriptor (.cdd) that describes available nodes,
interconnects, and bridges.

• A Node Map that maps each logical node to a physical component server
process.

The deployment engineer may choose to combine several of these descriptor
files into one. In fact, we could describe the Messenger application’s
deployment with one rather large XML descriptor. However, we will keep the
descriptor files separate for maximum flexibility.
The following sections outline the deployment of the individual components,
the Messenger assembly, and the full application.

23.2.5.3 Deployment.xsd and XMI.xsd Files
The deployment descriptors are described by two XML Schema Definition
(XSD) files: Deployment.xsd and XMI.xsd. The directory containing the
Messenger application’s deployment descriptors must contain a copy of each
of these files. Each file can be copied from DAnCE’s root directory,
$CIAO_ROOT/DAnCE or %CIAO_ROOT%\DAnCE.

o c i w e b . c o m 783

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

23.2.5.4 Deploying the Messenger Component
The Messenger component’s deployment descriptors package its libraries and
its exposed ports into one deployable package.

Six XML descriptors describe the Messenger component’s deployment: three
descriptors describe each of the Messenger’s three libraries; one descriptor
describes its exposed ports; one descriptor combines the library descriptors
and the port descriptor into an implementation; and one descriptor packages
the Messenger into a deployable package.

Figure 23-20 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

784 o c i w e b . c o m

C I A O a n d C C M

The drawing illustrates the relationships between the six Messenger
deployment descriptors.

The Messenger’s implementation is linked into three dynamic libraries:
Messenger_stub, containing the Messenger’s IDL-generated stub code;
Messenger_svnt, containing the Messenger’s IDL- and CIDL-generated
skeleton and servant code; and Messenger_exec, containing the
Messenger’s home and component executors. We create an Implementation
Artifact Descriptor for each of these libraries.
A CORBA Component Descriptor describes the Messenger’s public interface.
It contains information about each of the component’s ports, including the

Figure 23-21 Messenger Component Deployment Descriptors

Messenger_Stub.iad Messenger_Exec.iadMessenger_Svnt.iad

<<artifact>>
Messenger_stub.dll

<<artifact>>
Messenger_svnt.dll

Messenger.ccd

Messenger.cid

Messenger.cpd
Component

Package
Descriptor

Component
Implementation

Descriptor CORBA
Component
 Descriptor

Implementation
Artifact

Descriptors

Dynamic
Libraries

<<artifact>>
Messenger_exec.dll

Directly references file

o c i w e b . c o m 785

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

port name, the type of port (Facet, EventPublisher, EventConsumer, etc.) and
the port’s supported IDL interfaces.
The Component Implementation Descriptor describes the Messenger
component’s monolithic implementation. A monolithic component
implementation consists of one or more implementation artifacts. In a C++
application, an implementation artifact is a dynamic library.
At the top level, a Component Package Descriptor may describe several
alternate implementations of a component, permitting the component server to
choose the correct implementation at run-time based on platform and QoS
requirements. Our example provides one implementation of the Messenger
component.

Messenger Component - Implementation Artifact Descriptors (.iad)
An implementation artifact is a library, a jar file, or some other artifact
containing a component’s executable code. We create an Implementation
Artifact Descriptor for each of our three Messenger libraries. We also create a
separate Implementation Artifact Descriptor for the ACE, TAO, and CIAO
libraries.
The Implementation Artifact Descriptor for the ACE, TAO, and CIAO
libraries is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>ACE/TAO/CIAO Libraries</label>
 <location>$ACE_ROOT/lib/ACE</location>
 <location>$ACE_ROOT/lib/TAO</location>
 <location>$ACE_ROOT/lib/CIAO_Client</location>
</Deployment:ImplementationArtifactDescription>

The optional <label> element contains a human-readable description of the
implementation artifact. It may be used by a tool for display purposes. The
mandatory <location> elements reference the ACE, TAO and CIAO_Client
libraries that the Messenger depends upon. File extensions for the libraries are
not necessary, or even desired. Multiple alternate location for the same entity
can be provided. The underlying implementation uses the operating system’s

786 o c i w e b . c o m

C I A O a n d C C M

dynamic library capabilities, meaning that it can use the contents of the PATH
and/or the LD_LIBRARY_PATH to find the dynamic libraries.

Note Notice the simplicity of the specified library names. The ACE library is
specified merely as ACE, not as ACE.dll, ACEd.dll, libACE.so, etc. The
simplified name enables the component developer to describe an
implementation artifact in a platform-independent manner. This behavior is
specific to CIAO.

An Implementation Artifact Descriptor describes each of the three Messenger
libraries. The Messenger_stub library is described as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Stub Artifact</label>
 <location>Messenger_stub</location>
 <dependsOn>
 <name>ACE/TAO/CIAO</name>
 <referencedArtifact href="Libraries.iad"/>
 </dependsOn>
</Deployment:ImplementationArtifactDescription>

The optional <label> element may be used by a tool for display purposes.
The <location> element contains the simplified name of the library. Since
we have not provided a path, the library must be in the application’s PATH
(Windows) or LD_LIBRARY_PATH (UNIX). Optionally, we could provide a
path, as we did for the ACE, TAO, and CIAO libraries.
Each <dependsOn> element contains references to dependent
implementation artifacts. We depend on the ACE/TAO/CIAO libraries, so our
<dependsOn> entry references the Libraries.iad file containing
references to the ACE/TAO/CIAO libraries. The mandatory <name>
sub-element may be used by a tool for display purposes.
The descriptor also recognizes one or more optional <infoProperty>
elements that provide non-functional information that might be displayed by a
tool. For example:

o c i w e b . c o m 787

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 <infoProperty>
 <name>comment</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>This IAD describes the Messenger's stub library</string>
 </value>
 </value>
 </infoProperty>

The Messenger has two more Implementation Artifact Descriptors, one for its
Messenger_svnt library and one for its Messenger_exec library. The
Messenger_svnt.iad files is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Servant Artifact</label>
 <location>Messenger_svnt</location>
 <dependsOn>
 <name>ACE/TAO/CIAO</name>
 <referencedArtifact href="Libraries.iad"/>
 </dependsOn>
 <dependsOn>
 <name>Messenger_Stub</name>
 <referencedArtifact href="Messenger_Stub.iad"/>
 </dependsOn>
 <execParameter>
 <name>entryPoint</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>createMessengerHome_Servant</string>
 </value>
 </value>
 </execParameter>
</Deployment:ImplementationArtifactDescription>

The <label>, <location>, and first <dependsOn> elements contain
similar information to that in the Messenger_stub.iad file. However, the
Messenger_svnt library also depends on the Messenger_stub library, as

788 o c i w e b . c o m

C I A O a n d C C M

reflected in the additional <dependsOn> element. In addition, the
Messenger_svnt library has an entry point function, configured through the
<execParameter> element. An entry point function always has the <name>
of "entryPoint". The execution parameter’s <value> element is actually an
XML representation of a CORBA Any. The <value> element’s string value
matches the name of the Messenger’s library entry point function as generated
by the CIDL compiler. Additional information on the CIDL compiler is
available in 23.5.

Note CIAO looks for an "entryPoint" execution parameter for any implementation
artifact that ends in _svnt or _exec. Thus, your servant and executor
implementation artifacts should end in _svnt and _exec, respectively.

The Messenger_exec Implementation Artifact Descriptor is nearly identical
to the Messenger_svnt descriptor, as is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Executor Artifact</label>
 <location>Messenger_exec</location>
 <dependsOn>
 <name>ACE/TAO/CIAO</name>
 <referencedArtifact href="Libraries.iad"/>
 </dependsOn>
 <dependsOn>
 <name>Messenger_Stub</name>
 <referencedArtifact href="Messenger_Stub.iad"/>
 </dependsOn>
 <execParameter>
 <name>entryPoint</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>createMessengerHome_Impl</string>
 </value>
 </value>
 </execParameter>
</Deployment:ImplementationArtifactDescription>

o c i w e b . c o m 789

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The Messenger_exec implementation artifact also has a library entry point
function, matching the name of the entry point function generated by the
CIDL compiler.
In summary, each of the component’s Implementation Artifact Descriptor
files contains information about one of the component’s libraries. There is an
Implementation Artifact Descriptor for each of the Messenger_stub,
Messenger_svnt, and Messenger_exec libraries.

Messenger Component - CORBA Component Descriptor (.ccd)
The CORBA Component Descriptor describes the component’s IDL3
interface in an XML format. Primarily, it describes the component’s exposed
ports and attributes. The mapping from a component’s IDL file to a CORBA
Component Descriptor is purely mechanical.
There are six kinds of component ports: Facet, SimplexReceptacle,
MultiplexReceptacle, EventPublisher, EventEmitter, and
EventConsumer., as illustrated by the table.

Recall that the Messenger component’s IDL3 is as follows:

component Messenger {
 attribute string subject;

 provides Runnable control;
 provides Publication content;

 publishes Message message_publisher;
 provides History message_history;
};

We create the Messenger.ccd file describing the Messenger’s IDL3
interface as follows. Comments are interspersed.

Table 23-4 Component Port Types

Port Kind Sample IDL3 Declaration
Facet provides Runnable control

SimplexReceptacle uses Runnable control

MultiplexReceptacle uses multiple Runnable controls

EventPublisher publishes Message message_publisher

EventEmitter emits Message message_emitter

EventConsumer consumes Message message_consumer

790 o c i w e b . c o m

C I A O a n d C C M

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentInterfaceDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Component</label>
 <specificType>IDL:Messenger:1.0</specificType>
 <supportedType>IDL:Messenger:1.0</supportedType>
 <idlFile>Messenger.idl</idlFile>

The optional <label> element contains a description that may be used by a
tool for display purposes. The <specificType> element contains the
Interface Repository Id of the component’s IDL interface.
The descriptor has a <supportedType> element for the component’s
Interface Repository Id. It also has a <supportedType> element for each
IDL2 interface supported by the component either directly or through
inheritance. A component may indicate that it supports an IDL2 interface
through the supports keyword. For example.

component Messenger supports MyInterface {

would map to an additional <supportedType> element such as this:

 <supportedType>IDL:MyInterface:1.0</supportedType>

A component supporting an interface inherits the operations, attributes, etc.
from that interface. However, we don’t use the supports keyword in our
examples.
The optional <idlFile> element points to the IDL file that is the source of
this information. It is for documentation purposes.

 <property>
 <name>subject</name>
 <type>
 <kind>tk_string</kind>
 </type>
 </property>

A <property> element describes each of the component’s IDL attributes.
This <property> element describes the component’s subject attribute. The

o c i w e b . c o m 791

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

<name> element’s value matches the attribute name in the IDL file. The
<type> element’s <kind> is a type code. In our example, the attribute is a
string. The "Deployment and Configuration" specification (OMG Document
ptc/03-07-08) and the Deployment.xsd schema file contain more
information on representing data types in XML descriptors.

 <port>
 <name>control</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>false</exclusiveUser>
 <optional>true</optional>
 <provider>true</provider>
 <specificType>IDL:Runnable:1.0</specificType>
 <supportedType>IDL:Runnable:1.0</supportedType>
 <kind>Facet</kind>
 </port>

Each provides, uses, uses multiple, publishes, emits, and consumes
declaration has a matching <port> element. This port corresponds to the

provides Runnable control;

facet. The <name> element’s value matches the facet name in the IDL file.
The <specificType> element contains the Interface Repository Id of the
facet’s IDL interface. There may be several <supportedType> elements;
there is one for the facet’s most specific IDL interface and one for each
inherited interface regardless of whether the inheritance is direct or indirect.
The <kind> element’s value is Facet. Valid <kind> values are Facet,
SimplexReceptacle, MultiplexReceptacle, EventPublisher,
EventEmitter, and EventConsumer. The <optional> element indicates
if connecting to the port is optional or mandatory. The <provider> element’s
value is true for provides and consumes, false for uses and publishes.

 <port>
 <name>content</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>false</exclusiveUser>
 <optional>true</optional>
 <provider>true</provider>
 <supportedType>IDL:Publication:1.0</supportedType>
 <specificType>IDL:Publication:1.0</specificType>
 <kind>Facet</kind>
 </port>

792 o c i w e b . c o m

C I A O a n d C C M

This is the Publication facet called content. Its declaration is nearly
identical to that of the Runnable facet

 <port>
 <name>message_publisher</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>false</exclusiveUser>
 <optional>true</optional>
 <provider>false</provider>
 <supportedType>IDL:Message:1.0</supportedType>
 <specificType>IDL:Message:1.0</specificType>
 <kind>EventPublisher</kind>
 </port>

This is the Message publishing port called message_publisher. The
<supportedType> and <specificType> are the Interface Repository Id of
the event type being published. The port’s <kind> is EventPublisher.

