COMPUTER SCIENCE

ADAPTIVE RESOURCE MANAGEMENT ALGORITHMS, ARCHITECTURESAND
FRAMEWORKS FOR DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

NISHANTH SHANKARAN

Dissertation under the direction of Professor Douglas @n8dt

There is an increasing demand for adaptive capabilitiesstributed real-time and
embedded (DRE) systems that execute in open environmerdgsevgystem operational
conditions, input workload, and resource availability mainbe characterized accurately
a priori. A challenging problem faced by researchers analdgers of such systems is
devising effective adaptive resource management stestélgat can meet end-to-end qual-
ity of service (QoS) requirements of applications. To addrhis challenge, this disser-
tation presents three contributions to the research ontiadajgsource management for
DRE systems. First, it presents the Hierarchical DistedlResource-management Archi-
tecture (HIDRA), which provides adaptive resource managerasing control techniques
that enables the system to adapt to workload fluctuationseswdirce availability for both
bandwidth and processor utilization simultaneously. 8d¢d describes the structure and
functionality of the Resource Allocation and Control ErggifiRACE), which is an open-
source adaptive resource management framework built taopards-based QoS-enabled
component middleware. Third, it presents three repreteatBRE system case studies
where RACE has been successfully applied. These case stlel@onstrate and evaluate

the effectiveness of RACE in the context of representatiRERBystems.

Approved Date




ADAPTIVE RESOURCE MANAGEMENT ALGORITHMS, ARCHITECTURESAND
FRAMEWORKS FOR DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

By

Nishanth Shankaran

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science
December, 2008

Nashville, Tennessee

Approved:

Dr. Douglas C. Schmidt
Dr. Xenofon D. Koutsoukos
Dr. Gautam Biswas
Dr. Chenyang Lu

Dr. Janos Sztipanovits



To Amma and Appa for their love, support, motivation, anaigace

To Sujata for all the encouragement



ACKNOWLEDGMENTS

| am grateful to the following individuals for their guidagcsupport, and encourage-
ment during my graduate education at the University of Galifa, Irvine and Vanderbilt
University. Without their help, this dissertation wouldtiave been possible.

| would like to begin by thanking Prof. Douglas C. Schmidt, advisor and mentor, for
giving me an opportunity for working with him at the Distriteal Object Computing (DOC)
group at Vanderbilt University. During my graduate edumatat Vanderbilt University,
Doug has been my biggest source of encouragement, guidsungeort, and inspiration,
and | am ever grateful to him for that. | have learned a lot fidoug on a wide genre
of topics, not limited to just academic ones. Although myerat one of his advisees is
coming to an end, | hope my role as one of his protégés woultireanin the future. Next,
| would like to thank my co-advisors, Dr. Xenofon D. Koutsask Prof. Gautam Biswas,
and Dr. Chenyang Lu, for their guidance and collaboratioerdtie past four years. |
am thankful to Prof. Janos Sztipanovits for serving on mgetigtion committee and Dr.
Raymond Klefstad for giving me an opportunity to work at th@© group at University
of California, Irvine.

My graduate education has been supported by various oajams and agencies. |
would like to take this opportunity to thank the followingge: Richard Schantz and
Joe Loyall at BBN Technologies, Boston, for providing ushatite UAV scenario used in
this dissertation; Patrick Lardieri, Ed Mulholland, andf®amiano at Lockheed Martin
Advanced Technology Labs, Cherry Hill, for providing thétied motivation for RACE;
Dipa Suri and Adam S. Howell at Lockheed Martin Advanced Tetbgy Center, Palo
Alto, for collaborating with us on numerous projects, anoMling us with many interest-
ing and challenging scenarios such as the MMS mission syatehthe SEAMONSTER
sensor-web used as case studies in this dissertation.

Over the past six years, | have learned a lot from both pastpaesent DOC group



members, both at Vanderbilt University and University ofifoania, Irvine. | would like
to thank Mark Panahi and Krishna Raman at the DOC group at W@difor bringing me
up to speed on CORBA and ZEN. | would like to thank KrishnakuBalasubramanian,
John S. Kinnebrew, Arvind Krishna, Jeff Parsons, and Nda®py at the DOC group at
Vanderbilt University for many fruitful discussions andabr-storming sessions over the
years.

| am thankful to the following people for making my stay atitre enjoyable: Yo-
gita Bhasin, Nirupama Srinivasan, Vinay Chandrasekharaysm Vishvanathan, Srini-
vas Kollu, and Ashish Bhargave. When | moved from Irvine tesMalle in the summer
of 2004, Jaiganesh Balasubramanian eased my transitiohelpdd me to settle down;
I’'m grateful to him for that. Ever since | moved to Nashviltege time | spent with the
following people were always enjoyable and memorable: ifrakumar Balasubramanian,
Abhishek Dubey, Amogh Kavimandan, Arvind Krishna, Manishskwaha, and Anan-
tha Narayanan.

Last but not the least, | would like to thank my family: my pais for their love,
support, motivation, and guidance through all these yaassfiancé, Sujata, for all the
encouragement. But for their support and encouragemestdibsertation would have

been nothing but a figment of my imagination.

Nishanth Shankaran
Vanderbilt University
24"October 2008



TABLE OF CONTENTS

Page
DEDICATION . . . . e e e e i
ACKNOWLEDGMENTS . . . . . . e e e e e e iii
LISTOFTABLES . . . . . . e e e e e e e iX
LISTOFFIGURES . . . . . . . e e e Xi
Chapter
l. Introduction. . . . . . . . 1
I.1. Evolution of Middleware Technology . . . . . . ... ... ... 1
[.1.1. Distributed Object Computing (DOC) Middleware . . .1
[.1.2. QoS-enabled DOC Middleware . . .. ... .. ... 2
[.1.3. Conventional Component Middleware . . . . .. . .. 4
[.1.4. QoS-enabled Component Middleware . . . . . .. .. 6
I.2.  Overview of Research Challenges . . . . . ... ... ..... A
I.3. Research Approach . .. .. .................. 9
l.4. Research Contributions . . . ... ... ... ......... 10
I.5. Dissertation Organization . .. ... ... ........... 11
Il. Adaptive Resource Management Algorithms and Archiess . . . . . . . 12
II.1. Case Study: Target Tracking DRE System . . . ... .. .. 14
II.2. RelatedResearch . . .. . ... ... ... ........... 16
II.3. UnresolvedChallenges . . . . . ... ... .. ......... 19
Il.4. The Hierarchical Distributed Resource-managemenhiecture
(HIDRA) . . . . 20
II.5. Control Designand Analysis. . . . . ... ........... 23
[1.5.1. Problem Formulation . ... ............. 23
[1.5.2. Stability Analysis . . . . ... ... ... ....... 31
II.6. Performance Resultsand Analysis . . . . ... ... ..... 35
[1.6.1. Hardware and Software Testbed . . . . . ... ... 35
[1.6.2. Target Tracking DRE System Implementation . . . .36
[1.6.3. Experiment Configuration . . . ... ... ...... 37
[1.6.4. Experiment 1 : Constant Bandwidth Availability and
ConstantWorkload . . . . . ... ... ........ 40
[1.6.5. Experiment 2: Decoupled Independent Feedback Con-
trolLoops . .. .. ... ... 43
[1.6.6. Experiment 3: Constant Bandwidth Availability and
VaryingWorkload . . . .. .. ... ... ...... 48



[1.6.7. Experiment 4 : Varying Bandwidth Availability and

ConstantWorkload . . . . . . ... .. ... ..... 53
[1.6.8. Experiment5: Varying Bandwidth Availability anda/-
ingWorkload . . . ... ... .. ... ......... 57
[1.L6.9. Summary . . . . . .. ... ... ... 63
7. Summary . . . . . . ... 64
1. Adaptive Resource Management Frameworks . . . .. ... ........ 65
llI.1. Related Research . . . . . ... ... ... ... ........ 68

[11.1.1. Conventional and QoS-enabled DOC Middleware . 68
[11.1.2. Conventional and QoS-enabled Component Middrew& 0

[11.1.3. Unresolved Challenges . . . . ... ... ....... 72

[1l.2. Structure and Functionality of RACE . . . . .. ... ... .. 74

l11.3. Empirical Results and Analysis . . . .. ... ... ...... 84

[11.3.1. Hardware and Software Testbed . . . . . . .. .. .. 384

[11.3.2. Evaluation of RACE’s Scalability . . . . ... .. .. 85

[11.3.3. Summary of Experimental Analysis . . . . ... ... 89

L4, Summary . . . . . . . e 90

IV. Case Study: Magnetospheric Multi-scale Mission DREt8ys . . . . . . 92

IV.1. MMS Mission System Overview . . .. .. .. ........ 92
IV.2. Adaptive Resource Management Requirements of the NINAS

sionSystem . ... .. L 94

IV.2.1. Requirement 1: Resource Allocation To Applicason 95
IV.2.2. Requirement 2: Configuring Platform-specific QoS Pa

rameters . . .. ... 96
IV.2.3. Requirement 3: Enabling Dynamic System Adaptation
and Ensuring QoS Requirements are Met . . . . . . 96
IV.3. Addressing MMS Mission Requirements Using RACE . . . . 97
IV.3.1. Addressing Requirement 1: Resource Allocationpe A
plications . . . . . ... .. .. ... ... .. ... 97
IV.3.2. Addressing Requirement 2: Configuring Platfornedfic
QoS Parameters . . . . ... ... ... a8
IV.3.3. Addressing Requirement 3: Monitoring End-to-era3Q
and Ensuring QoS Requirements are Met . . . . . . 99
IV.4. Empirical Resultsand Analysis . . . .. .. ......... 100
IV.4.1. Hardware and Software Testbed . . . . . .. .. .. 100
IV.4.2. MMS DRE System Implementation . . . . . .. .. 101
IV.4.3. Evaluation of RACE’s Adaptive Resource Management
Capabilities. . . . ... .. .. ... ..., 102
IV.4.4. Summary of Experimental Analysis . . . . . .. .. 109
V. Case Study: Configurable Space Mission Systems . . . . . .. ... 111
V.1. CSM System Overview . . .. ... ... ... .. ..... 111

Vi



V.2. Challenges Associated with the Autonomous Operati@@SM

System . ... 112
V.2.1. Challenge 1: Dynamic Addition and Modifications of
MissionGoals . . ... ... ... ... .. ..... 112

V.2.2. Challenge 2: Adapting to Fluctuations in Input Work-
load, Application Resource Utilization, and Resource

Availability . . . . ... ... ... .. oL 113
V.2.3. Challenge 3: Adapting to Complete or Partial Loss of
SystemResources . .. ... .. ... ... .. 114
V.3. Addressing CSM System Challenges . . . ... ... .. .. 114
V.3.1. Addressing Challenge 1: Dynamic Addition and Mod-
ification of MissionGoals . . . . .. ... ...... 115