 <port>
 <name>message_history</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>false</exclusiveUser>
 <optional>true</optional>
 <provider>true</provider>
 <supportedType>IDL:History:1.0</supportedType>
 <specificType>IDL:History:1.0</specificType>
 <kind>Facet</kind>
 </port>

This is the History facet called message_history. Its declaration is nearly
identical to that of the to the Runnable and Publication facets.

 <configProperty>
 <name>subject</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>Default Subject</string>
 </value>
 </value>
 </configProperty>

o c i w e b . c o m 793

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

This <configProperty> element sets a default value for the Messenger’s
subject attribute. Both the "Deployment and Configuration" specification
and the Deployment.xsd schema file contain more information on
representing data types and values in XML descriptors.

Note CIAO currently ignores <configProperty> elements that set values for
IDL attributes.

</Deployment:ComponentInterfaceDescription>

The descriptor also recognizes one or more optional <infoProperty>
elements that provide non-functional information that might be displayed by a
tool as explained above.
In summary, the Messenger’s CORBA Component Descriptor file,
Messenger.ccd, is an XML rendition of the component’s IDL3 interface. It
contains a <property> element for each component attribute and a <port>
element for each port.

Messenger Component - Component Implementation Descriptor (.cid)
The Messenger’s Component Implementation Descriptor describes the
monolithic implementation of the Messenger component. A monolithic
implementation consists of a set of implementation artifacts, or libraries. (By
contrast, an assembly implementation is a component implementation that
consists of subcomponents). Our monolithic Messenger implementation pulls
together the Messenger’s three dynamic libraries -- Messenger_stub,
Messenger_svnt, and Messenger_exec.
The Messenger component’s Component Implementation Descriptor follows.
Comments are interspersed.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentImplementationDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Implementation</label>

794 o c i w e b . c o m

C I A O a n d C C M

The optional <label> element describes the implementation. A tool may use
it for display purposes.

 <implements href="Messenger.ccd"/>

The <implements> element describes the interface that the component
implements by referencing the component’s CORBA Component Descriptor
file.

 <monolithicImpl>
 <primaryArtifact>
 <name>Messenger_Stub</name>
 <referencedArtifact href="Messenger_Stub.iad"/>
 </primaryArtifact>
 <primaryArtifact>
 <name>Messenger_Svnt</name>
 <referencedArtifact href="Messenger_Svnt.iad"/>
 </primaryArtifact>
 <primaryArtifact>
 <name>Messenger_Exec</name>
 <referencedArtifact href="Messenger_Exec.iad"/>
 </primaryArtifact>
 </monolithicImpl>

The <monolithicImpl> element pulls together the Messenger’s three
libraries. Each library is a <primaryArtifact> represented by a reference
to an Implementation Artifact Descriptor file.

 <configProperty>
 <name>ComponentIOR</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>Messenger.ior</string>
 </value>
 </value>
 </configProperty>

CIAO supports one optional <configProperty>, the ComponentIOR
property, for a component implementation. At run time, the component server
writes the component’s object reference to the file indicated by the
ComponentIOR property value. By default, the component server writes the

o c i w e b . c o m 795

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

file to the directory from which it was launched. A non-CCM CORBA client
may use that IOR file to discover the component.

</Deployment:ComponentImplementationDescription>

The Component Implementation Descriptor also accepts <capability>
elements which can be used by the component server to choose between
component implementations. It also accepts non-functional
<infoProperty> elements as explained above.
In summary, the Messenger’s Component Implementation Descriptor
constructs a monolithic Messenger implementation from the Messenger’s
libraries.

Messenger Component - Component Package Descriptor (.cpd)
The Component Package Descriptor is the component’s top-level packaging
file. It can describe multiple alternative implementations of the same
component interface and can contain configuration properties for the
component.
In our example, we merely reference the component implementation defined
in the previous subsection.
The Component Package Descriptor for the Messenger component is as
follows, with comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentPackageDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">

 <label>Messenger Component</label>

The optional <label> element is a human readable package label that may be
used by a tool for display purposes.

 <realizes href="Messenger.ccd"/>

The <realizes> element indicates the component’s IDL3 interface by
referencing the component’s CORBA Component Descriptor file.

796 o c i w e b . c o m

C I A O a n d C C M

 <implementation>
 <name>MessengerImpl</name>
 <referencedImplementation href="Messenger.cid"/>
 </implementation>

The <implementation> element references one or more Component
Implementations Descriptors. Our example has just one Messenger
implementation, so we refer to that implementation here. A more complex
example may have multiple implementations and may use
<deployRequirement> elements to enable a component server to choose
between them.

</Deployment:ComponentPackageDescription>

The Component Package Descriptor also recognizes <infoProperty>
documentation elements and <configProperty> default attribute value
configuration elements.

Note CIAO does not yet support the setting of a default attribute value through a
<configProperty> element, so this value is currently ignored.

To summarize, the Component Package Descriptor is the component’s
top-level descriptor, representing the component to the rest of the application.

Messenger Component - Summary
The table summarizes the six Messenger component descriptor files
Table 23-5 : Messenger Descriptor Files

File Description

Messenger_stub.iad
Implementation Artifact Descriptor for the Messenger’s stub
library

Messenger_svnt.iad
Implementation Artifact Descriptor for the Messenger’s
servant library

Messenger_exec.iad
Implementation Artifact Descriptor for the Messenger’s
executor library

Messenger.ccd
CORBA Component Descriptor for the Messenger’s IDL3
interface

o c i w e b . c o m 797

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

23.2.5.5 Receiver Component Descriptors
The Receiver component type has a similar set of descriptor files, as
illustrated by the diagram.

Messenger.cid
Component Implementation Descriptor describing the
Messenger’s implementation in terms of its libraries

Messenger.cpd
Component Package Descriptor packaging the Messenger
component into one deployable package.

Table 23-5 : Messenger Descriptor Files

File Description

Figure 23-22 Receiver Descriptor Files

Receiver_Stub.iad Receiver_Exec.iadReceiver_Svnt.iad

<<artifact>>
Receiver_stub.dll

Receiver.ccd

Receiver.cid

Receiver.cpd
Component

Package
Descriptor

Component
Implementation

Descriptor CORBA
Component
 Descriptor

Implementation
Artifact

Descriptors

Dynamic
Libraries

<<artifact>>
Receiver_svnt.dll

<<artifact>>
Receiver_exec.dll

Directly references file

798 o c i w e b . c o m

C I A O a n d C C M

The primary differences between the Receiver’s and the Messenger’s
descriptor files are in the Implementation Artifact Descriptor and the CORBA
Component Descriptor.
The Receiver’s three Implementation Artifact Descriptors reflect the fact that
each of the Receiver’s three libraries has a dependency on the Messenger’s
stub library. The dependency is illustrated by the Receiver_stub.iad file:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ImplementationArtifactDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Receiver Stub Artifact</label>
 <location>Receiver_stub</location>
 <dependsOn>
 <name>ACE/TAO/CIAO</name>
 <referencedArtifact href="Libraries.iad"/>
 </dependsOn>
 <dependsOn>
 <name>Messenger_Stub</name>
 <referencedArtifact href="Messenger_Stub.iad"/>
 </dependsOn>
</Deployment:ImplementationArtifactDescription>

The Receiver’s servant and executor Implementation Artifact Descriptor files
are analogous to the Messenger’s with the additional dependency on the
Messenger_stub library. We do not show them here.
The Receiver’s CORBA Component Descriptor file describes the Receiver’s
IDL3 interface, which is as follows:

component Receiver {
 consumes Message message_consumer;
 uses History message_history;
};

The CORBA Component Descriptor describes the Receiver’s two ports, an
EventConsumer and a SimplexReceptacle. It is as follows, with
comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentInterfaceDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"

o c i w e b . c o m 799

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Receiver Component</label>
 <specificType>IDL:Receiver:1.0</specificType>
 <supportedType>IDL:Receiver:1.0</supportedType>
 <idlFile>Receiver.idl</idlFile>

 <port>
 <name>message_consumer</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>false</exclusiveUser>
 <optional>false</optional>
 <provider>true</provider>
 <supportedType>IDL:Message:1.0</supportedType>
 <specificType>IDL:Message:1.0</specificType>
 <kind>EventConsumer</kind>
 </port>

The message_consumer port is an EventConsumer that consumes
Message events. The <supportedType> and <specificType> elements
contain the Interface Repository Id of the published event type.

 <port>
 <name>message_history</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>true</exclusiveUser>
 <optional>true</optional>
 <provider>false</provider>
 <supportedType>IDL:History:1.0</supportedType>
 <specificType>IDL:History:1.0</specificType>
 <kind>SimplexReceptacle</kind>
 </port>

The message_history port uses the Messenger’s History interface. The
uses keyword in the component’s interface indicates that it is a
SimplexReceptacle, meaning that the receptacle connects to exactly one
History facet. The message_consumer port may receive Message events
from multiple publishers, but the message_history port may only retrieve
the History from one provider.

</Deployment:ComponentInterfaceDescription>

800 o c i w e b . c o m

C I A O a n d C C M

The table summarizes the six Receiver descriptor files.
Table 23-6 Receiver Descriptor Files

File Description

Receiver_stub.iad
Implementation Artifact Descriptor for the Receiver’s stub
library

Receiver_svnt.iad
Implementation Artifact Descriptor for the Receiver’s
servant library

Receiver_exec.iad
Implementation Artifact Descriptor for the Receiver’s
executor library

Receiver.ccd
CORBA Component Descriptor for the Receiver’s IDL3
interface

Receiver.cid
Component Implementation Descriptor describing the
Receiver’s implementation in terms of its libraries

Receiver.cpd
Component Package Descriptor packaging the Receiver
component into one deployable package.

o c i w e b . c o m 801

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

23.2.5.6 Administrator Component Descriptors
The Administrator component type also has a similar set of descriptor files, as
illustrated in the diagram.

Like the Receiver, each of the Administrator’s libraries depends on the
Messenger’s Messenger_stub library. We won’t replicate the
Implementation Artifact Descriptor files here.
The Administrator’s CORBA Component Descriptor file describes the
Administrator’s IDL3 interface, which is as follows:

component Administrator {

Figure 23-23 Administrator Descriptor Files

Administrator_Stub.iad Administrator_Exec.iadAdministrator_Svnt.iad

<<artifact>>
Administrator_stub.dll

Administrator.ccd

Administrator.cid

Administrator.cpd
Component

Package
Descriptor

Component
Implementation

Descriptor CORBA
Component
 Descriptor

Implementation
Artifact

Descriptors

Dynamic
Libraries

<<artifact>>
Administrator_svnt.dll

<<artifact>>
Administrator_exec.dll

Directly references file

802 o c i w e b . c o m

C I A O a n d C C M

 uses multiple Runnable runnables;
 uses multiple Publication content;
};

The Administrator’s CORBA Component Descriptor describes the two
Administrator MultiplexReceptacle ports. It is as follows, with comments
interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentInterfaceDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Administrator Component</label>
 <specificType>IDL:Administrator:1.0</specificType>
 <supportedType>IDL:Administrator:1.0</supportedType>
 <idlFile>Administrator.idl</idlFile>

 <port>
 <name>runnables</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>true</exclusiveUser>
 <optional>true</optional>
 <provider>false</provider>
 <supportedType>IDL:Runnable:1.0</supportedType>
 <specificType>IDL:Runnable:1.0</specificType>
 <kind>MultiplexReceptacle</kind>
 </port>

The runnables port uses the Messenger’s Runnable interface. The uses
multiple keyword in the IDL3 interface indicates that it is a
MultiplexReceptacle, meaning that it may connect to many Runnable
facets.

 <port>
 <name>content</name>
 <exclusiveProvider>false</exclusiveProvider>
 <exclusiveUser>true</exclusiveUser>
 <optional>true</optional>
 <provider>false</provider>
 <supportedType>IDL:Publication:1.0</supportedType>
 <specificType>IDL:Publication:1.0</specificType>
 <kind>MultiplexReceptacle</kind>
 </port>

o c i w e b . c o m 803

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The content port uses the Messenger’s Publication interface. It is also a
MultiplexReceptacle, meaning that it may connect to many
Publication facets.

</Deployment:ComponentInterfaceDescription>

The table summarizes the six Administrator descriptor files.
Table 23-7 Administrator Descriptor Files

File Description

Administrator_stub.iad
Implementation Artifact Descriptor for the
Administrator’s stub library

Administrator_svnt.iad
Implementation Artifact Descriptor for the
Administrator’s servant library

Administrator_exec.iad
Implementation Artifact Descriptor for the
Administrator’s executor library

Administrator.ccd
CORBA Component Descriptor for the Administrator’s
IDL3 interface

Administrator.cid
Component Implementation Descriptor describing the
Administrator’s implementation in terms of its libraries

Administrator.cpd
Component Package Descriptor packaging the
Administrator component into one deployable package.

804 o c i w e b . c o m

C I A O a n d C C M

23.2.5.7 Messenger Assembly Descriptors
An assembly is a component implementation that consists of a set of
subcomponent instances connected through their ports.

We package the Messenger, Receiver, and Application components into one
top-level component we refer to as the Messenger Assembly. Our Messenger
Assembly consists of one Messenger component instance, two Receiver
component instances, and one Administrator component instance.
The Messenger Assembly’s deployment is described by three descriptor files:
a CORBA Component Descriptor describing the assembly’s exposed
properties and ports; a Component Implementation Descriptor describing the
assembly’s implementation in terms of its subcomponent instances and the
connections between them; and a Component Package Descriptor that

Figure 23-24 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

o c i w e b . c o m 805

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

packages the assembly into a deployable component. The relationships
between the descriptor files are illustrated in the diagram.

A CORBA Component Descriptor describes the Messenger Assembly’s public
interface. An assembly may expose ports and attributes of its subcomponents
to the outside world. The Messenger Assembly exposes the Messenger
component’s subject attribute, but does not expose any Messenger, Receiver,
or Administrator ports.
A Component Implementation Descriptor describes the Messenger
Assembly’s implementation. Its implementation is composed of one instance
of the Messenger component, two instances of the Receiver component, and
one instance of the Administrator component. The Component
Implementation Descriptor describes how the component instances’ facets and
event publishers connect to receptacles and event consumers to comprise the
assembly.

Figure 23-25 Messenger Assembly Descriptor Files

806 o c i w e b . c o m

C I A O a n d C C M

A Component Package Descriptor can describe many alternate
implementations of the assembly. Our example provides one implementation
of the Messenger Assembly.

Messenger Assembly - CORBA Component Descriptor
A CORBA Component Descriptor describes a component’s ports and
attributes. An assembled component may expose ports or attributes of its
subcomponents. Our Messenger Assembly merely exposes the Messenger
component’s subject attribute.
The Messenger Assembly’s CORBA Component Descriptor follows.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentInterfaceDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Assembly</label>

 <property>
 <name>subject</name>
 <type>
 <kind>tk_string</kind>
 </type>
 </property>

</Deployment:ComponentInterfaceDescription>

The <property> element indicates that the assembly exposes an attribute
called "subject", whose type is a string. The assembly’s Component
Implementation Descriptor file, described in the next section, defines how the
assembly’s subject attribute is mapped to the subject attribute of its Messenger
subcomponent.
We can think of the Messenger Assembly as a component whose implied
IDL3 interface is the following:

component MessengerAssembly {
 attribute string subject;
};

o c i w e b . c o m 807

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

Messenger Assembly - Component Implementation Descriptor
The Messenger Assembly’s Component Implementation Descriptor describes
the subcomponent instances that comprise the assembly and the connections
between their ports. The Component Implementation Descriptor describes the
subcomponent instances and connections as shown in the deployment
diagram.

The Messenger Assembly’s Component Implementation Descriptor is as
follows, with comments interspersed.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentImplementationDescription
 xmlns:Deployment="http://www.omg.org/Deployment"

Figure 23-26 Messenger Application Deployment Diagram

808 o c i w e b . c o m

C I A O a n d C C M

 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Assembly</label>
 <implements href="MessengerAssembly.ccd"/>

The <implements> element references the Messenger Assembly’s CORBA
Component Descriptor documented in the previous section.

 <assemblyImpl>

An <assemblyImpl> element indicates that this is an assembly-based
component, meaning that is composed of subcomponent instances.

 <instance xmi:id="a_Messenger">
 <name>Messenger_Instance</name>
 <package href="Messenger.cpd"/>
 </instance>
 <instance xmi:id="first_Receiver">
 <name>First_Receiver_Instance</name>
 <package href="Receiver.cpd"/>
 </instance>
 <instance xmi:id="second_Receiver">
 <name>Second_Receiver_Instance</name>
 <package href="Receiver.cpd"/>
 </instance>
 <instance xmi:id="a_Administrator">
 <name>Administrator_Instance</name>
 <package href="Administrator.cpd"/>
 </instance>

The <instance> elements create the Messenger instance, the two Receiver
instances, and the Administrator instance. Each <instance> refers to the
Component Package Descriptor of its component type. The xml::id
attributes of the instances are used by <connection> elements to connect the
instances’ ports.

 <connection>
 <name>Messenger_to_First_Receiver_Publish</name>
 <internalEndpoint>
 <portName>message_publisher</portName>
 <instance xmi:idref="a_Messenger"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>message_consumer</portName>
 <instance xmi:idref="first_Receiver"/>

o c i w e b . c o m 809

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 </internalEndpoint>
 </connection>

This connection connects the Messenger instance’s message_publisher
port to one Receiver instance’s message_consumer port. The connection’s
<name> is a unique identifier for the connection within the assembly. The
value in each <portName> element must match the port name in the
Messenger’s and Receiver’s CORBA Component Descriptor files. The
<instance> element’s xml::idref attribute matches the <instance>
element’s xml::id attribute above.

 <connection>
 <name>Messenger_to_First_Receiver_History</name>
 <internalEndpoint>
 <portName>message_history</portName>
 <instance xmi:idref="a_Messenger"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>message_history</portName>
 <instance xmi:idref="first_Receiver"/>
 </internalEndpoint>
 </connection>

This connection connects the Messenger’s message_history facet to a
Receiver instance’s message_history receptacle.

810 o c i w e b . c o m

C I A O a n d C C M

The message_publisher-to-message_consumer connection and the
message_history-to-message_history connection are illustrated by the
highlights in the deployment diagram.

 <connection>
 <name>Messenger_to_Second_Receiver_Publisher</name>
 <internalEndpoint>
 <portName>message_publisher</portName>
 <instance xmi:idref="a_Messenger"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>message_consumer</portName>
 <instance xmi:idref="second_Receiver"/>
 </internalEndpoint>

Figure 23-27 One Messenger and Receiver Connection

o c i w e b . c o m 811

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 </connection>
 <connection>
 <name>Messenger_to_Second_Receiver_History</name>
 <internalEndpoint>
 <portName>message_history</portName>
 <instance xmi:idref="a_Messenger"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>message_history</portName>
 <instance xmi:idref="second_Receiver"/>
 </internalEndpoint>
 </connection>

These two connections connect the second Receiver instance to the Messenger
instance. The Messenger instance’s message_publisher port connects to
the Receiver instance’s message_consumer port and the Messenger
instance’s message_history facet connects to the Receiver instance’s
message_history receptacle.

 <connection>
 <name>Messenger_to_Administrator_Control</name>
 <internalEndpoint>
 <portName>control</portName>
 <instance xmi:idref="a_Messenger"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>runnables</portName>
 <instance xmi:idref="a_Administrator"/>
 </internalEndpoint>
 </connection>
 <connection>
 <name>Messenger_to_Administrator_Content</name>
 <internalEndpoint>
 <portName>content</portName>
 <instance xmi:idref="a_Messenger"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>content</portName>
 <instance xmi:idref="a_Administrator"/>
 </internalEndpoint>
 </connection>

These two connections connect the Administrator instance to the Messenger
instance. The Messenger instance’s control facet connects to the
Administrator instance’s runnables receptacle and the Messenger instance’s
content facet connects to the Administrator instance’s content receptacle.

812 o c i w e b . c o m

C I A O a n d C C M

 <externalProperty>
 <name>Subject Mapping</name>
 <externalName>subject</externalName>
 <delegatesTo>
 <propertyName>subject</propertyName>
 <instance xmi:idref="a_Messenger"/>
 </delegatesTo>
 </externalProperty>

The <externalProperty> element maps the Messenger Assembly’s
exposed subject attribute to the Messenger component instance’s subject
attribute. The Messenger Assembly doesn’t implement its own subject
attribute; it must map to an attribute of one of its subcomponents.

 </assemblyImpl>
</Deployment:ComponentImplementationDescription>

In summary, the Messenger Assembly’s Component Implementation
Descriptor describes the four subcomponent instances that comprise the
assembly and describes the connections that connect their ports together.

Messenger Assembly - Component Package Descriptor
The Messenger Assembly’s Component Package Descriptor is the top-level
descriptor that represents the assembly as a deployable component. That
should sound familiar; the Messenger, Receiver, and Administrator
Component Package Descriptors serve exactly the same purpose.
The Messenger Assembly’s Component Package Descriptor is nearly identical
to the Messenger component’s.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:ComponentPackageDescription
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Assembly Package</label>
 <realizes href="MessengerAssembly.ccd"/>
 <implementation>
 <name>Messenger Application</name>
 <referencedImplementation href="MessengerAssembly.cid"/>
 </implementation>
</Deployment:ComponentPackageDescription>

o c i w e b . c o m 813

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The <realizes> element references the assembly’s CORBA Component
Descriptor, which describes the assembly’s implied IDL3 interface. The
<referencedImplementation> element references the assembly’s
Component Implementation Descriptor, which describes the assembly’s
implementation in terms of its subcomponents.

Messenger Assembly - Summary
The Messenger Assembly’s descriptors files describe the Messenger
Assembly’ composition in terms of its subcomponent instances the
connections between them. The table summarizes the Messenger Assembly
descriptor files.
Table 23-8 Messenger Assembly Descriptor Files

File Description

MessengerAssembly.ccd
CORBA Component Descriptor for the Messenger
Assembly’s implied IDL3 interface

MessengerAssembly.cid
Component Implementation Descriptor describing the
Messenger Assembly’s implementation in terms of its
subcomponent instances and connections

MessengerAssembly.cpd
Component Package Descriptor packaging the Messenger
Assembly component into one deployable package.

814 o c i w e b . c o m

C I A O a n d C C M

23.2.5.8 Application Descriptors
The application’s deployment descriptors describe how the assembly’s
component instances are deployed onto logical nodes and how each logical
node is mapped to a physical component container.

Figure 23-28 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

o c i w e b . c o m 815

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The application’s UML Deployment Diagram illustrates the deployment.

The Application’s deployment is described by five descriptor files: a Package
Configuration Descriptor that wraps the Messenger Assembly’s package
descriptor; a Top-level Package Descriptor that represents the entire
application; a Component Deployment Plan descriptor that maps the Message
Assembly’s subcomponent instances to logical deployment nodes; a
Component Domain Descriptor that describes each of the logical nodes; and a
node map that maps logical deployment nodes to physical component server
processes.

Figure 23-29 Deployment of the Messenger Application

816 o c i w e b . c o m

C I A O a n d C C M

The Package Configuration Descriptor describes one possible configuration
of a component package by indicating deployment requirements and/or
configuration properties of the component package.
The Top-level Package Descriptor references the Package Configuration
Descriptor that is the root of the deployed application. It always has the name
package.tpd.
The Component Deployment Plan contains the bulk of the application’s
deployment information. It maps each component instance onto a logical
deployment node, achieving a separation of concerns between the Component
Implementation Descriptor’s instance connections and the Component
Deployment Plan’s node mappings.
The Component Domain Descriptor describes the target deployment
environment in terms of its nodes, interconnects, and bridges.
The Node Map maps each logical node onto a physical component server
process.

o c i w e b . c o m 817

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

The relationships between the application descriptor files are illustrated in the
diagram.