V.3.2. Addressing Challenge 2: Adapting to Fluctuations in
Input Workload and Application Resource Utilization 116
V.3.3. Addressing Challenge 3: Adapting to Complete or Par-

tial Loss of System Resources . . . . ... ... .. 116
V.4. Performance Resultsand Analysis . . . . ... ... ... .. 117
V.4.1. Hardware and Software Testbed . . . . . . ... .. 117
V.4.2. Prototype CSM System Implementation. . . . . . . 118
V.4.3. ExperimentDesign. .. ... ............ 119
V.4.4. Experiment 1: Addition of Goals at Runtime . . . . 120
V.4.5. Experiment 2: Varying Input Workload . . . . . . . . 127
V.4.6. Experiment 3: Varying Resource Availability . . . . 133
VI. Case Study: SEAMONSTER Sensor-web . . . . . . ... ... .... 137
VI.1. SEAMONSTER Sensor-web Overview . . . . .. ... ... 137
VI.2. Adaptive Resource Management Requirements of theNBBN-
STER Sensor-web . . . ... ... ... .. ... ...... 138
VI.2.1. Requirement 1: Online Resource Allocation To Data
Processing Applications . . . . .. ... ... ... 139
VI.2.2. Requirement 2: Enabling the Sensor-web to Dynami-
cally Adapt to Fluctuations in Input Workload . . . .139

VI.3. Addressing SEAMONSTER Requirements Using RACE . . .140
VI.3.1. Addressing Requirement 1: Online Resource Allmratl40
VI.3.2. Addressing Requirement 2: Runtime System Adametid1

VI.4. Performance Resultsand Analysis . . . . . ... ... .... 142
VI.4.1. Hardware and Software Testbed . . . . . .. .. .. 142
VI.4.2. System Implementation and Experiment Design . .142
VI.4.3. Evaluation of RACE’s Adaptive Resource Management

Capabilities. . . . .. ... ... oo 143
VII. ConcludingRemarks . . . . . .. . ... .. .. 149
Vil.1.Lessons Learned . . . .. .. .. ... ... .. ....... 150

Vil



VII.1.1.Adaptive Resource Management Algorithms and Ar-

chitectures . . . . . . . . . ... 150
VII.1.2.Adaptive Resource Management Frameworks . . . 151
VII.2.Future Research Directions . . . . . . . . . . . ... .... 153

Appendix
A. List of Publications . . . . . . . . . . . . ... 156
A.1l. Refereed Journal Publications . . . . . .. ... ... .... 156
A.2. Refereed Conference Publications . . . . ... ... .. ... 156
A.3. Refereed Workshop Publications . . . . ... ... ..... 158
REFERENCES . . . . . . s 160

viii



Table

10.

11.

12.
13.
14.
15.

16.

17.
18.
19.

20.

LIST OF TABLES

Page
Summary Of Research Contributions . . . .. .. ... ....... 11
Lines of Source Code for Various System Elements . . . . . ... . 37
Application Parameters Chosenin Advance . . . . ... ... ... 40
Exp 1: Comparison of End-to-EndDelay . . . . ... ... ... .. 43
Objects of Interest as a Functionof Time . . . . .. ... ... ..... 44
Exp 2: End-to-EndDelay . . . . . ... ... ... 47
Exp 3: Comparison of End-to-EndDelay . . . . ... ... ... ... 52
Channel Capacity and Bandwidth Utilization Set-Poina &unction of
Time . . . e 53
Exp 4: Comparison of End-to-EndDelay . . . . ... ... ... ... 57
Exp 5: Comparison of End-to-EndDelay . . . . ... ... ... .. 62
Lines of Source Code for Various System Elements . . . . . .. .. 85
Characteristics of Science Application. . . . . .. ... ....... 94
Estimated Execution Times for Various Application Caments . . . .102
Lines of Source Code for Various System Elements . . . . . . . . .102
Application Configuration under Moderate Workload . . . .. . . . .105
Application Configuration under Heavy Workload . . . . .. ... .108
Utility of MissionGoals . . . . . . .. ... ... ... ... ..... 118
Lines of Source Code for Various System Elements . . . . . .. . .118

Set of Goals and Corresponding Applications as a Fumofidime . . .121

Application Configuration . . . . . ... ... ... ......... 122



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Allocation of Applications 1 - 5 using Average Case ddlion . . . . . 124
Allocation of Applications 1 - 5 using Wost Case Utilimat . . . . . . . 124
Allocation of Applications 1 - 7 using Average Case ddlion . . . . . 124
Allocation of Applications 1 - 7 using Wost Case Utilimat . . . . . . . 125
Experiment 1: Comparison of System QoS . . ... .. ... ... 126
Allocation of Applications 1 - 8 using Average Case ddlion . . . . . 128
Allocation of Applications 1 - 8 using Wost Case Utilimat . . . . . . . 128
Input Workload as a Functionof Time . . . . . ... ... ...... 129
Experiment 2: Comparison of System QoS . . ... .. ... ... 132
Experiment 3: Comparison of System Utility . . . .. .. ... ... 135
Lines of Source Code for Various System Elements . . . . . . . . .143
Application Configuration . . . . . .. ... ... ... ....... 144
Input Workload as a Functionof Time . . . . . .. ... ... .... 145
Comparison of System QoS . . .. .. ... ... ... ....... 148



Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

LIST OF FIGURES

Model of an Application Built atop CORBA Middleware . . . .... . .
Model of an Application Built atop RT-CORBA Middleware .... . . .
Entities of a CORBA Component Middleware . . . ... ...
Entities of QoS-Enabled CORBA Component Middleware . ...... .

Taxonomy of Related Research . . . . .. ... ........

Target Tracking DRE System Architecture

Taxonomy of Related Research . . . .. ... ... ......
The HIiDRA Control Framework . . . . . . ... .. ... ...

HiDRA's Control Architecture . . . . . . . . .. ... ... ...
Processor Control Feedback Loop . . . . . .. ... .. ...

Bandwidth Control Feedback Loop . . . . ... ... ... ..
Linearizationofp(q) . . . . . . . . . . ..

Exp 1: Comparison of Processor Utilization . . . . . . .. .... ..
Exp 1: Comparison of Bandwidth Utilization . . . . . . ... .
Exp 1: Comparison of Target-tracking Error . . . . . . . . .. ...
Exp 2: Resource Utilization . . .. ... ... .........
Exp 2: Target-tracking Error . . . . . . . .. ... ... ....
Exp 3: Comparison of Processor Utilization . . . . . . .. .. ...
Exp 3: Comparison of Bandwidth Utilization . . . . . .. ...
Exp 3: Comparison of Target-tracking Error . . . . . . . . .. .. ..

Exp 4: Comparison of Processor Utilization . . . . . . .. ......

Xi

Page

A

41

42

. 43

... 44

... .46

. 48

49

51

54



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Exp 4: Comparison of Normalized Bandwidth Utilization. . . . . . . 55

Exp 4: Comparison of Target-trackingError . . . . . ... ...... 56
Exp 5: Comparison of Processor Utilization . . . . . ... ........ 58
Exp 5: Comparison of Normalized Bandwidth Utilization. . . . . . . 59
Exp 5: Comparison of Target-trackingError . . . . . .. ... ... . 61

A Resource Allocation and Control Engine (RACE) for ORPRE Sys-

tems . . . . e 67
Taxonomy of Related Research . . . . ... ... .......... 69
Detailed Design of RACE . . . . . . . . . . .. ... .. .. ..... 74
PICML Modelof RACE . . . . . ... ... ... ... ........175
Resource Allocation to Application Components UsingJ®A. . . . . . 77
Main Entities of RACE’s E-2-E IDL Structure . . . . ... .. .. . 77
Architecture of Monitoring Framework . . . . . ... .. ... ... 79
QoS Parameter ConfigurationwithRACE . . . . . .. ... ... ... 81
RACE’s Feedback ControlLoop . . . . . . .. .. ... .. ...... 83
Impact of Increase in Number of Nodes on Monitoring Delay. . . . . 87
Impact of Increase in Number of Nodes on Actuation Delay ... . . . 87
Impact of Increase in Number of Application on Monitgribelay . . . 89
Impact of Increase in Number of Application on Actuatioglay . . . . 90
MMS Mission System . . . . . . . .. Q3
RACE’s Feedback ControlLoop . . . . . . . . .. ... ... ..... 99
Deadline Miss Ratio Under Moderate Workload . . . . ... ...... 106
Deadline Miss Ratio under Heavy Workload . . . .. .. ... .....109

Xil



44,

45.

46.

47.

48.

49.

50.

51.

An Integrated Planning, Resource Allocation, and GitPAC) Frame-
work for Open DRE Systems . . . . . . . ... ... ... .....

Experiment 1: Comparison of Processor Utilization . ...... . . ..
Experiment 2: Comparison of Processor Utilization . ...... . . ..
Experiment 2: Comparison of Application Execution Rate . . . . . .

Experiment 3: Comparison of Processor Utilization . ...... . . ..

Comparison of Processor Utilizations . . . ... ... ... .......

Comparison of Application Execution Rates

Hierarchical Compositionof RACE . . . . . . ... ... ... ...

Xiii

.123

.130

131

.134

146

. 147



CHAPTER |

INTRODUCTION

Distributed real-time and embedd€DRE) systems form the core of many mission-
critical domains, such as shipboard computing environm@d, avionics mission com-
puting [72], multi-satellite missions{8], and intelligence, surveillance and reconnaissance
missions J1]. Quality of service (QoS)-enabled distributed object cotimguDOC) mid-
dlewarebased on standards like Real-time Common Object RequekeBArchitecture
(RT-CORBA) [62] and the Real-Time Specification for Java (RTSI] [have been used
to develop such DRE systems. More recen@@S-enabled component middlewasach
as the Lightweight CORBA Component Model (CCMy7] and PRiSm 73], have been
used to build such system&d]. As middleware technologies are being used extensively to
develop such complex systems, a summary of the evolutioniddleware technology is

presented next.

[.1 Evolution of Middleware Technology

This section summarizes the evolution of various middlevt@chnologies used to build

DRE systems, primarily focusing on their contributions éindtations.

I.1.1 Distributed Object Computing (DOC) Middleware

Commercial-off-the-shelf (COTS) middleware technolsgier DOC based on stan-
dards such as The Object Management Group (OMG)’'s CORE3) &nd Sun’s Java
RMI [89], encapsulates and enhances native OS mechanisms to ras#dble network
programming components. These technologies provide a tdyabstraction that shields

application developers from the low-level platform-sfieaietails and define higher-level



distributed programming models whose reusable APIs angoasnts automate and ex-
tend native OS capabilities. Figuteshows the architectural layout of a DOC application

built atop CORBA based middleware.

Interface IDL Implementation
Repository Compiler Repository

. in args Object
r—
Cllent 0B operation() (Servant)
REF J _ outargs + o
S = return
IDL DSI

SKEL

IDL ORB
STUBS INTERFACE [ Object Adapter
- GIOP/IIOP/ESIOPS

Figure 1: Model of an Application Built atop CORBA Middleware

Conventional DOC middleware technologies, however, estdoalyfunctionalaspects
of system/application development such as how to define r@tegrate object interfaces
and implementations. They do not address QoS aspects @nsiagiplication develop-
ment such as how to (1) define and enforce application timgagirements, (2) allocate
resources to applications, and (3) configure OS and netwogkglicies such as priorities
for application processes and/or threads. As a result,atie that configures and manages

QoS aspects often become entangled with the applicatios cod

[.1.2 QoS-enabled DOC Middleware

Limitations of conventional DOC middleware identified abdwave been addressed by
middleware standards such as RT-CORB®][and RTSJ 10]. As shown in Figure2,

middleware based on these technologies support explicfigroration of QoS middleware



aspects such as priority and threading models, provide meaitime features including
end-to-end priority propagation, scheduling service, exglicit binding of network con-

nections.