Application - Package Configuration Descriptor
The Package Configuration Descriptor describes one configuration of a
deployable component package. It may define deployment requirements or
configure attribute values. Our Package Configuration Descriptor references
the Messenger Assembly’s Component Package Descriptor and configures a
default value for the Messenger Assembly’s exposed subject attribute. The
descriptor is as follows, with comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:PackageConfiguration

Figure 23-30 The Application’s Deployment Descriptors

818 o c i w e b . c o m

C I A O a n d C C M

xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Application Configuration</label>
 <basePackage href="MessengerAssembly.cpd"/>

The <basePackage> element references the Messenger Assembly’s
Component Package Descriptor. Either a <basePackage> element or a
<specializedConfig> element is mandatory. A <specializedConfig>
element can reference another Package Configuration Descriptor and override
its requirements and/or configuration values.

 <configProperty>
 <name>subject</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>Typewriter practice</string>
 </value>
 </value>
 </configProperty>

The <configProperty> element defines a default value for the Messenger
Assembly’s subject attribute.

Note CIAO does not yet support the setting of a default attribute value through a
<configProperty> element, so this value is currently ignored.

</Deployment:PackageConfiguration>

A Package Configuration Descriptor may also contain
<selectRequirement> requirement elements. In future implementations of
CIAO, these elements would be matched against <capability> elements in
the Component Implementation Description.

o c i w e b . c o m 819

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

Application - Top-level Package Descriptor
Each application has exactly one Top-level Package Descriptor. It is always
named package.tpd, and it points to the application’s Package
Configuration Descriptor file. The Top-level Package Descriptor for our
application is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:TopLevelPackageDescription
xmlns:Deployment="http://www.omg.org/Deployment"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <package href="Application.pcd"/>
</Deployment:TopLevelPackageDescription>

A Top-level Package Descriptor has exactly one <package> element that
points to the application’s Package Component Descriptor.

Application - Component Deployment Plan
The application’s Component Deployment Plan describes how the Messenger
Assembly’s component instances are deployed onto logical processing nodes.
Through this descriptor, the application deployer can vary the component
instance-to-node mapping independently from the connections between
component instances.
The Component Deployment Plan for our application is as follows, with
comments interspersed:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Deployment:DeploymentPlan
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
 <label>Messenger Deployment Plan</label>
 <instance xmi:id="Messenger_Instance_ID">
 <name>Messenger_Instance</name>
 <node>Messenger_Node</node>
 </instance>

This <instance> element indicates that the Messenger_Instance is
deployed onto the Messenger_Node. The value of the <name> element must

820 o c i w e b . c o m

C I A O a n d C C M

match the Messenger instance’s <name> element in the Messenger
Assembly’s Component Implementation Descriptor file.

 <instance xmi:id="First_Receiver_Instance_ID">
 <name>First_Receiver_Instance</name>
 <node>First_Receiver_Node</node>
 </instance>
 <instance xmi:id="Second_Receiver_Instance_ID">
 <name>Second_Receiver_Instance</name>
 <node>Second_Receiver_Node</node>
 </instance>

These two <instance> elements indicate that each of the two Receiver
instances is deployed on its own logical node. Again, the value of each
<name> element must match the Receiver instances’ <name> elements in the
Messenger Assembly’s Component Implementation Descriptor file.

 <instance xmi:id="Administrator_Instance_ID">
 <name>Administrator_Instance</name>
 <node>Administrator_Node</node>
 </instance>

This <instance> element indicates that the Administrator instance is
deployed onto the Administrator_Node.

</Deployment:DeploymentPlan>

In summary, the Component Deployment Plan maps each component instance
onto a logical processing node. Each instance name must match an instance
name in the assembly’s Component Implementation Descriptor.

Application - Component Domain Descriptor
The Component Domain Descriptor describes the target environment in terms
of its nodes, interconnects, and bridges. The Messenger application’s
Component Domain Descriptor is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<Deployment:Domain
 xmlns:Deployment="http://www.omg.org/Deployment"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/Deployment Deployment.xsd">
<label>Messenger Application Domain</label>
<node>

o c i w e b . c o m 821

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 <name>Messenger_Node</name>
 <label>Messenger's Node</label>
</node>
<node>
 <name>First_Receiver_Node</name>
 <label>First Receiver's Node</label>
</node>
<node>
 <name>Second_Receiver_Node</name>
 <label>Second Receiver's Node</label>
</node>
<node>
 <name>Administrator_Node</name>
 <label>Administrator's Node</label>
</node>
</Deployment:Domain>

This Component Deployment Descriptor describes the four nodes of the
Messenger application. The <name> of each <node> matches the node name
in the Component Deployment Plan. The <label>, as always, is optional and
may be used for display purposes by a tool. Our sample application doesn’t
use this descriptor, but we define it for completeness.

Node Map
The node map is a text file that maps each of the Component Deployment
Plan’s logical nodes onto a physical component server process by mapping
each logical node to a NodeManager object reference. The node map for the
Messenger application is as follows:

Administrator_Node corbaloc:iiop:localhost:10000/NodeManager
First_Receiver_Node corbaloc:iiop:localhost:20000/NodeManager
Second_Receiver_Node corbaloc:iiop:localhost:30000/NodeManager
Messenger_Node corbaloc:iiop:localhost:40000/NodeManager

The contents of this file determine where each component executes. Our
deployment environment consists of four NodeManager processes running on
the localhost, each listening on a different port. Each NodeManager is a
component server, capable of dynamically loading a component’s libraries
and making connections between components. The NodeManager is
documented in 23.2.7 and 23.4.
The node map enables a great deal of deployment flexibility. We could deploy
the Messenger application across a network simply by running our

822 o c i w e b . c o m

C I A O a n d C C M

NodeManager processes across the network and changing our node map’s
NodeManager object references to reflect that.
We could also deploy several component instances on one component server
simply by mapping several logical nodes to the same NodeManager object
reference.

Messenger Application - Summary
The Messenger Application’s descriptors describe how each subcomponent
instance is deployed onto a physical component server process. The table
summarizes the Messenger application’s descriptor files.

The following sections discusses the execution of the Messenger application.

23.2.6 Building the Messenger Application
The Messenger application consists of three component types: Messenger,
Receiver, and Administrator. Each component type is composed of three
libraries: a stub library, a servant library, and an executor library. We manage

Table 23-9 Messenger Application Descriptor Files

File Description

Application.pcd
Package Configuration Descriptor that configures the
top-level component’s deployment attributes.

package.tpd
Top-level Package Descriptor that represents the
application.

Application.cdp
Component Deployment Plan that maps component
instances to logical nodes.

Domain.cdd
Component Domain Descriptor that describes the target
deployment environment.

ApplicationNodeMap.dat
Text file that maps each logical node to a physical
component server object.

o c i w e b . c o m 823

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

these libraries with three Make Project Creator (MPC) files, one file for each
component type.

The example’s source code, build files, and XML descriptor files ares in the
$TAO_ROOT/DevGuideExamples/CIAO/Messenger directory.

23.2.6.1 Setting Up Your Environment
There are several environment variables used by ACE, TAO, and CIAO dur-
ing both the compilation and execution of applications. Information about
ACE and TAO environment variables is available at 3.2. CIAO’s environment
variables are described below. Syntax for Windows is shown in parentheses.
• CIAO_ROOT

The base path for all CIAO-related code, normally $TAO_ROOT/CIAO
(%TAO_ROOT%\CIAO).

• XERCESCROOT

The base directory of the Xerces C++ installation. See 23.3.0.1 and
23.3.0.2 for more information on Xerces C++.

• Library Path
The library path must include the directory containing the Xerces C++
dynamic libraries, $XERCESCROOT/bin (%XERCESCROOT%\bin). You

Figure 23-31 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application
¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

824 o c i w e b . c o m

C I A O a n d C C M

should add this location to your LD_LIBRARY_PATH environment variable
or its equivalent. (On Windows, add this directory to your PATH so DLLs
can be located at run time.)

23.2.6.2 Creating the Messenger’s MPC File
The CIAO source tree contains a generate_component_mpc.pl script to
generate the beginning of a component’s MPC file.

UNIX and UNIX-like Systems
The script is $CIAO_ROOT/bin/generate_component_mpc.pl

Windows Systems
The script is %CIAO_ROOT%\bin\generate_component_mpc.pl.

General Usage
The general usage of the generate_component_mpc.pl script is as
follows:

$CIAO_ROOT/bin/generate_component_mpc.pl <component name>

For example:

$CIAO_ROOT/bin/generate_component_mpc.pl Messenger

creates an MPC file called Messenger.mpc.
The script also prints the following text to suggest that you generate an export
header file for each Messenger library:

Run the following commands also:
generate_export_file.pl MESSENGER_STUB > Messenger_stub_export.h
generate_export_file.pl MESSENGER_SVNT > Messenger_svnt_export.h
generate_export_file.pl MESSENGER_EXEC > Messenger_exec_export.h

We deploy our component executors in dynamic libraries. On Windows
platforms, classes exported from a dynamic library must define an export
macro. On UNIX-like platforms, the export macros define to nothing.
However, future versions of the gcc compiler will support the C++ export

o c i w e b . c o m 825

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

keyword, which may reduce code size by reducing the number of exported
symbols. In either case, the export macros enable cross-platform development.
The generate_export_file.pl script is in the $ACE_ROOT/bin directory
on UNIX-like systems and in the %ACE_ROOT%\bin directory on Windows
systems. Run the script as follows:

generate_export_file.pl MESSENGER_STUB > Messenger_stub_export.h
generate_export_file.pl MESSENGER_SVNT > Messenger_svnt_export.h
generate_export_file.pl MESSENGER_EXEC > Messenger_exec_export.h

See 6.12 for more information on the generate_export_file.pl script.

The Messenger’s MPC File
The generated MPC file is as follows:
project(Messenger_stub): ciao_client {

 sharedname = Messenger_stub
 idlflags += -Wb,stub_export_macro=MESSENGER_STUB_Export
 idlflags += -Wb,stub_export_include=Messenger_stub_export.h
 idlflags += -Wb,skel_export_macro=MESSENGER_SVNT_Export
 idlflags += -Wb,skel_export_include=Messenger_svnt_export.h
 dynamicflags = MESSENGER_STUB_BUILD_DLL

 IDL_Files {
 Messenger.idl
 }

 Source_Files {
 MessengerC.cpp
 }
}

project(Messenger_svnt) : ciao_servant {
 after += Messenger_stub
 sharedname = Messenger_svnt
 libs += Messenger_stub
 idlflags += -Wb,export_macro=MESSENGER_SVNT_Export
 idlflags += -Wb,export_include=Messenger_svnt_export.h
 dynamicflags = MESSENGER_SVNT_BUILD_DLL

 CIDL_Files {
 Messenger.cidl
 }

 IDL_Files {
 MessengerE.idl

826 o c i w e b . c o m

C I A O a n d C C M

 }

 Source_Files {
 MessengerEC.cpp
 MessengerS.cpp
 Messenger_svnt.cpp
 }
}

project(Messenger_exec) : ciao_component {
 after += Messenger_svnt
 sharedname = Messenger_exec
 libs += Messenger_stub Messenger_svnt
 idlflags += -Wb,export_macro=MESSENGER_EXEC_Export
 idlflags += -Wb,export_include=Messenger_exec_export.h
 dynamicflags = MESSENGER_EXEC_BUILD_DLL

 IDL_Files {
 }

 Source_Files {
 Messenger_exec.cpp
 }
}

That’s a reasonable start towards our final Messenger.mpc file. We edit the
file as follows, with comments interspersed. First, we discuss the project for
the Messenger’s stub library, Messenger_stub.

project(Messenger_stub): ciao_client_dnc, devguide_example {

Because we deploy the application using the DAnCE facility, we change the
ciao_client base project dependency to ciao_client_dnc. We also add
a dependency on the devguide_example base project.

 requires += cidl

This project requires the CIDL compiler.

 sharedname = Messenger_stub
 idlflags += -Wb,stub_export_macro=MESSENGER_STUB_Export
 idlflags += -Wb,stub_export_include=Messenger_stub_export.h
 idlflags += -Wb,skel_export_macro=MESSENGER_SVNT_Export
 idlflags += -Wb,skel_export_include=Messenger_svnt_export.h
 dynamicflags = MESSENGER_STUB_BUILD_DLL

o c i w e b . c o m 827

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

We make no changes to the sharedname, idlflags, or dynamicflags.

 IDL_Files {
 Runnable.idl
 Publication.idl
 Message.idl
 History.idl
 Messenger.idl
 }

The Messenger component’s interfaces, event types, and component
declaration are spread across five IDL files. The
generate_component_mpc.pl script does not know this. Thus, we add
four IDL files to the IDL_Files section.

 Source_Files {
 RunnableC.cpp
 PublicationC.cpp
 MessageC.cpp
 HistoryC.cpp
 MessengerC.cpp
 }

We add stub source code files for each of the Messenger component’s IDL
files.

}

Next, we discuss the project for the Messenger’s servant library,
Messenger_svnt.

project(Messenger_svnt): ciao_servant_dnc, devguide_example {

Again, because we deploy the application using the DAnCE facility, we
change the ciao_servant base project dependency to ciao_servant_dnc.
We also add a dependency on the devguide_example base project.

 requires += cidl

This project also requires the CIDL compiler.

 after += Messenger_stub
 sharedname = Messenger_svnt
 libs += Messenger_stub

828 o c i w e b . c o m

C I A O a n d C C M

 idlflags += -Wb,export_macro=MESSENGER_SVNT_Export
 idlflags += -Wb,export_include=Messenger_svnt_export.h
 dynamicflags = MESSENGER_SVNT_BUILD_DLL

We make no changes to the after, sharedname, libs, idlflags, or
dynamicflags.

 // cidlc does NOT automatically add the current directory to
 // the include path. This is a worksround to add it. We have
 // to insert it before the "--" that is at the end of the
 // default cidlflags.
 cidlflags -= --
 cidlflags += -I. --

Our IDL and CIDL files require that the current directory is in the CIDL
compiler’s include path. These two lines add the current directory to the CIDL
compiler’s include path.

 // project must be a ciao_servant or ciao_server to use CIDL files
 CIDL_Files {
 Messenger.cidl
 }

 IDL_Files {
 MessengerE.idl
 }

We make no changes to the CIDL_Files or the IDL_Files.

 Source_Files {
 RunnableS.cpp
 PublicationS.cpp
 MessageS.cpp
 HistoryS.cpp
 MessengerS.cpp
 MessengerEC.cpp
 Messenger_svnt.cpp
 }

We add skeleton source code files for the Messenger component’s IDL files.

}

Finally, we discuss the project for the Messenger’s executor library,
Messenger_exec.

o c i w e b . c o m 829

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

project(Messenger_exec): ciao_component_dnc, devguide_example {

Once more, because we deploy the application using the DAnCE facility, we
change the ciao_component base project dependency to
ciao_component_dnc. We also add a dependency on the
devguide_example base project.

 requires += cidl

This project also requires the CIDL compiler.

 after += Messenger_svnt
 sharedname = Messenger_exec
 libs += Messenger_stub Messenger_svnt
 idlflags += -Wb,export_macro=MESSENGER_EXEC_Export
 idlflags += -Wb,export_include=Messenger_exec_export.h
 dynamicflags = MESSENGER_EXEC_BUILD_DLL

We make no changes to the after, sharedname, libs, idlflags, or
dynamicflags.

 IDL_Files {
 }

 Source_Files {
 MessengerES.cpp
 Messenger_exec_i.cpp
 Publication_exec_i.cpp
 History_exec_i.cpp
 Runnable_exec_i.cpp
 }

We make quite a few changes to the executor library’s Source_Files
section. First, we add MessengerES.cpp, the Messenger executor’s skeleton
file. Then we change Messenger_exec.cpp to Messenger_exec_i.cpp to
reflect the fact that we’ve renamed the CIDL-generated executor
implementation file as described in 23.2.3. Finally, we add the facet executor
implementation files.

}

830 o c i w e b . c o m

C I A O a n d C C M

23.2.6.3 Creating the Administrator’s and Receiver’s MPC Files
The Receiver’s and Administrator’s MPC files are similar to the Messenger’s.
We generate each file using the generate_component_mpc.pl script.

generate_component_mpc.pl Receiver
generate_component_mpc.pl Administrator

We modify the generated MPC files by hand, just as we did for the Messenger.
We’ll examine the modified Receiver.mpc file and highlight significant
differences between Receiver.mpc and Messenger.mpc. Comments are
interspersed. First, we discuss the project for the Receiver’s stub library,
Receiver_stub.

project(Receiver_stub): ciao_client_dnc, devguide_example {
 requires += cidl

 after += Messenger_stub
 sharedname = Receiver_stub
 libs += Messenger_stub

The Receiver’s stub library is dependent on the Messenger’s stub library and
must be built after the Messenger’s stub library.

 idlflags += -Wb,stub_export_macro=RECEIVER_STUB_Export
 idlflags += -Wb,stub_export_include=Receiver_stub_export.h
 idlflags += -Wb,skel_export_macro=RECEIVER_SVNT_Export
 idlflags += -Wb,skel_export_include=Receiver_svnt_export.h
 dynamicflags = RECEIVER_STUB_BUILD_DLL

 IDL_Files {
 Receiver.idl
 }

 Source_Files {
 ReceiverC.cpp
 }
}

Next, we discuss the project for the Receiver’s servant library,
Receiver_svnt.

project(Receiver_svnt): ciao_servant_dnc, devguide_example {
 requires += cidl

o c i w e b . c o m 831

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

 after += Receiver_stub Messenger_svnt
 sharedname = Receiver_svnt
 libs += Receiver_stub Messenger_stub Messenger_svnt

The Receiver’s servant library is dependent on the Messenger’s stub and
servant libraries and must be built after the Messenger’s servant library.

 idlflags += -Wb,export_macro=RECEIVER_SVNT_Export
 idlflags += -Wb,export_include=Receiver_svnt_export.h
 dynamicflags = RECEIVER_SVNT_BUILD_DLL

 // cidlc does NOT automatically add the current directory to
 // the include path. This is a worksround to add it. We have
 // to insert it before the "--" that is at the end of the
 // default cidlflags.
 cidlflags -= --
 cidlflags += -I. --

 CIDL_Files {
 Receiver.cidl
 }

 IDL_Files {
 ReceiverE.idl
 }

 Source_Files {
 ReceiverS.cpp
 ReceiverEC.cpp
 Receiver_svnt.cpp
 }
}

Finally, we discuss the project for the Receiver’s executor library,
Receiver_exec.

project(Receiver_exec): ciao_component_dnc, devguide_example {
 requires += cidl

 after += Receiver_svnt
 sharedname = Receiver_exec
 libs += Receiver_stub Receiver_svnt Messenger_stub

The Receiver’s executor library is dependent on the Messenger’s stub library.

 idlflags += -Wb,export_macro=RECEIVER_EXEC_Export
 idlflags += -Wb,export_include=Receiver_exec_export.h

832 o c i w e b . c o m

C I A O a n d C C M

 dynamicflags = RECEIVER_EXEC_BUILD_DLL

 IDL_Files {
 }

 Source_Files {
 ReceiverES.cpp
 Receiver_exec_i.cpp
 }

The Receiver’s executor library has just one executor implementation file.

}

The modified Administrator.mpc file is similar. The primary difference
between the Administrator component and the Receiver component is that the
Administrator is not an event consumer, and thus the Administrator’s servant
library does not depend on the Messenger’s servant library.

23.2.6.4 Running MPC
Execute the Make Project Creator to generate the Messenger’s build files for
your platform. All TAO Developer’s Guide examples require that the
$TAO_ROOT/DevGuideExamples directory be in the MPC path. For
example:

UNIX and UNIX-like Systems

cd $TAO_ROOT/DevGuideExamples/CIAO/Messenger
$ACE_ROOT/bin/mwc.pl -include $TAO_ROOT/DevGuideExamples -type gnuace

Windows Systems

cd %TAO_ROOT%\DevGuideExamples\CIAO\Messenger
perl %ACE_ROOT%\bin\mwc.pl -include %TAO_ROOT%\DevGuideExamples -type vc71

See Chapter 4 for more information on MPC.

23.2.6.5 Building
Build the Messenger application using the target build environment.

o c i w e b . c o m 833

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

23.2.7 Running the Messenger Application
Finally, we can execute the application.

Figure 23-32 Road Map

¢ Define an IDL interface for each component and its facets
¢ Implement each component and its facets

¢ Describe the application’s deployment

¢ Build the application

¢ Run the application

¢ Define each component’s composition
¢ Implement a C++ executor for each component and facet

¢ Describe each component’s libraries and ports
¢ Connect component instances through their ports
¢ Deploy each component into a component container

834 o c i w e b . c o m

C I A O a n d C C M

Recall that we deploy the Messenger application on four nodes as illustrated in
the diagram.

Each component type -- the Messenger, Receiver, and Administrator --
consists of a set of dynamic libraries. We have not created any executables.
Deployment descriptor files, as described in 23.2.5, define how the component
instances are created and connected together and how those component
libraries are deployed onto physical nodes.

Figure 23-33 Messenger Deployment

o c i w e b . c o m 835

2 3 . 2 E x a m p l e - T h e M e s s e n g e r A p p l i c a t i o n

23.2.7.1 Setting Up Your Environment
Please see 23.2.6.1 for information on setting up the environment variables
required to execute a CIAO application.

23.2.7.2 DAnCE Executables
CIAO’s Deployment And Configuration Engine (DAnCE), which implements
the OMG "Deployment and Configuration of Component-based Distributed
Applications" specification (OMG Document ptc/03-07-08), contains a set of
executables to dynamically load component libraries, create component
instances, and make connections between them. The table summarizes the
DAnCE executables that we’ll use to deploy the application. The executables
are described in more detail in 23.4.

23.2.7.3 Deploying the Messenger with DAnCE
First, we run four Node Manager daemon processes. In our example, each
Node Manager process executes on the localhost. The four processes listen
on ports 10000, 20000, 30000, and 40000, respectively. Each Node Manager
launches a Node Application process when an application is deployed upon it.

$CIAO_ROOT/DAnCE/NodeManager/Node_Daemon \
-ORBEndpoint iiop://localhost:10000 \
-s "$CIAO_ROOT/DAnCE/NodeApplication/NodeApplication"

$CIAO_ROOT/DAnCE/NodeManager/Node_Daemon \
-ORBEndpoint iiop://localhost:20000 \
-s "$CIAO_ROOT/DAnCE/NodeApplication/NodeApplication"

$CIAO_ROOT/DAnCE/NodeManager/Node_Daemon \

Table 23-10 DAnCE Executables

Name Description

NodeManager
A daemon process that launches NodeApplication component
servers

NodeApplication The component server

ExecutionManager
A process that maps component instances to component
servers

RepositoryManager
A process that parses a set of deployment descriptors and sends
deployment information to the ExecutionManager

836 o c i w e b . c o m

C I A O a n d C C M

-ORBEndpoint iiop://localhost:30000 \
-s "$CIAO_ROOT/DAnCE/NodeApplication/NodeApplication"

$CIAO_ROOT/DAnCE/NodeManager/Node_Daemon \
-ORBEndpoint iiop://localhost:40000 \
-s "$CIAO_ROOT/DAnCE/NodeApplication/NodeApplication"

Then, we start an Execution Manager that reads the node map file
ApplicationNodeMap.dat and writes its own object reference to a file
called em.ior. The Execution Manager executable must be run in the
directory containing the application’s deployment descriptors.

cd $TAO_ROOT/DevGuideExamples/CIAO/Messenger/descriptors
$CIAO_ROOT/DAnCE/ExecutionManager/Execution_Manager \

-o em.ior -i ApplicationNodeMap.dat

Finally, we start a Repository Manager that connects to the Execution
Manager and reads the application’s Top-level Package Descriptor and its
Component Deployment Plan. The Repository Manager executable must also
be run in the directory containing the application’s deployment descriptors.

cd $TAO_ROOT/DevGuideExamples/CIAO/Messenger/descriptors
$CIAO_ROOT/DAnCE/RepositoryManager/executor \

-p package.tpd -d Application.cdp -k file://em.ior

The Execution Manager deploys a component instance in each of the Node
Manager windows.
The Messenger doesn’t begin publishing automatically. One of the Node
Manager windows contains the Administrator component instance. That
window displays the following menu:

What do you want to do to the Messenger(s)?
1. Start
2. Stop
3. Change Publication Period
4. Change Publication Text
Please enter a selection:

Use the menu to start and stop publishing and change attributes of the
publication. A more industrial-strength application might launch a GUI of
some kind. The Administrator’s menu illustrates that a component
implementation can contain user interface elements.

o c i w e b . c o m 837

2 3 . 3 B u i l d i n g C I A O

23.2.7.4 Debugging
It can be a challenge to debug a component executor implementation.
Thorough unit testing uncovers many problems before the component is tested
in deployment. However, it may be necessary to debug a component in its
component server process.
We launch a component executor in the debugger by changing the Node
Manager’s launch command for its Node Application. It is easiest to illustrate
with an example.