End-to-End Priority
Propagation 4

in args Object
operation() (Servant)

out args + return

Scheduling
Service
Thread
Pools
Standard

Explicit Object Adapter

Binding

Synchronizers

Protocol Properties

Figure 2: Model of an Application Built atop RT-CORBA Middleware

However, these technologies do not provide a higher levsirattion that separates
real-time policy configuration from the application furmstality. Thus, they lacks support
for system design and development of large-scale systeno§-eé@abled DOC middle-
ware support only the design and development of individpplieation objects. They lack
generic standards for (1) distributing object implemeaotet within the system, (2) in-
stalling, initializing, and configuring objects, and (3)arconnection between independent
objects, all of which are crucial in development of a largale DRE system. Therefore,
when large-scale distributed systems are built using Q®led DOC middleware tech-
nologies, system design and development is tedious, eromephard to maintain and/or

evolve, and results in a brittle system.



[.1.3 Conventional Component Middleware

Component middleware technologies, such as the CORBA Coemadlodel (CCM) 0]
and Enterprise Java Bearts ¥ 7] provide capabilities that addresses the limitation of DOC
middleware technologies in the context of system designdavelopment. Examples of
additional capabilities offered by conventional compdnaiddieware compared to con-
ventional DOC middleware technology include (1) standaediinterfaces for application
component interaction, (2) model-based tools for deplpynd interconnecting compo-
nents, and (3) standards-based mechanisms for instahitiglizing, and configuring ap-
plication components, thus separating concerns of apgaicdevelopment, configuration,

and deployment.

Component Component
Reference O Reference O

Container Container

Componen
Home

Componen
Home

I

sje0ey

Receptacles
sjeoe

Receptacles

Component Context
Event

Sources

syl

uang

Component Context
Event

Sources

SIS
sng

TTIY 7

Interfaces Interfaces

POA

POA \\

Portable \ Portable
M Interceptor

Security Notification

L COMPONENT SERVER 1 VRN COMPONENT SERVER 2 Y,

Figure 3: Entities of a CORBA Component Middleware

CCM is built atop CORBA object model, and therefore, systerplementors are not
tied to any particular language or platform for their com@atimplementations. As shown

in Figure3, key entities of CCM-based component middleware include:



» Component, which encapsulates the behavior of the application. Corapisnin-
teract with clients and each other \parts, which are of four types: (1facets also
known as provided interfaces, which are end-points thatempnt CORBA inter-
faces and accept incoming method invocations,r¢2eptaclesalso known as re-
quired connection points, that indicate the dependengieand-points provided by
another component(s), (8yent sourcesvhich are event producers that emit events
of a specified type to one or more interested event consuraeds(4)event sinks
which are event consumers and into which events of a spetyfsedare pushed. The
programming artifact(s) that provides the “business lbogicthe component is called

anexecutor

» Container, which provides an execution environment for components agimmon
operating requirements. The container also provides arneaiion of the underlying
middleware and enables the component to communicate viantherlying middle-

ware bus and reuse common services offered by the undertyishdjeware.

» Component Home,which is a factory 32] that creates and manages the life cycle

for instances of a specified component type.

» Component Implementation Framework (CIF), which defines the programming
model for defining and constructing component implemeotatusing the Compo-
nent Implementation Definition Language (CIDL). CIF auteesathe implementa-
tion of many component features which include generatioprogramming skele-
tons and association of components with component exexwit their context and

homes.

» Component Serverwhich is a generic server process that hosts applicatiotaoen

ers. One or more components can be collocated in one comipser®er.

Component middleware provides a standard “virtual bowyidgaound application com-

ponents, defines standard container mechanisms needeectgt@xomponents in generic



component servers, and specifies a reusable/standardtinftare needed to configure
and deploy components throughout a distributed systenhoAt@h conventional compo-
nent middleware support design and development of large siistributed systems, they
do not address the address the QoS limitations of DOC midadewTherefore, conven-
tional component middleware can support large scale emgergdistributed systems, but

not DRE systems that have the stringent QoS requirements.

I.1.4 QoS-enabled Component Middleware

To address the limitations with various middleware techgas listed above, QoS-
enabled component middleware based on standards such@ilth&ightweight CCM b7]
and Deployment and Configuration (D&C§1] specifications have evolved. One such
middleware is the Component Integrated ACE ORB (CIA8))][ which combines the ca-

pabilities of conventional component middleware and Qo&béed DOC middleware.

Client Component Server
Object n args > Container
Reference operation () Home
out args + return value
QoS Policies

QoS Policy O
Aggregate
O

CORBA
Component

[ Real-Time POA )

QoS QoS
Mechanism RT-ORB Mechanism
Plug-ins Plug-ins J)
—

Figure 4: Entities of QoS-Enabled CORBA Component Middleware

As shown in Figuret, QoS-enabled component middlewares offer explicit coméigu

tion of QoS middleware parameters that affect the real-{imdormance of the system.



Since QoS-enabled component middleware technologiesudteatop conventional com-
ponent middleware technologies, QoS-enabled componeitiewares inherit the capabil-
ities that aid in design and development of large scaleibdiged systems from conventional
component middlewares. In summary, QoS-enabled companigitieware capabilities

enhance the design, development, evolution, and mainter@dDRE systems3[)].

[.2 Overview of Research Challenges

Middleware technologies provide capabilities that adsisesme, but by no means all,
important DRE system development challenges. Some of thaineng key challenges in
developing, deploying, configuring, and managing largedesDRE systems using middle-
ware technologies include:

Runtime Management ofMultiple System ResourcesMany mission-critical DRE sys-
tems execute impenenvironments where system operational conditions, infuklead,
and resource availability cannot be characterized acelyratpriori. Achieving high end-
to-end quality of service (QoS) is an important and chalilegpgssue for these types of
systems due to their unique characteristics, including@hystraints in multiple resources
(e.g, limited computing power and network bandwidth) and (2htydluctuating resource
availability and input workload. Conventional resourcenagement approaches, such as
rate monotonic schedulingl?], are designed to manage system resources and providing
QoS inclosedenvironments where operating conditions, input workloaasl resource
availability are known in advance. Since these approacteemaufficient for open DRE
systems, there is an increasing need to introduce resowrnagement mechanisms that
canadaptto dynamic changes in resource availability and requirémen

A promising solution igeedback control schedulif§CS) R, 22], which employs soft-
ware feedback loops that dynamically control resourcecation in response to changes
in input workload and resource availability. These tecbhe&enable adaptive resource

management capabilities in DRE systems that can compefosdbectuations in resource



availability and changes in application resource requinets at run-time. When FCS tech-
niques are designed and modeled using rigorous controtgtie techniques and imple-
mented using QoS-enabled software platforms, they cangewawbust and analytically

sound QoS assurance.

O &
90&{‘@ X
W N
& ¢
o NS
SRES
D
1S
E
5
T ,.x" \{g\’\‘.)
= PEIN SR\ PN LSS P
S | SR SN 9.9, &
§ TESF © (f~<<c’ Sﬁz&% S
§
g ¢
i: -
S
3 e e %
3 P R S
T % Q\Q® """ ,bbe' AQ’% e QI s
Co}nponénts

Middleware Technology

Figure 5: Taxonomy of Related Research

As shown in Figureb, although existing research have been shown to be effactive
managing a single type of resource, they have not managetiphaulypes of resources.
It is still an open issue, therefore, to extend individualoerce management algorithms
to work together to manage multiple types of resources ao@dinatedway, such as
managing computational power and network bandwidth semeibusly.

Complexity of Deploying and Configuring Resource Managemerlgorithms in DRE
Systems.In the past, significant research has been done in designathdeveloping gen-
eral purpose, as well as domain specific, resource manageatgerithms for dynamic sys-

tems. Example of general purpose resource managemenilahgeinclude EUCON352],



HySUCON H1], and FC-U/FC-M b1]. Examples of domain/use-case specific resource
management algorithms include CAMRI&J and HIDRA [70Q].

Since domain specific resource management algorithms swal(y) built for a specific
use-case/domain, such resource management algorithnnseanindinisms may be effective
for that domain; however, they cannot be easily reused ith@nalomain. On the other
hand, in order for general purpose resource managemenmithtge to be used in real world
systems in a portable way, they have to be implemented eitliee middleware or the OS.
However, this requires solid understanding of both the theigddre/OS and the algorithm,
which is hard. Moreover, the cost of employing another atgor might be high since it
might involve reimplementation of significant portions bétmiddleware/OS.

As a result, many resource management algorithms have bmestoged based on
strong theoretical foundations; however, only a few alions “see the light of day’i,e.,
evaluated in real systems. Therefore, what is missing issdyeaustomizable resource
management framework that reuses entities of a resourcagaarent mechanism — moni-
tors, resource management algorithm(s), and effectorsossdomains in a portable man-

ner and enables “plug & play” of new/domain-specific ensitie

[.3 Research Approach
To address the challenges identified in Secti@nthis dissertation presents a detailed
overview of (1) adaptive resource algorithms and architestto manage multiple resource
in DRE systems and (2) a fully configurable middleware baskgbtive resource manage-
ment framework. A brief summary of the different aspectshid tlissertation is presented

below.

1. Hierarchical Distributed Resource-management Architectire

To address the challenges identified in Secti@mn the context of adaptive manage-
ment of multiple system resources, this dissertation pitese control-based multi-

resource management architecture — Hierarchical DisatbResource-management



Architecture (HIDRA). HIDRA employs a control-theoretip@roach featuring two
types of feedback controllers that coordinate the utilarabf computational power
and network bandwidth to prevent over-utilization of systeesources. This capa-
bility is important because processor overload can caustesyfailure, and network
saturation can cause congestion and severe packet losgecSubthe constraints
of the desired utilization, HIDRA improves system QoS by mhadg appropriate

application parameters. Chaptedescribes HIiDRA in detalil.

2. Resource Allocation and Control Engine

To address the challenges identified in Secti@nn the context of deploying and
configuring resource management algorithms in DRE systiissjissertation presents
theResource Allocation and Control EngifiRACE), which is an adaptive resource
management framework built atop CIAO. RACE provides relesa&ntities — re-
source monitors, application/system QoS monitors, resoallocators, controllers,
and effectors — that can be reused across domains. Moré&€EE: can be config-
ured with domain specific implementation of the above mewtibentities. Chap-

terlll describes RACE in detail.

.4 Research Contributions

Our research on adaptive resource management for DRE sybtnresulted in algo-
rithms and architectures that perform adaptive manageofanultiple resourcest run-
time and a fully configurable resource management framethatcompliments theoreti-
cal research on adaptive resource management and enabbiespllbyment and configura-
tion of feedback control loops in DRE systems. The key reteeontributions of our work

on HiIDRA and RACE are shown in Table

10



Category Benefits

1. Anovel algorithm and architecture for runtime managenoémultiple sys-
tem resources using control theoretic techniques.

Adaptive Resource Management Algorithms ap@. Provides a resource management architecture that endilization of mul-

Architectures (HIDRA) tiple resources converge to the specified set-point.

3. Improves system QoS.

1. Afully configurable adaptive resource management fraonlefor DRE sys-
tems,

Adaptive resource management framework 2. Enables the deployment and configuration of resource geanent feedback

(RACE) control loops in DRE systems,

3. Details three case-studies where RACE has been sudbesgiplied.

Table 1: Summary Of Research Contributions

1.5 Dissertation Organization

The remainder of this dissertation is organized as folldBlsapter| focuses on adap-
tive resource management algorithms and architecturedeswibes the related research,
the unresolved challenges, our research approach to $wse thallenges, and empirical
evaluation of our research on runtime management of meal8gstem resources. Chap-
ter lll focuses on adaptive resource management frameworks fordg®Ems, describes
the related research, the unresolved challenges, ourrocesonanagement framework —
RACE — and how RACE addresses these unresolved challenggsnaempirical evalu-
ation of RACE. Chapterdv, V, andVI, focus on three DRE system case studies where
RACE has been successfully applied and presents an oveofidwe resource manage-
ment requirement of each system, description of how RACEesded these requirements,
and an empirical evaluation of the resource managemenbigiea of RACE in each of
the case studies. Chap¥h presents concluding remarks, provides a summary of lessons
learned from our research on adaptive resource manageon®RE systems, and outlines

future research.