UNIX and UNIX-like Systems

$CIAO_ROOT/DAnCE/NodeManager/Node_Daemon
-ORBEndpoint iiop://localhost:10000
-d 180
-s "gdb --args $CIAO_ROOT/DAnCE/NodeApplication/NodeApplication"

Windows Systems

%CIAO_ROOT%\DAnCE\NodeManager\Node_Daemon.exe
-ORBEndpoint iiop://localhost:10000
-d 180
-s "devenv /debugexe %CIAO_ROOT%\DAnCE\NodeApplication\NodeApplication.exe"

The Node Manager’s launch command launches the Node Application process
in the debugger. The -d 180 command-line option delays the launching of
the NodeApplication process by 180 seconds, or three minutes. In that three
minutes you must set a breakpoint in your component executor to stop
program execution. Once a breakpoint is reached you may debug as usual.

23.3 Building CIAO
Before building CIAO, build the ACE and TAO libraries as described in
Chapter 2.
CIAO requires three external libraries: Xerces C++; Boost; and Utility. The
DAnCE deployment framework requires Xerces C++. The CIDL compiler
requires Boost and Utility. These build instructions describe how to obtain and
build those libraries. For more information, see
$CIAO_ROOT/CIAO-INSTALL.html.

838 o c i w e b . c o m

C I A O a n d C C M

Building CIAO entails several steps:
1. Build ACE and TAO, including the following targets:

- ACE
- ACEXML_Parser
- TAO
- TAO_IDL
- IFR_Client
- IORInterceptor
- IORTable
- Naming_Service
- RTCORBA
- RTPortableServer
- Valuetype
- Security
- Utils

2. Obtain and build the Xerces C++ library
3. Obtain and build the Boost library
4. Obtain the Utility library
5. Set up the build environment
6. Enable the CIDL compiler in MPC’s global features file.
7. Generate build files with MPC
8. Build CIAO’s CIDL compiler
9. Build CIAO’s libraries and DAnCE executables

23.3.0.1 Building CIAO with Visual C++
The CIAO libraries and DAnCE executables can be built with either Visual
C++ 6 or Visual C++ 7.1. However, the CIDL compiler can only be built with
Visual C++ 7.1. This section contain directions for building CIAO and the
CIDL compiler with Visual C++ 7.1.

o c i w e b . c o m 839

2 3 . 3 B u i l d i n g C I A O

Obtain and Build the Xerces C++ Library
The source code for Xerces C++ can be obtained from
http://xml.apache.org/xerces-c. At publication time, the latest version of
Xerces C++ is version 2.6. Download and unzip the Xerces C++ 2.6 source
code. The remainder of this section assumes that Xerces C++ is installed in a
directory called C:\xerces-c-src-2_6_0.
The Xerces C++ site also contains many prebuilt distributions of the Xerces
C++ library. If you find a binary distribution that matches your platform and
compiler then you can avoid building Xerces C++.
Set the XERCESCROOT environment variable to your root Xerces C++
directory, as follows:

set XERCESCROOT=C:\xerces-c-src_2_6_0

Open the Visual Studio project file called xerces-all.sln in the
%XERCESCROOT%\Projects\Win32\VC7\xerces-all directory. Enter
"yes" when Visual Studio asks if you want to convert the projects to the
current version of Visual Studio. Build the XercesLib target.
The Xerces C++ project does not install its include files and libraries in the
directories where CIAO is expecting them. We manually rectify this. First, we
copy the Xerces C++ source files to an include directory. This copies both
header and source files, but that won’t be a problem.

cd %XERCESCROOT%
xcopy /E /I src include

Then, we create directories for the Xerces C++ libraries.

mkdir %XERCESCROOT%\lib
mkdir %XERCESCROOT%\bin

Finally, we copy the Xerces C++ libraries to the appropriate directories

cd %XERCESCROOT%\lib
copy ..\Build\Win32\VC7\Debug\xerces-c_2D.lib
copy xerces-c_2D.lib xerces-cd.lib

cd %XERCESCROOT%\bin
copy ..\Build\Win32\VC7\Debug\xerces-c_2_6D.dll

840 o c i w e b . c o m

C I A O a n d C C M

Obtain and Build the Boost library
CIAO’s CIDL compiler uses the Boost regex and filesystem libraries and
the spirit parser framework. The spirit parser framework consists only of
header files.
CIAO’s Windows build requires Boost version 1.30.2. The Boost 1.30.2
source tree and the latest version of the Boost Jam build system can be
downloaded from the Boost web site:

http://www.boost.org

Install Boost 1.30.2 and the latest Boost Jam in the directories of your choice.
For this example, we assume that Boost 1.30.2 is installed in
C:\Boost-1.30.2 and Boost Jam is installed in C:\Boost-Jam.
You can edit the Boost Jamfile in C:\Boost-1.30.2\Jamfile to limit the
build to the filesystem and regex libraries. For example:

Boost Jamfile
project-root ;
please order by name to ease maintenance
#subinclude libs/date_time/build ;
subinclude libs/filesystem/build ;
#subinclude libs/python/build ;
subinclude libs/regex/build ;
#subinclude libs/signals/build ;
#subinclude libs/test/build ;
#subinclude libs/thread/build ;

Build the Boost 1.30.2 regex and filesystem libraries with Boost Jam as
follows:

cd C:\Boost-1.30.2
vsvars32.bat
C:\Boost-Jam\bjam.exe "-sTOOLS=vc7.1"

Create a directory called C:\Boost-1.30.2\lib. Copy the regex and
filesystem library files to C:\Boost-1.30.2\lib and rename them so
CIAO’s build can find them.

mkdir C:\Boost-1.30.2\lib
cd C:\Boost-1.30.2\lib

o c i w e b . c o m 841

2 3 . 3 B u i l d i n g C I A O

copy
C:\Boost-1.30.2\libs\regex\build\bin\libboost_regex.lib\vc7.1\debug\runtime-
link-dynamic\libboost_regex_debug.lib
copy
C:\Boost-1.30.2\libs\filesystem\build\bin\libboost_filesystem.lib\vc7.1\debu
g\runtime-link-dynamic\libboost_filesystem.lib

rename libboost_regex_debug.lib boost_regex_debug.lib
rename libboost_filesystem.lib boost_filesystem_debug.lib

Obtain the Utility Library
CIAO’s CIDL compiler uses the Utility library. Download the Utility 1.2.2
library from the following location:

http://www.dre.vanderbilt.edu/cidlc/prerequisites/Utility-1.2.2.tar.bz2

There is nothing to build. The remaining instructions assume that the Utility
library has been unzipped into a directory called C:\Utility-1.2.2.

Set Up the Build Environment
Set CIAO_ROOT, XERCESCROOT, and UTILITY_ROOT environment variables
and update your PATH. Setting CIAO_ROOT is not strictly necessary on
Windows, but it makes using CIAO more convenient. Setting XERCESCROOT
and UTILITY_ROOT is necessary.
For example:

set CIAO_ROOT=%TAO_ROOT%\CIAO
set XERCESCROOT=C:\xerces-c-src_2_6_0
set UTILITY_ROOT=C:\Utility-1.2.2
set PATH=%PATH%;%XERCESCROOT%\bin;%CIAO_ROOT%\bin

The %XERCESCROOT%\bin directory contains the Xerces DLLs. The
%CIAO_ROOT%\bin directory contains the CIAO CIDL compiler.
Update the include and library directories in Visual Studio. Add the Boost root
directory to Visual Studio’s include directories:

C:\Boost-1.30.2

Add the Boost lib directory that we created to Visual Studio’s library
directories:

842 o c i w e b . c o m

C I A O a n d C C M

C:\Boost-1.30.2\lib

Enable the CIDL Compiler in MPC’s Global Features File
Edit the
%ACE_ROOT%\bin\MakeProjectCreator\config\global.features
file and enable the CIDL compiler.

cidl = 1

Generate Build Files with MPC
Generate CIAO’s Visual Studio project files with MPC:

cd %CIAO_ROOT%
perl %ACE_ROOT%\bin\mwc.pl -recurse -type vc71

This command generates a Visual Studio solution file for each MPC
workspace file found in the build tree.

Build CIAO’s CIDL Compiler
Build CIAO’s CIDL compiler by using the Visual Studio workspace
%CIAO_ROOT%\CIDLC\CIDLC.sln.
You may use the Batch Build command in Visual Studio to build the CIDL
compiler’s libraries and executables. Alternatively, you may find that it is
easier to build the libraries and executables from the command line, as
follows:

cd %CIAO_ROOT%\CIDLC
devenv CIDLC.sln /build debug

Build CIAO’s Libraries and DAnCE Executables
Build CIAO’s libraries and DAnCE executables by using the Visual Studio
workspace %CIAO_ROOT%\CIAO.sln.
You may use the Batch Build command in Visual Studio to build the libraries
and configurations in which you are interested. Alternatively, you may find
that it is easier to build just the configurations in which you are interested from
the command line. For example:

o c i w e b . c o m 843

2 3 . 3 B u i l d i n g C I A O

cd %CIAO_ROOT%
devenv CIAO.sln /build debug

23.3.0.2 Building CIAO on UNIX with GNU Make and gcc
CIAO may be built with gcc versions 3.3 and later.

Obtain and Build the Xerces C++ Library
The source code for Xerces C++ can be obtained from
http://xml.apache.org/xerces-c. At publication time, the latest version of
Xerces C++ is version 2.6. Download and unzip the Xerces C++ 2.6 source
code. The remainder of this section assumes that Xerces C++ is installed in a
directory called $HOME/xerces-c-src-2_6_0.
The Xerces C++ site also contains many prebuilt distributions of the Xerces
C++ library. If you find a binary distribution that matches your platform and
compiler then you can avoid building Xerces C++.
Set the XERCESCROOT environment variable to your root Xerces C++
directory, as follows:

export XERCESCROOT=$HOME/xerces-c-src_2_6_0

Build the Xerces C++ libraries as follows:

cd $XERCESCROOT/src/xercesc
autoconf
./runConfigure -plinux -cgcc -xg++ -minmem -nsocket -tnative -rpthread
make

This execution of the Xerces C++ runConfigure script command uses the
gcc compiler, targets the linux platform, and builds with pthreads. For
more information, type enter the following at the command line:

./runConfigure -help

The Xerces C++ project does not install its include files in the directories
where CIAO is expecting them. We manually rectify this by creating a
symbolic link to an include directory.

844 o c i w e b . c o m

C I A O a n d C C M

cd %XERCESCROOT%
ln -s src include

Obtain and Build the Boost library
CIAO’s CIDL compiler uses the Boost regex and filesystem libraries and
the spirit parser framework. The spirit parser framework consists only of
header files.
CIAO’s UNIX versions can use the latest version of Boost, which is version
1.32 at publication time. Using a later version of Boost allows more flexibility
in the choice of compiler version. The Boost source tree and the latest version
of the Boost Jam build system can be downloaded from the Boost web site:

http://www.boost.org

Install Boost 1.32 and the latest Boost Jam in the directories of your choice.
For this example, we assume that Boost 1.32 is installed in
$HOME/boost_1_32_0 and Boost Jam is installed in $HOME/boost-jam.
Build the Boost 1.32 libraries with Boost Jam as follows:

cd $HOME/boost_1_32_0
$HOME/boost-jam/bjam -sTOOLS=gcc

Obtain the Utility Library
CIAO’s CIDL compiler uses the Utility library. Download the Utility 1.2.2
library from the following location:

http://www.dre.vanderbilt.edu/cidlc/prerequisites/Utility-1.2.2.tar.bz2

There is nothing to build. The remaining instructions assume that the Utility
library has been unzipped into a directory called $HOME/Utility-1.2.2.