11



CHAPTER I

ADAPTIVE RESOURCE MANAGEMENT ALGORITHMS AND
ARCHITECTURES

As described in Chaptdr DRE systems form the core of many mission-critical do-
mains, including autonomous air surveillan@&][ total ship computing environment&g,
and supervisory control and data acquisition systelis 17, 29]. Often, these systems
execute impenenvironments where system operating conditions, inpuklwed, and re-
source availability cannot be characterized accuradgpyiori. These characteristics are
beginning to emerge in today’s large-scale systems of sysf&l], and they will dominate
in the next-generation of ultra-large-scale DRE syste3@k [Achieving high end-to-end
quality of service (QoS) is important and challenging foedé types of systems due to
their unique characteristics, including (1) constraimtsriultiple resourcese(g, limited
computing power and network bandwidth) and (2) highly flatitug resource availability
and input workload.

Conventional resource management approaches, such asradtonic schedulingi,
45|, are designed to manage system resources and providingnQ&edenvironments
where operating conditions, input workloads, and resoax@alability are known in ad-
vance. Since these approaches are insufficient for open DBierss, there is a need
to introduce resource management mechanisms thaadaptto dynamic changes in re-
source availability and requirements. A promising soliimfeedback control scheduling
(FCS) R, 22, 50|, which employs software feedback loops that dynamicatigtool re-
source allocation to applications in response to changaspunt workload and resource
availability. These techniques enable adaptive resourmeagement capabilities in DRE
systems that can compensate for fluctuations in resourdalaility and changes in appli-

cation resource requirements at runtime. When FCS tecbsigre designed and modeled

12



using rigorous control-theoretic techniques and impleegnsing QoS-enabled software
platforms, they can provide robust and analytically soun&@ssurance.

Although existing FCS algorithms have been shown to be &ffech managing a sin-
gle type of resource, they have not been enhanced to mandgplenypes of resources.
It is still an open issue, therefore, to extend individuaS~&gorithms to work together in
acoordinatedvay to manage multiple types of resources, such as managmpgutational
power and network bandwidth simultaneously. To addressissue, we have developed a
control-based multi-resource management frameworkda&llerarchical Distributed Re-
source management Architect(i¢iDRA). HIDRA employs a control-theoretic approach
featuring two types of feedback controllers that coordirthe utilization of computational
power and network bandwidth to prevent over-utilizatiosygtem resources. This capabil-
ity is important because processor overload can causasyailere and network saturation
can cause congestion and severe packet loss. HIDRA impsygésm QoS by modifying
appropriate application parameters, subject to the cainssrof the desired utilization.

This dissertation provides contributions to both thecedtand experimental research
on FCS. Its theoretical contribution is its use of contreldty to formally prove the stability
of HIDRA. Its experimental contribution is to evaluate enngally how HiDRA works for
a real-time distributed target tracking application baibp The ACE ORBTAO) [67],
which is an implementation of Real-time CORBBZ. Our experimental results validate
our theoretical claims and show that HIDRA yields desirestey resource utilization and
high QoS despite fluctuations in resource availability aechdnd by efficient resource
management and coordination for multiple types of res@urce

The remainder of the chapter is organized as follows: Sedttid describes the archi-
tecture and QoS requirements of our DRE system case studtipsd.2 compares our
research on HIDRA with related work; Sectiit explains the structure and functionality

of HIDRA,; Sectionll.5 formulates the resource management problem of our DREmyste

13



case study described in Sectibri and presents an analysis of HIDRA; Sectib6 em-
pirically evaluates the adaptive behavior of HIDRA for ouRP system case study; and

Sectionll.7 concludes the chapter by presenting a summary.

II.L1 Case Study: Target Tracking DRE System

This section describes a real-time distributed targekingcsystem that we use as a case
study to investigate adaptive management of multiple sysésources in a representative
open DRE system. The tracking system provides emergenppmes and surveillance
capabilities to help communities and relief agencies recfrom major disasters, such as
floods, hurricanes, and earthquakes. In this system, neultipnanned air vehicles (UAVS)
fly over a pre-designated area (known as an “area of intgreapturing live images. The
architecture of this distributed target tracking systerhicl is similar to other reconnais-

sance mission systemd9 and target tracking system49, 20|, is shown in Figureb.

[ttt Target

|
I [
| (R | | h

! Coordinates
! Image Image L Wireless ! |
! > > ) HL L T Tracker f——»
! Camera Compressor Transmitter L Network ! arget Tracker |
| [ 1 !
____________________________________________________________________ |
UAV Receiver

Figure 6: Target Tracking DRE System Architecture

Each UAV serves as a data source, captures live images, essgarthem, and transmits
them to a receiver over a wireless network. The receivereseas a data sink, receives the
images sent from the UAVs, and performs object detectiothdfpresence of an object of
interest is detected in the received images, the trackiatgsydetermines the coordinates
of the objects automatically and keeps tracking it. The doates of the object is reported

to responders who use this information to determine theagu@te course of actiore.g.

14



initiate a rescue, airlift supplies, etc. Humans, animedss, boats, and aircraft are typical
objects of interest in our tracking system.

The QoS of our resource-constrained DRE system is meassifeti@avs:

 Target-tracking precisioywhich is the distance between the computed center of mass

of an object and the actual center of mass of the object, and

» End-to-end delaywhich is the time interval between image capture by the UAW a
computation of the coordinates of an object of interest. -Endnd delay includes
image processing delay at the UAV, network transmissioayd@ind processing delay

of the object detection and tracking sub-system at thevecei

Just as any real-time system, end-to-end delay is a cruo@liQour emergency response
system and must be as low as possible. A set of coordinategutethwith a lower pre-
cision and lower end-to-end delay is preferred over a sebofdinates computed with a
higher precision and/or higher end-to-end delay.

There are two primary types of resources that constrain e ¢ our DRE system:
(1) processorghat provide computational power available at the UAVs dmsl rieceiver
and (2) thewireless network bandwidtiat provides communication bandwidth between
the UAVs and the receiver. To determine the coordinatesrataly, images captured by
the UAVs must be transmitted at a higher quality when an dabgepresent. This in turn
increases the network bandwidth consumption by the UAV.ntwaase the utility of the
system, images are transmitted at a higher rate by the UA&hwbjects of interest are
present in the captured images. This in-turn increasesrtimegsor utilization at the re-
ceiver node, and thus increases the processing delay objbetaetection and tracking
sub-system. Moreover, transmission of images of highelitgu a higher rate increases
the bandwidth consumption by the UAV. If the network bandWwig over-utilized consid-
erably, the network transmission delay increases, whidirim increases the end-to-end

delay.

15



Utilization of system resources€., wireless network bandwidth and computing power
at the receiver) are therefore subject to abrupt changeseday the presence of varying
numbers of objects of interest. Moreover, the wireless agtvibbandwidth available to
transmit images from the UAVs to the receiver depends on liammel capacity of the
wireless network, which in-turn depends on dynamic fa¢tush as the speed of the UAVs
and the relative distance between UAVs and the receiveraa@dptive modulatiori| 36].

The coupling between the utilization of multiple resourcgsying resource availabil-
ity, and fluctuating input workloads motivate the need foa@tve management of mul-
tiple resources. To meet this need, the captured imagesrisystem are compressed
using JPEG, which supports flexible image qualit9][ Likewise, we choose to use im-
age streams rather than video because video compressmntlaigs are computationally
expensive, the computation power of the on-board processtine UAVs is limited, and
emergency response and surveillance applications ané@topgido not necessarily need
video at 30 frames per sec. However, the computational poiire UAV on-board pro-
cessor is large enough to compress images of the highesiycarad resolution and transmit
them to the receiver without overloading the processor.

In JPEG compression, a parameter called dbality factoris provided as a user-
specified integer in the range 1 to 100. A lower quality facésults in smaller data size of
the compressed image. The quality factor of the image cossfme algorithm can there-
fore be used as eontrol knobto manage the bandwidth utilization of an UAV. To manage
the computational power of the receiver, end-to-end exacuate of applications is used

as the control knob.

1.2 Related Research

Resource management algorithms and architectures haveshegied extensively in

the research community. As shown in Figtethis research can be broadly categorized

16



into two categories based on their applicability: (1) dedighe solutions and (2) runtime

solutions. These two categories are discussed in detaihbel

c?’%\ \¢
90\;\(‘\6 \§\\Q
QEE N
L@
O
QO‘Q\Q @Qq
D
1S
E
S
T é{g}g
> PR RN N S
£ A SO K FE e
8 SIS ,o‘”i\@ S
<
<
i ] ,
%) /" Q . 4 /"
@ & & NI A IR
e Q\b% & P & LT
< A
“Distributed Objects < Components—=

Middleware Technology

Figure 7: Taxonomy of Related Research

» Design time solutions.

Design time resource management solutions have beenibatpstudied under the
context of scheduling algorithms and feasibility analy§itassical scheduling algo-
rithms include rate monotonic schedulintg], fixed priority scheduling algorithm,
deadline driven scheduling algorithm, and a mixed schaguigorithm presented

in [45]. These algorithms assume that the deadline of a periodgksta equal to it
period. The work presented iid][relaxes this assumption and presents a scheduling
algorithms where the deadline of tasks can be less thanghewds. The research
presented ing3] describes a feasibility analysis for hard real-time paicaasks.
Classical bin-packing algorithmg] can also be viewed as resource management

algorithms since they can be used to allocate resource icappns. The research

17



presented ing4] describes a heuristic based approach to solve the muatigaision

bin-packing problem.

Runtime solutions.

A number of control-theoretic approaches have been apydiB&RE systems to over-
come limitations with traditional scheduling approaches eare not suited to handle
dynamic changes in resource availability and result inidiggcheduled system that

adapts poorly to change. A survey of these techniques iepted in P].

Feedback control scheduling (FCSY] is designed to address the challenges of ap-
plications with stringent end-to-end QoS executing in oP&E systems. These al-
gorithms provide robust and analytical performance assm@sdespite uncertainties
in resource availability and/or demand. FC-U and FC5] fand HySUCON #1]
employ control-theoretic techniques to manage the proceggization on a single
node. EUCON $2] presents a control-theoretic approach to manage procasso

lization on multiple nodes simultaneously.

A hierarchical control scheme that integrates resourcervaion mechanismg,
44] with application specific QoS adaptatioh?] is proposed in 3]. This control
scheme features a two-tier hierarchical structure: (1)dodal QoS manager that
is responsible for allocating computational resourcesai@ous applications in the
system and (2) application-specific QoS managers/adabtarsnodify application

execution to use the allocated resources efficiently andawgs application QoS.

The middleware control framework is presenteddfl][manages the performance of
a distributed multimedia application. The objective ofsthiamework is to ensure
that global system wide properties, such fairness betweepeting applications, as
well as QoS requirement of individual applications are meéthout over utilizing
system resources. This research utilizes task control haodiefuzzy control model

to enhance the QoS adaptation decision of multimedia DREesys However, the

18



control framework established in this work is still confirtesingle type of resource,

(i.e.), transmission rate in a distributed visual tracking system

CAMRIT [82] applies control-theoretic approaches to ensure trarssomsleadlines
of images over an unpredictable network link and also ptsseralytic performance

assurance that transmission deadlines are met.

[I.3 Unresolved Challenges

Design time solutions are efficient at managing system ressuand QoS irlosed
environments where operating conditions, input workloash&l resource availability are
known in advance. These approaches, however, cannot bie@appIDRE systems that
execute inopenenvironments where system operational conditions, inparklead, and
resource availability cannot be characterized accurat@lyori.

As shown in Figure7, existing runtime solutions perform resource managemént o
only one type of system resourceg., either computing poweor network bandwidth.
For DRE systems, these approaches are insufficient sindgtaul/pes of resources are
to be managed simultaneously, and in a coordinated fasiiime approach to manage
both computing power and network bandwidth might use eitherhierarchical control
structure proposed ir8], FC-U/FC-M, HySUCON, or EUCON to manage the processor
utilization, and use CAMRIT to manage the network bandwidtlization. Unfortunately,
this approach does not take into consideration the coupkigeen the two types of system
resources and does not necessarily guarantee systenitystabil

To address these challenges, this dissertation presemaided overview of the de-
sign and implementation of a distributed adaptive resoaraeagement architecture that
yields predictable and high performance resource manageaned coordination for multi-

ple types of system resources.

19



II.4 The Hierarchical Distributed Resource-management Achitecture (HIDRA)
This section presents thierarchical Distributed Resource-management Archilest
(HIDRA), which employs a control-theoretic approach to iage processors and network

bandwidth simultaneously. Our control framework is showrFigure8 and consists of

three entitiesmonitors controllers andeffectors A monitor is associated with a specific

Application Resource Utilization

Syst

ystem . o

Monitor Resource—{ Controller Plsdaptgtlon$ Effector Application
Utilization ecisions Parameters

Figure 8: The HIDRA Control Framework

/‘\
Application }

system resource and periodically updates the controllr thie current resource utiliza-
tion. The controller implements a particular control aljon and computes the adapta-
tions decisions for each application (or a set of applicejdo achieve the desired system
resource utilization. Each effector is associated withgplieation and modifies applica-
tion parameters to achieve the controller-recommendelicagipn adaptation.

We proceed to instantiate the HIDRA control framework fag ttomain of target track-
ing described in Sectiol.1. Each application in our DRE system is composed of two
subtasks:image compressioandtarget tracking To ensure end-to-end QoS, therefore,
resource utilization of both subtasks must be controlled.shown in Figure®, HIiDRA
consists of two types of feedback control loops: (1) a preaesontrol loop located at the
receiver that manages the processor utilization and (2hdviadth control loop located at
each UAV that manages the bandwidth utilization. Theseda@mmtrol the utilization of the
critical system resources and coordinate the executidmeahhage compression and target
tracking subtasks. One approach to manage these systemnaesds to desigmdepen-
dentfeedback control loops. Unfortunately, this approach daggake into consideration

the coupling between the two types of system resources agsl mat necessarily assure

20



Bandwidth Allocation Bandwidth Number of Targets

Allocator
o=
P ettt et et Y |
Processor e e e R
Utilization ! Bandwidth [l ——=—|=——— Target
Set-point i - JPEG Compressor ! | Coordinates
P Processor i Rate Controller ||  Image e Target |
Controller 1| Adapter Transmitter | | | ! : Tracker |
Bandwidth Utilization Monitor P | |
i1l | Receiver |
1
[l
1

Figure 9: HiDRA’s Control Architecture

system stability. Therefore, we structure these controp$oin ahierarchical fashion so
that the processor control loop at the receiver is viewedasuter control loop and the
bandwidth control loop at each UAV is viewed as theer control loop.

As shown in FigurelQ, the processor utilization monitor and processor corarciérve

as the resource monitor and controller of the processoraolatop, respectively. The

Image tfooooooooood e
b Transmission | i i !
Urtci?i(:zzstiaf Processor Rate | P i | Target } Target
) Controller i UAV i 1| Tracker 17 Coordinates
Set-point i i i o
| - |
““““““ ___Receiver __|
Processor
Utilization { Processor Utilization Monitor

Figure 10: Processor Control Feedback Loop

objective of the processor controller is to ensure that tbegssor utilization is maintained
at a specified set-point despite variations in resourcdaditily and input workload. The

utilization set-point of the receiver processor is an inputhe processor controller and is
specified during system initialization. The controllediahte for this loop is the processor
utilization of the receiver, and the control input from thregessor controller to the system
are the image transmission rates, which are fed to the ragtedin the UAVS. For the
processor control loop, therefore, rate adapters serviteasaes.

The bandwidth allocator shown in Figu@ds responsible for dynamically computing

21



the bandwidth allocation to each UAV based on (1) presebsefece of objects of interest
in the images received from the corresponding UAV and (2jatians in available wire-
less network bandwidth. The bandwidth controller of each/Whews this allocation as
the bandwidth utilization set-point. The bandwidth allmraensures that the bandwidth
requirement of UAVs capturing images of one or more objetisterest is met.

As shown in Figurdll, the bandwidth utilization monitor and the bandwidth cohér

serve as the monitor and controller of the bandwidth contap, respectively. The ob-

Image
Transmission
Rate
Bandwidth - ,
Utilization —— Bandwidth Quality - JPEG Compressor
. Controller Factor
Set-point
Bandwidth
Utilization Bandwidth Utilization Monitor

Figure 11: Bandwidth Control Feedback Loop

jective of the bandwidth controller is to ensure that thedveidth utilization of the UAV
is maintained at the specified set-point despite variatiomgsource availability and input
workload. Inputs to the bandwidth controller include thaedbaidth utilization set-point,
which is provided by the bandwidth allocator, and imagednaission rate, a model param-
eter of the bandwidth controller which is provided by thegassor controller. Based on
these inputs, the bandwidth controller computes an ap@tepralue of the JPEG quality
factor to transmit the image of the highest quality, sulgédb the specified bandwidth lim-
itation. The controlled variable is the network bandwidtiization of each UAV and the
control input from the bandwidth controller to the systerthis quality factor of the JPEG
compression algorithm. This input is fed to the implemeatabf the JPEG compression

algorithm, which serves as the effector for this controplodhe coupling between the two

22



types of system resources is captured by using the imagentiasion rates computed by

the processor controller as an input parameters to the hdtideontrollers.

[I.5 Control Design and Analysis

This section first formalizes the resource management @molf our real-time dis-
tributed target tracking system. We then map HiDRA to thistesn to show how it ad-
dresses key resource management challenges of our DREnsys$tmally, we present
analysis that shows how HIDRA ensures the stability of owstesy. The formalism de-
scribed below forms the foundations for the design and impl@ation of HIDRA. It also
provides analytical assurance about system performander dluctuating workload and

varying resource availability.

[1.5.1 Problem Formulation

The following notations are used throughout the remainihthe paper. The target
tracking system consists ofUAVs, and thereforen end-to-end task§Ti|1 < i < n}, each
with two subtasksj.e., an image compression subtask executing at Uawl a target-
tracking subtask executing at the receiver. The samplinggef the processor controller
(outer feedback loop) and the bandwidth controller (ineedback loop) are represented by
TOU andT.", respectively. The sampling perio@i§"t andT." are selected to be larger than
the maximum task period. All the entities that make up thedadth control loop (such as
monitor, controller, and effector) are collocated on eaé&V.UHowever, for the processor
control feedback loop, the monitor and the controller atlcated on the receiver, whereas
the effectors are located at each UAV. As a result, in thegesar control feedback loop,
the communication between the controller and the effed®omver a wireless network.
Although there are no theoretical constraints on the sarggeriods, for these practical

reasonsT2! is selected to be greater th@gf. In our model k" andk'" sampling period

23



represent th&" sampling period of the processor controller and #Hesampling period
of the bandwidth controller, respectively.

Each end-to-end task is invoked periodically at a ratg(k) at thek!" sampling in-
stant of the processor controller. The rate) is assumed to take values within the range
[rMin rM - puring thek™ sampling instant of the processor controller, images ane-co
pressed and transmitted Bys data source, UAY to the receiver at the rate of(k) im-
ages/secondC(k) represents the channel capacity (available bandwidthhefatireless
network during th&" sampling period. For example, in a 802.11b wireless netyik)

can vary from 1 Mbps to 11 Mbps. The channel capacity can beirodad form the wireless

network card using operating system tools/commands suchdasst .

[1.5.1.1 Bandwidth Allocator

During each sampling period of the processor controllerfdndwidth allocator com-
putes a desirable bandwidth allocation for each fhski'he wireless network bandwidth
allocation to each task is recomputed by the bandwidth allocator if the presencenof a
object of interest was detected by any of the target-trackibtasks or a variation in the
available bandwidth was detected during the previous sampleriod. For each task,

bandwidth is allocated such that the net bandwidth utitirais below the set-poirs, i.e..
n

Zbis(k) < BC(k) (1.1)
i=

whereb?(k) is the bandwidth allocation (utilization set-point) foiskal; during thekh
sampling period of the processor controller.

Let p(k) andp; (k) represent the total number of objects of interest tracketidgystem
and the number of objects being trackedTbguring thek!" sampling period, respectively.

Let bmin represent the minimum bandwidth allocation to each taskabitmages of the

24



lowest quality can be transmitted to the receiver. Bandwislthus allocated to each end-

to-end task as a function @{k) andp; (k) as follows:

bS(K) = Bet/n Wplo=0 | . | 1<i<n  (1.2)

Brmin -+ (Bsc(k);?lgnin)pi(k) if p(k) >0

If the total number of objects of interest tracked by the eysts 0, bandwidth is equally
allocated to each task. If the total number of objects ofredetracked by the system is
greater than 0, we assume all objects of interest are of eauairtance, and bandwidth
allocation to tasks is based on the number of objects clyrbetng tracked by that task.
This design ensures that a greater amount of bandwidthasaaéld to tasks that are cur-
rently tracking objects of interest as compared to the dmetsare not. If objects of interest
are of varying importance, a bandwidth allocation policgtttakes into consideration the

importance of object of interest can be employed withoutrangifications to HIDRA.

11.5.1.2 Processor Utilization Controller

We use the approach ib(Q] to model processor utilization. Sectidh5.2 uses the
following model in the stability analysis of HIDRA. The tagtracking subtask of each
end-to-end tasK; has anestimatedexecution time of; known at design time. The esti-
mated processor utilization by the target-tracking subtésaskT; during thek!" sampling

period is denoted &5 (k) and is computed as
Ei(k) = ciri(k) (11.3)

wherer;(k) is the invocation rate of end-to-end tagkduring thek!" sampling period. The

net estimated processor utilization during Kfesampling period is therefore

n

E(K) :;ciri(k). (1.4)

25



At runtime, however, thactualexecution times may be different since they depend on the
presence (and number) of objects in the images. At runtineeefore, the actual processor

utilizationU (k) can be written as

U (K) = Gp(K)E(K) (1.5)

whereGp(K) is the processor utilization ratio. AlthougBy(k) is unknown, it is reason-
able to assume that the worst case utilization ré@io= max.{Gp(k)} is known. Let the
processor utilization set-point of the receiver node beasgnted ablS. From (l.5), the

process utilization model can be written as

AU (K+ 1) = AU (K) + Gp(K)Vp(K) (11.6)

whereAU (k) = U (k) —U®andvp(k) = E(k+1) —E(k). The task of the feedback controller
is to computevp(k) so thatJ (k) converges tdJ* (or AU (k) — 0).