Set Up the Build Environment
Set CIAO_ROOT, XERCESCROOT, UTILITY_ROOT, BOOST_ROOT,
BOOST_INCLUDE, and BOOST_LIB environment variables and update your
PATH. Setting CIAO_ROOT is not strictly necessary on Windows, but it makes
using CIAO more convenient. Setting XERCESCROOT, UTILITY_ROOT, and
the Boost environment variables is necessary.

o c i w e b . c o m 845

2 3 . 3 B u i l d i n g C I A O

For example:

export CIAO_ROOT=$TAO_ROOT/CIAO
export XERCESCROOT=$HOME/xerces-c-src_2_6_0
export UTILITY_ROOT=$HOME/Utility-1.2.2
export BOOST_ROOT=$HOME/boost_1_32_0
export BOOST_INCLUDE=$BOOST_ROOT
export BOOST_LIB=$BOOST_ROOT/libs
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$XERCESCROOT/lib

Enable the CIDL Compiler in MPC’s Global Features File
Edit the
$ACE_ROOT/bin/MakeProjectCreator/config/global.features
file and enable the CIDL compiler.

cidl = 1

Generate Build Files with MPC
Generate CIAO’s GNU Makefiles with MPC:

cd $CIAO_ROOT
$ACE_ROOT/bin/mwc.pl -recurse -type gnuace

Build CIAO’s CIDL Compiler
Build CIAO’s CIDL compiler by executing make in the $CIAO_ROOT/CIDLC
directory.

cd $CIAO_ROOT/CIDLC
make cidl=1

Build CIAO’s Libraries and DAnCE Executables
Build CIAO’s libraries and DAnCE executables by executing make in the
$CIAO_ROOT/ciao and $CIAO_ROOT/ciao directories.

cd $CIAO_ROOT/ciao
make cidl=1

cd $CIAO_ROOT/DAnCE
make cidl=1

846 o c i w e b . c o m

C I A O a n d C C M

23.4 DAnCE Executable Reference
CIAO’s Deployment And Configuration Engine (DAnCE), which implements
the OMG "Deployment and Configuration of Component-based Distributed
Applications" specification (OMG Document ptc/03-07-08), contains a set of
executables to dynamically load component libraries, create component
instances, and make connections between them.
The DAnCE executables are described in the following subsections.

23.4.1 Overview
The DAnCE executables are as follows:

UNIX and UNIX-like Systems

Windows Systems

23.4.2 Node Manager and Node Application
The NodeManager is a daemon process that launches NodeApplication
processes as directed by the ExecutionManager. Each object reference in
the Messenger’s ApplicationNodeMap.dat configuration file refers to a
NodeManager object in the NodeManager daemon process. Recall that the
Messenger’s ApplicationNodeMap.dat file is as follows:

Table 23-11 DAnCE Executables

Name Path
NodeManager $CIAO_ROOT/DAnCE/NodeManager/Node_Daemon

NodeApplication $CIAO_ROOT/DAnCE/NodeApplication/NodeApplication

ExecutionManager $CIAO_ROOT/DAnCE/ExecutionManager/Execution_Manager

RepositoryManager $CIAO_ROOT/DAnCE/RepositoryManager/executor

Table 23-12 DAnCE Executables

Name Path
NodeManager %CIAO_ROOT%\DAnCE\NodeManager\Node_Daemon.exe

NodeApplication %CIAO_ROOT%\DAnCE\NodeApplication\NodeApplication.exe

ExecutionManager %CIAO_ROOT%\DAnCE\ExecutionManager\Execution_Manager.exe

RepositoryManager %CIAO_ROOT%\DAnCE\RepositoryManager\executor.exe

o c i w e b . c o m 847

2 3 . 4 D A n C E E x e c u t a b l e R e f e r e n c e

Administrator_Node corbaloc:iiop:localhost:10000/NodeManager
First_Receiver_Node corbaloc:iiop:localhost:20000/NodeManager
Second_Receiver_Node corbaloc:iiop:localhost:30000/NodeManager
Messenger_Node corbaloc:iiop:localhost:40000/NodeManager

The node map file expects to find four different NodeManager objects on the
localhost, each in an ORB listening on a different port. Presumably, each
NodeManager object lives in a different process. Each NodeManager
launches a NodeApplication process as a container for the component
instance or instances mapped to it. For example:

$CIAO_ROOT/DAnCE/NodeManager/Node_Daemon \
-ORBEndpoint iiop://localhost:10000 \
-s "$CIAO_ROOT/DAnCE/NodeApplication/NodeApplication"

The NodeManager executable recognizes the following command-line
options

23.4.3 Execution Manager
The ExecutionManager reads the node map file and maps each component
instance to the NodeManager responsible for it. For example:

Table 23-13 NodeManager Command-Line Options

Option Description Default

-s node_application_path Path of the NodeApplication
executable to be launched. REQUIRED

-o ior_file
Export the NodeManager IOR to
a file. Supersedes registration
with Naming Service.

off

-d spawn_delay

Delay spawning of the
NodeApplication by
spawn_delay seconds. This can
be helpful for debugging.

0

-n

Register the NodeManager
with the Naming Service in the
root naming context with the
name retrieved by calling
ACE_OS::hostname().
Superseded by export of IOR file.

off

-? Display usage information. n/a

848 o c i w e b . c o m

C I A O a n d C C M

$CIAO_ROOT/DAnCE/ExecutionManager/Execution_Manager \
-o em.ior -i ApplicationNodeMap.dat

The ExecutionManager executable recognizes the following command-line
options

23.4.4 Repository Manager
The RepositoryManager parses the XML Deployment and Configuration
files and passes the relevant deployment information to the
ExecutionManager. For example:

$CIAO_ROOT/DAnCE/RepositoryManager/executor \
-p package.tpd -d Application.cdp -k file://em.ior

The RepositoryManager executable recognizes the following
command-line options

Table 23-14 Execution Manager Command-Line Options

Option Description Default
-i node_map_file Path of the node map file. deployment.dat

-o ior_file

Export the ExecutionManager
IOR to a file. Supersedes
registration with Naming
Service.

off

-n

Register the
ExecutionManager with the
Naming Service in the root
naming context with the name
ExecutionManager.
Superseded by export of IOR file.

off

-? Display usage information. n/a

Table 23-15 Repository Manager Command-Line Options

Option Description Default
-k execution_manager_ior The Execution Manager’s IOR. file://exec_mgr.ior

-p package_url The Top-level Package
Descriptor’s URL REQUIRED

-d plan_url The Component Deployment
Descriptor’s URL REQUIRED

o c i w e b . c o m 849

2 3 . 5 C I D L C o m p i l e r R e f e r e n c e

23.5 CIDL Compiler Reference
A CIDL composition embedded in a CIDL file describes a component
implementation. CIAO includes a CIDL compiler, cidlc, that generates local
IDL interfaces for component homes and executors and C++ classes for
servants and default executor implementations.

Note The generated C++ code is only usable by CIAO. The C++ output from CIDL
compilers cannot be interchanged among CORBA implementations. However,
the code generated by CIAO’s CIDL compiler is platform-independent,
making it possible to use CIAO in cross-compilation environments.

CIAO’s CIDL compiler maps CIDL files to equivalent IDL and C++
according to the CORBA Component Model specification (OMG Document
formal/02-06-65).

23.5.1 CIDL Executables

UNIX and UNIX-like Systems
The CIDL compiler executable is $CIAO_ROOT/bin/cidlc.

Windows Systems
The CIDL compiler executable is %CIAO_ROOT%\bin\cidlc.exe.

General Usage
The general usage of the CIAO CIDL compiler is as follows:

cidlc <options> -- CIDL-file

The CIDL file name must be listed after the "--", which is listed after the
options. For example:

cidlc -I . -I $CIAO_ROOT/ciao -I $TAO_ROOT \
 -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs -- Messenger.cidl

850 o c i w e b . c o m

C I A O a n d C C M

23.5.2 Output Files Generated
The CIDL compiler generates three files for each CIDL file. One of these files
is an IDL2 file containing the component executor’s local IDL2 interfaces.
The component developer compiles that file with the TAO IDL compiler. The
remaining two files are C++ files containing the component servant’s class
definition and implementation. The generation of these files ensures that the

o c i w e b . c o m 851

2 3 . 5 C I D L C o m p i l e r R e f e r e n c e

generated code is portable and optimized for a wide variety of C++ compilers.
The diagram illustrates the generated files.

For a CIDL file named Messenger.cidl, running the command

cidlc -I . -I $CIAO_ROOT/ciao -I $TAO_ROOT \
 -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs -- Messenger.cidl

Figure 23-34: Compiling a CIDL File

852 o c i w e b . c o m

C I A O a n d C C M

generates the following files (we show how to customize these names later):

23.5.3 Using CIDL Compiler Options
We discuss CIDL compiler command line options in 23.5.4 through 23.5.9.
To see a complete list of the CIDL compiler’s options, enter the following:

cidlc --help

In addition to the CIDL compiler options listed by the --help argument, the
CIDL compiler also recognizes the -I preprocessor argument for specifying
an element of the include path.

23.5.4 Preprocessing Options
The CIDL compiler does not run the full C preprocessor. It recognizes only
the -I include_path preprocessor command-line option and the #include
preprocessor directive. Each CIDL file must be compiled with, at a minimum,
the following include path.

-I $CIAO_ROOT/ciao -I $TAO_ROOT -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs

Each CIDL file indirectly includes a standard IDL file called
Components.idl, which in turn includes several other IDL files.
The table provides details of the preprocessing options.

Table 23-16 IDL and C++ Files Generated

File Name Description

MessengerE.idl
IDL2 for the component executor, to be run through the
tao_idl compiler.

Messenger_svnt.h Component and facet servant class definition.
Messenger_svnt.cpp Component and facet servant class implementations.

Table 23-17 Preprocessing Options

Option Description Default

---preprocess-only
Run the preprocessor on the IDL file, but
do not generate any IDL or C++ code.

generate IDL and
C++ code

o c i w e b . c o m 853

2 3 . 5 C I D L C o m p i l e r R e f e r e n c e

The CIDL preprocessor only recognizes the #include directive in the CIDL
file. All other preprocessor directives are ignored.

23.5.5 General Options
The CIDL compiler has an option that allows you to turn on a verbose mode
that displays detailed information about the CIDL file compilation steps.
There are also two options for displaying usage information. The options are
summarized in the table.

23.5.6 Servant File Options
The CIDL compiler generates a complete servant class implementation for
each component and each facet. The component developer has some control
over the servant’s usage of event type factories and the names of the generated
files.
The table summarizes the servant-related CIDL compiler options.

-I include-path Add include_path to the list of paths
searched for include files. none

Table 23-17 Preprocessing Options

Option Description Default

Table 23-18 General CIDLC Options

Option Description Default
--trace-semantic-actions Turn on verbose mode. off
--help Output usage information to stderr. n/a

--help-html
Output usage information in HTML format
to stderr. n/a

Table 23-19 Servant File Options

Option Description Default

--suppress-register-fact
ory

Suppress automatic registration of a
value type factory for each event type.
By default, a value type factory is
automatically registered for each event
type. If factory registration is
suppressed, then the developer must
manually register a value type factory
for each event type.

off, meaning
a value type
factory is
automatically
registered for
each event
type

854 o c i w e b . c o m

C I A O a n d C C M

The CIDL compiler assumes that the servant is part of a dynamic library. On
Windows platforms, classes exported from dynamic libraries must define an
export macro. On UNIX-like platforms, the export macros define to nothing.
However, future versions of the gcc compiler support the C++ export
keyword, which may reduce code size by reducing the number of exported
symbols. In either case, the export macros enable cross-platform development.
The CIDL compiler assumes that a component servant’s export macro is
called <COMPONENT>_SVNT_Export and that the macro is defined in a header
file called <Component>_svnt_export.h. For example, the Messenger
component’s servant export macro is assumed to be

MESSENGER_SVNT_Export

and it is assumed to be defined in a C++ header file called

Messenger_svnt_export.h

If that is not the case, then use the --svnt-export-macro command-line
argument to indicate the correct name of the export macro and the
--svnt-export-include command-line argument to indicate the correct
name of the export header file.

--svnt-hdr-file-suffix
suffix

Use this suffix instead of the default to
construct the name of the servant’s
header file.

_svnt.h

--svnt-hdr-file-regex
regex

Use this regular expression to construct
the name of the servant’s header file n/a

--svnt-src-file-suffix
suffix

Use this suffix instead of the default to
construct the name of the servant’s
source file.

_svnt.cpp

--svnt-src-file-regex
regex

Use this regular expression to construct
the name of the servant’s source file n/a

--svnt-export-macro
macro

Replace the servant’s default export
macro with this export macro see below

--svnt-export-include
file

Replace the servant’s default export
include file with this file see below

Table 23-19 Servant File Options

Option Description Default

o c i w e b . c o m 855

2 3 . 5 C I D L C o m p i l e r R e f e r e n c e

"Building the Messenger Application", in 23.2.6, contains more information
on component export macros.