We consider a linear proportional controller

Vp(K) = KpAU (K) (1.7)

whereK, is a control gain which will be selected so that the systertaisls. A proportional
controller is used because of the simplicity in the dervatf the control gain that ensures
stability and in the implementation that incurs minimal qautational overhead. Actuators
implement the control signaly(k) by changing the invocation rate of end-to-end tasks.

The closed-loop system is described by

AU (K+1) = [1+KGp(K)]AU (K). (1.8)

The control algorithm is implemented as follows. During le@ampling period, the

26



controller compares the current processor utilizatigh) with the utilization set-point)®,

and computes the net estimated utilizatietk + 1) for the next sampling period based
on the equatiore(k+ 1) = E(k) + KpAU (k). Since the presence of one or more objects
of interest in the received images increases the executianthe target-tracking subtask,
computational power is allocated to target tracking sidsthased on the number of objects

of interest that are present in the received images. Weftirerbave

E(k+1) if o(k) =0
Ei(k+1) = " plk)

Epmin -+ (E(kJrl)B(kl;min)pi(k) if p(k) >0

VY T | 1<i<n  (1.9)

wherep(Kk) represents the total number of objects of interest captoyedl the tasks in the
system,p;i(K) represents the number of objects of interest being captwd&gdduring the
Kth sampling period, anBmi, represents the minimum processor allocation to each task so
that images can be processed by the receiver at the lowest rat

If the total number of objects of interest tracked by theeysis 0, computational power
is equally allocated to each task. If the total number of cisjef interest tracked by the
system is greater than 0, however, allocation of computati@source to tasks is weighted
based on the number of objects currently being tracked kiytaéis&. This design ensures
that a greater amount of computational power is allocatéasics that are currently tracking
objects of interest as compared to the ones that are not. goations|{.3), (11.7), and

(11.9) we derive the task execution rate as follows:

E(+UK-U"Kp/Gp ¢ p(k) =0
filk+1) = Emi '(k)(E(k)Jr(U(k)—US)Kn?G —NEin) VT 1si<@L10)
=gn 4 B ol 1P >0

27



[1.5.1.3 Bandwidth Utilization Controller

We next present the analytical model of the bandwidth cdietréor each UAV. The
following notations are used in this model where the symbotsespond to each UAV and

the subscript is omitted for simplicity:

« b(k): Actual bandwidth utilization in th&'™ sampling period.

* b3(k): Desired bandwidth utilization (set-point) computed bg landwidth allocator

in the k" sampling period as shown in equatidh3).

« r(k): Task rate computed by the processor controller inkhesampling period, as

shown in equationl(.10).
* s. Size of an uncompressed image, which is a constant and kabdasign time.

* q(k): Quality factor of image compression algorithm (JPEG) cated by the band-

width controller in thext sampling period.

* ¢(q) : Estimated size of the compressed image compressed wilitydfaator g.

To simplify our notation, we expresgk) and bS(k) with respect to the index by
definingr (k) =r(k),b%k) = b3(k),k < k < k+1.

The controlled variable of this feedback control loop islla@dwidth utilizationp(k),
and the control input from the controller to the UAV is the tityafactor of the image
compression algorithng(k). The controller computes an appropriate value of quality
factor, q(k), to ensure that the bandwidth utilization of the UA{k), converges to the
set-pointp’(k), computed by equationl(2).

The average size of the compressed imaajq), is related to the quality factor of the
image compression algorithm, by a non-linear function as shown in Figut2 For the
purpose of our control design, however, we chogséthin the rangg10, 70} where this

function can be approximated by a linear one. A piecewislifunction can also be used.

28



0.3

0.25 ¢

0.2+
Aproximate

0.15

Compression Ratio

0.1r

005 L L L L L L
10 20 30 40 50 60 70
Quality Factor (q)

Figure 12: Linearization of  ¢(q)

For 10< g < 70, we have

©(q) = sgo+ w (1.11)

whereg is the slope andv is they-intersect of the linear approximation of the function in
Figurel2.
Images are compressed with a quality fadaand transmitted at the ratefrom the

UAV to the receiver. Therefore, the bandwidth utilizatiantributed by the UAV is

b(k) = r(k)e(q)

= r(k)sgqK)+r(K)c.

LetAb(k) = b(k) —b%(k) andvy(k) = q(K + 1) —q(k), then the bandwidth utilization can

be described by the dynamical model

Ab(K +1) = Ab(K) 4 r(K)Sgw(K). (1.12)

The objective of the feedback controller is to determip@) as a function ofAb(k)
so that the bandwidth utilization converges to the set{pditowever, the bandwidth uti-
lizationb(k) is not directly available due to measurement noise. Thewwltl utilization

monitor measures the bandwidth utilization as the rate awdata is written by the image

29



compression subtask to the underlying network stack. Itinesoted that the bandwidth
utilization monitor measures the bandwidth utilizatiortleé UAV and not the channel ca-
pacity or the utilization of the wireless network. Therefothe resolution of the bandwidth
utilization monitor is in the order of the size of the com@mesimage. Hence, even a small
variation in the sampling period and the image transmisgia@ will considerably affect
the measured bandwidth utilization. Although the samppegod of the bandwidth con-
troller is a constant, from a practical standpoint, the dargperiod might vary marginally
due to the jitter associated with the timer that is employednplement the periodic task.
Moreover, the image transmission rate varies significatttyntime since it is dynamically
computed by the processor controller.

Let b(k) denote the measured bandwidth utilization in #& sampling period. We

assume that the effect of the measurement noise can belubsbsi

where the measurement noige ) is assumed to be a discrete-time Gaussian process with
zero mean and variand@&n?(k)]. The variance can be approximated experimentally by
transmitting images with a known rate and computing the qo&the rms value of the
difference between the predicted utilizatiofx ) and the measured utilizatidoik ) [31].

To remove the measurement noise in the measured bandwilithtidn, we employ
a Kalman filter B5] to estimate the actual bandwidth utilization. Alternatiy a simple
low-pass measurement filter can be used. We select a Kalnankfdcause it provides
good transient and steady-state performance, it is optimtake sense that the variance of
the estimation error is minimized, and it allows the stéypitinalysis of the closed loop
system based on the certainty equivalence principle (araéipn principle) ¢]. 1t should

be noted that the processor utilization monitor obtainspgieeessor utilization directly

30



from the underlying operating system, and therefore is ghéi resolution compared to
the bandwidth utilization monitor.

The Kalman filter computes recursively the estimated badthwitilizationb(k ) based
on the measured bandwidth utilizatibfk) and the bandwidth utilization modell.(.2).

Let Bf(K) the predicted bandwidth utilization in thé" sampling period given by

~ A~

b™ (k) =b(k —1)+r(k —1)sgw(k —1).

The output of the Kalman filter is

A~ A

b(k) = b (k) +K(k)(b(k) —b~(k)) (11.13)

whereK (k) is a filter gain that is computed recursively in order to miizienthe variance
of the estimation errag(k) = b(k) — b(k) [6, 8.
The output of the Kalman filteh(k), is used by the bandwidth controller as the current

bandwidth utilization. We consider a linear controller
Vi (K) = KpAb(K) (11.14)

whereKy is the control gain that will be selected so that the systestale. During each
sampling period, the controller compares the estimatedwith utiIizationB(K) with the

utilization set-poinb’(k), and computes the quality factafx + 1) by
q(k +1) = q(k) + KpAb(k). (11.15)

[1.5.2 Stability Analysis

A control system is said to be stable if and only if the systemverges to an equi-

librium for any set of initial conditions. In our case studye initial conditions are used

31



to represent the changes in workload (due to the change afrthges’ content) and/or
resource availability. Our target tracking system is tfaeestable if resource utilization
of both the system resourceise(, processor utilization at the receiver and the network
bandwidth utilization) converge to their respective atlion set-points in the presence of
workload changes and/or resource availability. Althoug ¢ontroller is designed based
on a time-invariant model (constant upper bounds on resoutitization), we show that
the system is stable even when resource availability andilaration changes at runtime,
i.e., the system is time-varying.

A feedback control loop can be stabilized by selecting throdier so that the poles of
the closed loop system are in the unit cirde31]. The bandwidth utilization control loop
includes the Kalman filterl(13) and the linear controlledl(14). A consequence of the
separation principle is that the control synthesis probtambe solved separately and the
dynamics of the closed-loop system are determined by thardigs of the controller and
the optimal filter p]. Specifically, the poles of the closed loop system are detexd by
the poles of the controller and the poles of the Kalman fikeisteady-state the gain of the
Kalman filter converges to a stationary value that ensusdslgy for the estimation error
£(k). Therefore, in our analysis we can focus on imposing comattion the bandwidth
utilization control gairKy to ensure that the pole of the bandwidth utilization comgrak
inside the unit circle.

We can stabilize each of the two types of feedback contrgidday selecting the gains
Kp andKy, so that the corresponding poles are in the unit circle. Sudésagn, however,
does not necessarily ensure the stability of the hieraathantrol architecture since it does
not take into consideration the interaction between theldaek loops (due to the presence
of r(k) in equation [1.12)). We next present an analysis result that allows us to s#iec
control gains so that the overall stability is assured.

Assuming that the input buffer of the receiver is never emptig clear that the pro-

cessor utilization is independent of the bandwidth utiima If we selectKp so that

32



—2/Gp < Kp < 0 then
AU (K) = [1+ KpGp(K) AU (ko), k > ko

andAU (k) — 0 since|1+KpGp(K)| < 1.
From equationl(.10), it follows that in the steady state the utilization for baeask
Ui(k) will be stable (it will converge to a set-poikt® that depends on the presence of

objects in the image data) and we can write
AUi(k+ 1) = aj(K)AU; (k) (1.16)

where the functiom; (k) satisfiega; (k)| < 1.
Let rS denote the rate of thé task at the steady state, the(k) = r$+ Arj (k) where
Ari(k) — 0. The bandwidth utilization model for th& UAV is

Abi (K +1) = [1+ (r$ + Ari(k))sgK | Abi (k) (11.17)

The primary challenge of the stability analysis of our fravoek is the coupling be-
tween the processor and bandwidth controllers. As it careba & equationl(.17), the
control input from the processor controller to the systAmy(k ), is used by the bandwidth
controller. Our objective is to deduce the stability prajgsrof the systeml(16-11.17) by

studying thdsolated system

AUi(k+1) = ai(k)AU;(K) (11.18)

Abi(k+1) = [14rSsgK|Abi(k) (11.19)

where the equations have been decoupled by seftirig) = O.

33



Theorem 1. The systeml((16-11.17) is stable if and only if the isolated systethi8-11.19)

is stable.

Proof. Define the norn|[x1, x2]|| = [|[X1, X2]||o = MaX{ X1, |X2| } @and denotdU;(k), Ab;(k)
andAU/ (k),Ab! (k) the solutions of {.16-11.17) and (1.18-11.19) respectively.
"Only-if": If the system (1.16-11.17) is stable, then there exists functiarik ) with a (k) —
0 such that

[1AUi (k) Abi (k)] T < a1 ()] [AU; (o), Abi (ko)) ]| (11.20)

VK > Ko and for every initial conditiofAU;(Ko),Abi(Ko)]T whereAU;(k) = AU;(K),k <
K < k+1.

In particular, suppose that the initial conditior{@Abj (ko)] ", then by equationli.20)
VK > Ko, |Ab! (K)| < a(k)|Ab! (Ko)|, which shows that the syster.(8-11.19) is stable.
"If": It is easy to see thafU;j(k) = AU/ (k) so we have to analyze onlibj(k). Define
Mm(k) = 1+rSgK! andn(k,Ari(k)) = 1+ (r8+Ari(k))gKL. From the stability of (.18-
11.19), we have thaln, (k)| < 1 and there exists a functiar (k) with 0 < az(k) — 0 such
that

AR2(K) (NP (K) — 1) < —atz(K)ADZ(Ko)

for everyAb; (ko) andk > Kg. But we can write

Abf (K +1) —AbP(k) = AbP(K)(nf(K) —1) +AbF (k) (n%(k, Ari(K)) — nf(k))

< —0p(K)Dbf (Ko) + y(K)
wherey(k) — 0 sinceArj(k) — 0. Abj(k) — 0 and the systemI(16-11.17) is therefore
stable. O

Using the above theorem, we can select the control gainsasotin hierarchical control
architecture is stable. For the processor utilizationlbee# loop, the gain could be selected

to satisfy —2/Gp < Kp < 0 that ensures stabilityd[ 50]. Similarly, for the bandwidth

34



utilization control loop, the gain should be selected st (hd 9) is stable. Since? is not
known at design time, we can select the gain to satisfy(r"®) < KL < 0. Areasonable
choice for selecting the control gains is to use deadbeatadi31] based on the worst
case utilization ratio and maximum task rate respectiviety, K, = —1/Gp and K| =
—1/r"® This selection tries to minimize the settling time keepihg overshoot equal
to zero. Although deadbeat control may introduce satumatithe ranges for the control
effectors, i.e. the rate and the quality factor are smallpérformance was satisfactory for

our case study. Other criteria for selection of the gain aafolind in p0].

1.6 Performance Results and Analysis

This section first presents the testbed for our target tnacgystem, which was used to
evaluate the performance of HIDRA in the context of a reprg&e open DRE system.
We then describe our experiments and analyze the resulnebtto evaluate the per-
formance of our DRE system empirically with and without HIRRnder varying wireless
bandwidth availability and input workload. The goal of oMperiments was to validate our
theoretical claims and show that HIDRA yields predictalnd high-performance resource

management and coordination for multiple types of res@urce

11.6.1 Hardware and Software Testbed

Our experiments were performed on the Emul&B festbed at University of Utah
(wwv. ermrul ab. net). The hardware configuration consists of three nodes aasnigAVs
and one receiver node. Images from the UAVs were transntittadeceiver via a wireless
LAN configured with a maximum channel capacity of 2 Mbps. Thedware configuration
of all the nodes was a 3 GHz Intel Pentium IV processor, 1 GBsiay memory, 802.11
a/b/g WIFI interface (Atheros 5212 chipset), and 120 GB hdnide. The Redhat 9.0
operating system with wireless support was used for all tues.

The following software packages were also used for our expents: (1)TAO 1.4.7,

35


www.emulab.net

which is our open-source implementation of Real-time CORB3 that HIDRA and our
DRE system case study are built upon, E&npeg 0.4.9-prelwith Fobs-0.4.0front-end,
which is an open-source library that decodes video encau®PREG-2, MPEG-4, Real
Video, and many other video formats to yield raw images, &)dnjageMagick 6.2.5
which is an open-source software suite that we used to caspine raw images to JPEG

image format.

11.6.2 Target Tracking DRE System Implementation

The entities in our target tracking DRE system are implee@ts CORBA objects
and communicate over tlAO [67] Real-time CORBA Object Request Broker to achieve
desired real-time performance. The end-to-end applicatansists of pairs of CORBA
objects: the UAV data source and the receiver data sink. TRédata source object that
executes on each UAV’s on-board processor performs thewolp actions: (1) extracts
raw images from an on-disk video file using Ffmpeg with Fobafend, (2) compress the
raw image into JPEG format using ImageMagick, and (3) “pastiee compressed images
over the wireless link to the data sink object via a CORBA aagwethod invocation.

A data sink object at the receiver processes the images/egcom the correspond-
ing UAV. Each data sink object contains two functional me&dulone that determines the
presence of one or more objects of interest in the receivadés, and the other tracks the
coordinates of objects of interest in the received imagptasent. The second functional
module is executed only if the presence of one or more objédtgerest is detected by the
first module.

To perform target tracking, received images are comparédavieference image, that
is given during system initialization. To obtain the refeze image, a raw image is ex-
tracted from a frame in the video that contains the objeattgfrest. This raw image is then

compressed using JPEG compression algorithm with a guakitgr of 100 and used as

We used pre-recorded video which was made available on e&¢mbide as our source of “live” video.

36



the reference image. The received images are converteddotonto gray-scale, and the
processed image is “subtracted” from the reference imagbtton the difference image. If
the average pixel value of the difference image is greager ghthreshold (which indicates
the presence of one of more objects of interest), the cehtaass of the objected is com-
puted. This approach is common and the coordinates of a m@bject can be tracked
using a Kalman filterZ6.

Table2 summarizes the number of lines of code of various entitiessinmiddleware

and DRE multimedia system case stddy.

Entity Total Lines of Source Code
HIDRA 12,243
DRE Target Tracking System 19,875
Ffmpeg + Fobs 214,092
ImageMagick 253,270
The ACE ORB (TAO) 907,035

Table 2: Lines of Source Code for Various System Elements

11.6.3 Experiment Configuration

Our experiments consisted of three (emulated) UAVs coimtgithe data source object
that (1) decoded the video from a file, (2) extracted the raages, (3) compressed them
using JPEG compression, and (4) transmitted the compressegs to the corresponding
data sink object at the receiver node. Wireless network Wwatild was shared between the
three data source/data sink object pairs, and the compughpower at the receiver node
was shared between the three data sink CORBA objects.

We evaluated the adaptive resource management capahiittéiDRA under the fol-

lowing operational conditions: (1) constant bandwidthilaidlity and constant workload,

2Lines of source code was measured using SLOCCdurit: / / www. dwheel er . coni sl occount /).

37


http://www.dwheeler.com/sloccount/

(2) constant bandwidth availability and varying workloé®), varying bandwidth availabil-
ity and constant workload, and (4) varying bandwidth avmiity and varying workload.
These experimental configurations were chosen to evalhat@drformance of HIDRA
under all possible combinations of fluctuations in bandkvaltailability and input work-
load. We evaluate the performance of the system when it wasatgd with independent
feedback control loops to demonstrate the advantages grtdposed hierarchical archi-
tecture. In all operating conditions, we monitored the pssor utilization at the receiver
and wireless network bandwidth utilization between the YAawd the receiver. Processor
utilization at each UAV node was not monitored since the cataonal power of the UAV
on-board processor was sufficiently large to compress imaf¢he highest quality and
resolution and transmit them to the receiver without oatlng the processor.

Bandwidth consumption by each UAV was measured as the ratéigh data was
written to the underlying network stack by the UAV data seU@ORBA object. The band-
width utilization can also be measured at the receiver ngdegthe techniques described
in [69]. Since our measurement of bandwidth consumption by eac¥ Was noisy, we
used a Kalman filter to suppress the disturbances in the meghbandwidth utilization.
Processor utilization at the receiver was measured usiangdta from thée pr oc/ st at
file. In our experiments, we also measured application Q@pgsties, such as target-
tracking precision and average end-to-end delay.

We defined target-tracking precision as the inverdaimfet-tracking error which is the
distance between the computed center of mass of an obje¢harattual center of mass
of the object. To compute the actual center of mass of thecghjee identified an object
present in the video as the object of interest, performeagktaracking on the raw images
extracted from the video, and used this value as a refereficthe data sink object, the
target-tracking results were then compared with this ezfee value.

End-to-end delay consists of (1) processing delay at the, (IB\vhietwork transmission

delay from the UAV node to the receiver and (3) processingydat the receiver node. To

38



measure the end-to-end delay, an image was timestampee: lolath source object when
the raw image was extracted from the pre-recorded videolfd&gre it was compressed
and transmitted to the corresponding data sink object. Woompletion of processing of
the received image by the data sink object, the time-startpedfnage was compared with
the current time on the receiver node to obtain the end-tbeltay. To eliminate time

skews, physical clocks on all the nodes in our hardware g¢éstiere synchronized using
NTP [55].

In all the above listed operational conditions, we complaegaerformance of our DRE
system when it was operated with and without HIDRA. Comarisf system performance
is decomposed into comparison of resource utilization gpdi@ation QoS. For system re-
source utilization, we compare (1) wireless network bamithvutilization and (2) proces-
sor utilization of the receiver node. For application Qo®, sempare (1) target-tracking
precision and (2) average end-to-end delay.

For all our experiments, we chose the sampling period of tbhegssor controller and
the bandwidth controller as 10 seconds and 1 second, résggctThe minimum and
maximum image transmission ratey|,, rmad was 5 and 15 images/second. Therefore, as
explained in Sectiofl.5.2, the control gain for the bandwidth controlléty) was computed
to be -0.06 {1/15). SinceGp was measured to be 2, the control gain for the processor
controller Kp) was computed to be -0.5-(/2). The processor utilization set-point was
selected to be 0.7. The goal of utilization control is to (-Bvent processor overload (which
can cause system instability), and (2) avoid unnecessanitier utilizing the processor
(which leads to a low task rate). The choice of 0.7 as the set pohieves the desired
trade off between overload protection and high task rateumsystem. Since an IEEE
802.11 DCF-based network has a utilization of approxinyaddef with 20 active node$),
the wireless bandwidth utilization set-point was also gunied at 0.7. Although for a

system with four nodes the achievable channel utilizatmratbe higher than 0.7 (e.g., as

39



high as 0.8), this value varies depending on many otherfastech as packet size, channel

bit rate, etc. Considering all these factors, we set the d010.7 conservatively.

11.6.4 Experiment 1 : Constant Bandwidth Availability and C onstant Workload

We now present the results obtained from running the exgerimnder a constant
channel capacity of 2 Mbps and a constant 2 objects of intér@sked by the system.
This experimental setup provides an operational conditibare resource availability and
input workload are knowm priori and not subjected to change during the course of the
experiments. Images containing objects of interest wepéucad by UAVs 1 and 2. This
experiment serves as the baseline for all other experimigmaidates that when the track-
ing system is operated with HIDRA the following behavior o (1) utilization of system
resources converge to their respective set-points andp(®ication QoS converges to the
values that were obtained when the system was operateduv#hDRA and application

parameters were chosarpriori.