23.5.7 Local Executor File Options
The CIDL compiler generates an IDL file containing the component
implementation’s local executor interfaces. The component developer
implements the component and its facets by implementing these local
executor interfaces.
The table summarizes the executor-related CIDL compiler options.

23.5.8 Starter Executor Implementation File Options
The CIDL compiler can generate a default executor implementation for each
component and facet. These default executor implementation files contain
empty C++ member function definitions that you fill in with your
implementation code. This can be a great time saver.

Note Running the CIDL compiler with the starter implementation options
overwrites any existing implementation files of the same names. Any
modifications will be lost unless you rename the starter implementation files
after they are generated (recommended).

Table 23-20 Local Executor File Options

Option Description Default
--lem-file-suffix suffix Suffix for the generated executor IDL file. E

--lem-file-regex regex
Regular expression to use when
constructing the name of the local executor
IDL file.

n/a

--lem-force-all

Force generation of local executor
mapping for all IDL types, whether used
by the composition or not. By default, the
CIDL compiler generates local executor
interfaces only for those components used
by the composition.

off

856 o c i w e b . c o m

C I A O a n d C C M

The table summarizes the implementation-related CIDL compiler options.

You are strongly advised to rename the generated default executor
implementation files before modifying them. Otherwise, the CIDL compiler
will likely overwrite your changes. For example, rename
Messenger_exec.h and Messenger_exec.cpp to Messenger_exec_i.h
and Messenger_exec_i.cpp.
The CIDL compiler assumes that the executor implementation is part of a
dynamic library. On Windows platforms, classes exported from a dynamic
library must define an export macro.
The CIDL compiler assumes that a component executor’s export macro is
called <COMPONENT>_EXEC_Export and that the macro is defined in a header
file called <Component>_exec_export.h. For example, the Messenger
component’s executor export macro is assumed to be

MESSENGER_EXEC_Export

Table 23-21 Executor Implementation File Options

Option Description Default

--gen-exec-impl
Generate a default executor
implementation class for each
component and facet.

off

--exec-hdr-file-suffix
suffix

Use this suffix instead of the default to
construct the name of the default
executor implementation’s header file.

_exec.h

--exec-hdr-file-regex
regex

Use this regular expression to construct
the name of the default executor
implementation’s header file.

n/a

--exec-src-file-suffix
suffix

Use this suffix instead of the default to
construct the name of the default
executor implementation’s source file.

_exec.cpp

--exec-src-file-regex
regex

Use this regular expression to construct
the name of the default executor
implementation’s source file.

n/a

--exec-export-macro
macro

Replace the default executor
implementation’s default export macro
with this export macro.

see below

--exec-export-include
file

Replace the default executor
implementation’s default export include
file this file.

see below

o c i w e b . c o m 857

2 3 . 6 I D L 3 - t o - I D L 2 C o m p i l e r R e f e r e n c e

and it is assumed to be defined in a C++ header file called

Messenger_exec_export.h

If that is not the case, then use the --exec-export-macro command-line
argument to indicate the correct name of the export macro and the
--exec-export-include command-line argument to indicate the correct
name of the export header file.

23.5.9 Descriptor File Options
The CIDL compiler generates a CORBA Component Descriptor for each
component. However, the generated descriptor file is not usable to deploy a
CCM application using CIAO’s DAnCE facility. The generated descriptor file
is formatted in accordance with the deprecated "Packaging and Deployment"
chapter of the OMG CORBA Component Model specification (OMG
Document formal/02-06-65) rather than the updated OMG "Deployment and
Configuration of Component-based Distributed Applications" specification
(OMG Document ptc/03-07-08). Thus, we ignore the generated CORBA
Component Descriptor files in our deployment.
The table summarizes the descriptor-related CIDL compiler options:

23.6 IDL3-to-IDL2 Compiler Reference
CIAO includes an IDL3-to-IDL2 compiler that generates IDL2-compatible
interfaces for ORB implementations that do not recognize IDL3 keywords
such as "component" and "provides". This enables a client developed with
a non-CCM-aware ORB to communicate with a CCM component. For
example, a Java client built with an ORB such as JacORB can use CIAO’s
IDL3-to-IDL2 output files as its interface to the Messenger component.

Table 23-22 Descriptor File Options

Option Description Default

--desc-file-suffix
suffix

Use this suffix instead of the default to
construct the name of the descriptor file. .ccd

--desc-file-regex regex Use this regular expression to construct
the name of the descriptor file n/a

858 o c i w e b . c o m

C I A O a n d C C M

Simply compile the Messenger’s IDL3 files with CIAO’s IDL3-to-IDL2
compiler, and then compile the IDL2 output with JacORB’s IDL compiler.

Note The generated IDL2 code is usable by any ORB.

CIAO’s IDL3-to-IDL2 compiler maps IDL3 files to equivalent IDL2
according to the Equivalent IDL sections of the CORBA Component Model
specification (OMG Document formal/02-06-65).
For an example of using the IDL3-to-IDL2 compiler, please see the
Administrator_Client_IDL2.mpc project in the
$TAO_ROOT/DevGuideExamples/CIAO/Messenger directory.

23.6.1 IDL3-to-IDL2 Source Code
The source code for the IDL3-to-IDL2 compiler is in the
$CIAO_ROOT/tools/IDL3_to_IDL2 directory. Build the code in that
directory to create the tao_idl3_to_idl2 executable.

23.6.2 IDL3-to-IDL2 Executable

UNIX and UNIX-like Systems
The IDL3-to-IDL2 compiler executable is
$ACE_ROOT/bin/tao_idl3_to_idl2.

Windows Systems
The IDL3-to-IDL2 compiler executable is
%ACE_ROOT%\bin\tao_idl3_to_idl2.exe.

General Usage
The general usage of the CIAO IDL3-to-IDL2 compiler is as follows:

tao_idl3_to_idl2 -I $CIAO_ROOT -I $CIAO_ROOT/ciao -I $TAO_ROOT \
 -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs \
 <options> <idl3 files>

For example:

o c i w e b . c o m 859

2 3 . 6 I D L 3 - t o - I D L 2 C o m p i l e r R e f e r e n c e

tao_idl3_to_idl2 -I $CIAO_ROOT -I $CIAO_ROOT/ciao -I $TAO_ROOT \
 -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs \
 -I . Messenger.idl

The lengthy include path is necessary to enable the IDL3-to-IDL2 compiler to
find CIAO’s CCM-related IDL files.

23.6.3 Output Files Generated
The IDL3-to-IDL2 compiler generates one IDL2 output file for each input
file. A developer typically compiles that output file with another ORB’s IDL
compiler. The diagram illustrates the generated files.

For an IDL3 file named Messenger.idl, running the command

Figure 23-35: Compiling an IDL File with IDL3-to-IDL2

Messenger.idl

IDL3 File

IDL3−to−IDL2

Messenger_IDL2.idlIDL2
File

Compile IDL

Messenger_IDL2C.h
Messenger_IDL2C.cpp

Messenger_IDL2S.h
Messenger_IDL2S.cpp

Messenger
Stub

Messenger
Skeleton

Another ORB’s IDL Compiler

Components.idl

CIAO’s CCM IDL2 File

860 o c i w e b . c o m

C I A O a n d C C M

tao_idl3_to_idl2 -I $CIAO_ROOT -I $CIAO_ROOT/ciao -I $TAO_ROOT \
 -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs \
 -I . Messenger.idl

generates the following file:

The generated Messenger_IDL2.idl file includes CIAO’s
Components.idl file, which contains IDL2 CCM declarations. When
compiling the Messenger_IDL2.idl file with a non-CCM-aware ORB’s
IDL compiler, the Components.idl file and the files it includes must be in
the include path of that ORB’s IDL compiler.
In our example, we compile the IDL3 file Messenger.idl, which follows:

// file Messenger.idl
#include <Components.idl>
#include <Runnable.idl>
#include <Publication.idl>
#include <Message.idl>
#include <History.idl>

component Messenger {
 attribute string subject;

 provides Runnable control;
 provides Publication content;

 publishes Message message_publisher;
 provides History message_history;
};

home MessengerHome manages Messenger {};

Note that you must also compile the included IDL3 files Runnable.idl,
Publication.idl, Message.idl, and History.idl with the
IDL3-to-IDL2 compiler.
The compiler generates the IDL2 file Messenger_IDL2.idl:

// file Messegner_IDL2.idl
#include "Components.idl"

Table 23-23 IDL and C++ Files Generated

File Name Description

Messenger_IDL2.idl
Equivalent IDL2 for Messenger’s IDL3 file, to be run
through another ORB’s IDL compiler.

o c i w e b . c o m 861

2 3 . 6 I D L 3 - t o - I D L 2 C o m p i l e r R e f e r e n c e

#include "Runnable_IDL2.idl"
#include "Publication_IDL2.idl"
#include "Message_IDL2.idl"
#include "History_IDL2.idl"

interface Messenger : Components::CCMObject
{

 attribute string subject;
 Runnable provide_control ();
 Publication provide_content ();
 History provide_message_history ();

 Components::Cookie subscribe_message_publisher (
 in MessageConsumer consumer)
 raises (Components::ExceededConnectionLimit);

 MessageConsumer unsubscribe_message_publisher (in Components::Cookie ck)
 raises (Components::InvalidConnection);
};

interface MessengerHomeExplicit : Components::CCMHome
{
};

interface MessengerHomeImplicit : Components::KeylessCCMHome
{
 Messenger create ()
 raises (Components::CreateFailure);
};

interface MessengerHome : MessengerHomeExplicit, MessengerHomeImplicit
{
};

23.6.4 IDL3-to-IDL2 Compiler Options
We discuss IDL3-to-IDL2 compiler command line options in 23.6.5 through
23.6.6. To see a complete list of the IDL3-to-IDL2 compiler’s options, enter
the following:

tao_idl3_to_idl2 -u

862 o c i w e b . c o m

C I A O a n d C C M

23.6.5 Preprocessing Options
The IDL3-to-IDL2 compiler uses the same preprocessor as the tao_idl
compiler. For more information on the preprocessor options and directives,
please see 6.5. The most commonly used of these options is the -I option,
which specifies a directory for the include path. For example:

tao_idl3_to_idl2 -I $CIAO_ROOT -I $CIAO_ROOT/ciao -I $TAO_ROOT \
 -I $TAO_ROOT/tao -I $TAO_ROOT/orbsvcs \
 -I . Messenger.idl

23.6.6 General Options
The IDL3-to-IDL2 compiler’s other remaining options are summarized below.
Each option functions identically to matching option of the IDL Compiler.
Table 23-24 General IDL3-to-IDL2 Options

Option Description Default

-o output-directory
Subdirectory in which to
place the generated stub
and skeleton files.

Current directory

-t dir
Directory used by the IDL
compiler for temporary
files.

In UNIX, uses the value of the
TMPDIR environment variable,
if set, or /tmp by default. In
Windows, uses the value of the
TMP environment variable, if
set, or the TEMP environment
variable, if set, or the WINNT
directory (on NT).

-v

Verbose flag. IDL
compiler will print
progress messages after
completing major phases.

No progress messages
displayed.

-d
Print the Abstract Syntax
Tree (AST) to stdout. AST is not displayed.

-w Suppress warnings. All warnings displayed.

-V
Print version information
for front end and back end.

No version information
displayed.

-Cw

Output a warning if two
identifiers in the same
scope differ in spelling
only by case.

Error output is default.

o c i w e b . c o m 863

2 3 . 7 F u t u r e T o p i c s

23.7 Future Topics
Several CCM and CIAO-related topics are beyond the scope of this chapter.
They include the following:
• Component navigation
• Keyed component homes
• Home finders
• Lifecycle categories service, process, and entity
• The IDL3 supports keyword
In addition, there are several capabilities that are expected to be addressed in
future versions of CIAO. These include the following:
• Static application deployment
• Deployment of real-time applications
• Container-managed persistent using the Persistent State Service (PSS) and

Persistent State Definition Language (PSDL) (OMG Document
formal/2002-09-06)

• Integration with Enterprise Java Beans
• Using the Real-Time Event Service or OMG Notification Service as the

event delivery infrastructure
• Quality-of-Service

-Ce

Output an error if two
indentifiers in the same
scope differ in spelling
only by case.

Error output is default.

-g gperf-path Specify a path for the
gperf program $ACE_ROOT/bin/gperf

Table 23-24 General IDL3-to-IDL2 Options

Option Description Default