UAV | Image Transmission Rate (images/se®uality Factor
UAV 1 10 40
UAV 2 10 40
UAV 3 10 40

Table 3: Application Parameters Chosen in Advance

We compare the performance against a static configuratiotiel static configuration,
application parameters, such as image transmission nadesgulity factor of the JPEG im-
age compression algorithm, were choagariori. Values of these parameters were selected
such that (1) both processor utilization of the receiveranaad the wireless bandwidth uti-
lization is equal to the set-point of 0.7 and (2) applicat@os are maximized. The settings

of the static configuration of the system are shown in T8ble

40



11.6.4.1 Comparison of Resource Utilization

Processor Utilization Processor Utilization
1 1
081 1 081 1
c c
2 0.6 2 0.6 1
5 0.4 5 0.4
0.2f 1 0.2
O 1 1 1 O 1 1 1
500 1000 1500 2000 500 1000 1500
Time (sec) Time (sec)
(a) Processor Utilization with HIDRA (b) Processor Utilization without HIDRA

Figure 13: Exp 1: Comparison of Processor Utilization

Figuresl3 and14 compare the processor utilization at the receiver node lamavire-
less network bandwidth utilization when the system wasateerwith and without HIDRA.
The output of the bandwidth utilization monitor, shown igtiie 14b, was processed with
a Kalman filter and used by the bandwidth controller as theectibandwidth utilization.
Figuresl3bandl4cshow that when the system was operated without HIDRA, resour
utilization of both the resources is 0.7 during the coursehef experiment. Similarly,
Figuresl3a 14g andl4bshow that when the system was operated with HIDRA, resource
utilization converges to the set-point of 0.7 and in mamedi at 0.7 for the remaining
duration of the experiment. These results show that whersyktem is operated using

HIDRA, system resource utilization converges to the repeatilization set-points.

[1.6.4.2 Comparison of QoS
We now compare the application QoS — (1) target-trackingipi@n, and (2) average
end-to-end delay.

Figure 15 compares the target-tracking error obtained when the rsystas operated

41



Wireless Network Bandwidth Utilization Wireless Network Bandwidth Utilization

1 1
0.8 1 08t 1
5 5 ﬁ“«w
2 06f 1 2 06 1
: £
5 0.4+ 5 0.4
0.2} 1 0.2}
0 : : : 0 : : :
500 1000 1500 500 1000 1500
Time (sec) Time (sec)
(a) Bandwidth Utilization with HIDRA (b) Bandwidth Utilization with HIDRA (estimates using

a Kalman Filter)

Wireless Network Bandwidth Utilization

08+
c
R
E 06 L
N
5 o4}

0.2+

0 L L L
500 1000 1500
Time (sec)

(c) Bandwidth Utilization without HIDRA

Figure 14: Exp 1: Comparison of Bandwidth Utilization

with and without HIDRA. Figured5aand15bshow that average target-tracking error—
and therefore target-tracking precision—is nearly theesarmen the system was operated
with and without HiIDRA.

Table 4, which compares the end-to-end delay when the system wasategewith
and without HIDRA, shows that average end-to-end delayastme as when the system
was operated with and without HIDRA. Based on these reswksconclude that QoS of
applications in our DRE system converges to the values mddawhen the system was
operated without HIDRA and application parameters wereseha priori.

From our comparison of resource utilization and system Q@Sgonclude that when

42



UAV 1 Target Tracking Error

251

Error (pixel)

T
X
£
s 2+ Witlhout HiDRA
. !
15+t With HIDRA
1 L L L
0 600 1200 1800
Time (sec)
(a) UAV-1

UAV 2 Target Tracking Error

251

2+ Witlhout HIiDRA
151} WitTh HIDRA
1 L L L
0 600 1200 1800
Time (sec)
(b) UAV-2

Figure 15: Exp 1: Comparison of Target-tracking Error

Number of Objects End-to-End Delay (msec)
With HIDRA | Without HIDRA
2 117 117

Table 4: Exp 1: Comparison of End-to-End Delay

the system is operated with HIDRA (1) utilization of systemsaurces converge to their

respective set-points and (2) application QoS convergédovalues that were obtained

when the system was operated without HIDRA and applicatarameters were chosen

priori.

11.6.5 Experiment 2: Decoupled Independent Feedback Contil Loops

We now demonstrate the effect of employing the processdraldonop and bandwidth

control loops in an independent fashion. To decouple thesdytpes of feedback control

loops, the bandwidth controller of all the UAVs assume a tamsamage transmission rate

of 10 images per second. However, the actual image tranemisstes are dynamically

modified by the processor controller and the rate adaptematime.

In this section, we present the results obtained from runiire experiment under a

43



constant channel capacity of 2 Mbps and varying number adatbjof interest in the sys-
tem. This experiment demonstrates the need for an hiecaichichitecture by analyzing
the effect of employing multiple independent feedback kopder constant resource avail-
ability and varying input workload. Tablesummarizes the number of objects of interest

that were tracked as a function of time.

Time (sec) Number of Objects
UAV1 | UAV 2 | UAV 3 | Total

0-300 0 0 0 0
300 - 500 1 0 0 1
500 - 700 1 1 0 2
700- 1,100 1 1 1 3
1,100-1,300f O 1 1 2
1,300-1,500f O 0 1 1
1,500-2,000f O 0 0 0

Table 5: Objects of Interest as a Function of Time

11.6.5.1 Analysis of Resource Utilization

Processor Utilization Wireless Network Bandwidth Utilization
1 1
0.8 [
o o
il il
= = 0.6
5 5 04+t ]
ol W
O L L L O L L L L
500 1000 1500 2000 500 1000 1500 2000
Time (sec) Time (sec)
(a) Processor Utilization (b) Bandwidth Utilization

Figure 16: Exp 2: Resource Utilization

Figure 16ashows the processor utilization at the receiver node whersylstem was

44



operated with independent feedback loops. Figuaand Tables show that the increase
in the processor utilization d = 300sis due to the presence of the first object of interest.
Figure 16ashows that although the processor utilization increasede.7, within the
next several sampling periods, the processor control lesypred the processor utilization
to the desired set-point of 0.7. This was achieved as a restdtiucing the execution rates
of data-source/receiver pair(s) deemed less impoitantpnes that captured images where
objects of interest were absent. At=500s andT = 700s, the presence of the second
and third object of interest were detected. As FigiBashows, the processor utilization
quickly re-converges to the set-point after a transienteiase. AtT = 1,100s the total
number of objects being tracked by the system reduced fromm23 #Although there was
a decrease in the processor utilization, the processoratdabp restored the processor
utilization to the set-point by increasing the executiote raf important data-source/data
sink pair(s). Similarly, the processor control loop ensdutigat the processor utilization
converges to the desired set-point for the remaining camadf the experiment.

From Figurel6h which shows the wireless network bandwidth utilizationewthhe
system was operated with independent feedback loops, ibeagen that the bandwidth
utilization is significantly below the set-point of 0.7 dugithe entire course of the experi-
ment. This is because the bandwidth controller assumeththanage transmission rate to
be a constant 10 images per second, where as the image tsaisnrate is dynamically
varied by the processor controller and the rate adaptemétma in order to maintain the
processor utilization at the desired value of 0.7. The baditiwcontroller does not have
complete knowledge of the state of the system, namely thgertransmission rate, and as
a result, the quality factor computed by the bandwidth caler does not aid the UAV in

achieving the desired bandwidth utilization.

45



11.6.5.2 Analysis of QoS

We now analyze the application QoS — (1) target-trackingipien and (2) average end-

to-end delay. From Figur&7, which shows the target-tracking errors that was obtained

UAV 1 Target Tracking Error UAV 2 Target Tracking Error
4 ‘ 4
35+
= X
o o
b - 25F 1
o o
(o 5 ol
15+
1 L L 1 L L
300 500 700 1100 500 700 1100
Time (sec) Time (sec)
(a) UAV-1 (b) UAV-2

UAV 3 Target Tracking Error

35+ 1
5 3 1
X
o
<)
G ol ]
15+
l L L
700 1100 1300 1500
Time (sec)
(c) UAV-3

Figure 17: Exp 2: Target-tracking Error

when the system was operated with independent feedback,|ttopan be seen that the
target tracking error is high when the system was operatéd wdependent feedback
loops. This is because the bandwidth control loops compusgés quality factors that
do not utilize the bandwidth allocated to each UAV effediveTherefore, as shown in

Figurel6b, the wireless network bandwidth was severely under-etlizr his accounts for

46



the high target tracking error when the system was operatddimdependent feedback
loops.

These results demonstrate that when the system was operidteiddependent feed-
back loops, wireless network bandwidth was severely untikred, which therefore leads

to a high target tracking error, or a low QoS.

Number of Objecty End-to-End Delay (msec
0 20
1 60
2 117
3 157

Table 6: Exp 2: End-to-End Delay

Table 6 shows the end-to-end delay when the system was operatedndgpendent
feedback loops. From Tabldsand6 it can be seen that when the system tracked 2 objects
of interest, the same end-to-end delay was achieved whesy#tem was operated with
independent feedback loops, with HIDRA, and without HIDR#é the system resource
utilization was maintained below the specified utilizatget-point. This is because the
wireless network begins to experience packet losses atrdnsmissions when the utiliza-
tion is above 0.79]. When the system was operated with HIDRA, without HIDRAdan
with independent feedback loops, since the bandwidthzatibn was below 0.7, the net-
work transmission delays are nearly equal. Moreover, sihegprocessor utilization in
both the cases were below the utilization set-point (as shnwiguresl3a 13band169),
the end-to-end delays are equal.

These results show the effect of employing multiple fee&b@ops— processor control
loop and bandwidth control loops—in an independent fashiadfthough the processor
utilization converges to the desired value, the bandwidilization is significantly lower

than the desired value. This results in severe under utdizaf system resources and low

a7



QoS, both of which are undesirable. Therefore, we now detreteshow HiDRA, using

an hierarchical approach, achieves desired system resatilization and improves QoS.

11.6.6 Experiment 3: Constant Bandwidth Availability and V arying Workload

We next present the results obtained from running the exyri under a constant
channel capacity of 2 Mbps and varying number of objects tefrést in the system. This
experiment demonstrates the adaptive resource manageapatiilities of HIDRA under
constant resource availability and varying input worklo&able5 summarizes the number
of objects of interest that were tracked as a function of timehis experiment, when the
system was operated without HIDRA, the static system cordigan shown in Tabl& was

used.

11.6.6.1 Comparison of Resource Utilization

Processor Utilization Processor Utilization
1 1r
0.8
c c
2 2
3 % 06
5 5 o4}
0.2+
O 1 1 1 O 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Time (sec) Time (sec)
(a) Processor Utilization with HIDRA (b) Processor Utilization without HIDRA

Figure 18: Exp 3: Comparison of Processor Utilization

Figures18 and19 compare the processor utilization at the receiver node lamavire-

less network bandwidth utilization when the system wasateerwith and without HIDRA.

48



Wireless Network Bandwidth Utilization Wireless Network Bandwidth Utilization

1 L
S S
g g
35 35
0 : : : 0 : : :
500 1000 1500 500 1000 1500
Time (sec) Time (sec)
(a) Bandwidth Utilization with HIDRA (b) Bandwidth Utilization with HIDRA (processed us-

ing a Kalman Filter)

Wireless Network Bandwidth Utilization

Utilization

0.2}

500 1000 1500
Time (sec)

(c) Bandwidth Utilization without HIDRA

Figure 19: Exp 3: Comparison of Bandwidth Utilization

The output of the bandwidth utilization monitor, shown igéiie 19b, was processed with

a Kalman filter and used by the bandwidth controller as theeotibandwidth utilization.
Figuresl8aand 18b and Table5 show that the increase in the processor utilization

at T = 300s is due to the presence of the first object of interest. Fig@@shows that

although the processor utilization increased above 0.thimwthe next several sampling

periods, HIDRA restored the processor utilization to thsidel set-point of 0.7. HIDRA

achieved this result by reducing the execution rates ofsatice/receiver pair(s) deemed

less importantj.e., ones that captured images where objects of interest wesenabAs

49



shown in Figurel8b, when the system was operated without HIDRA, the procedgmad
tion remained at 0.85, which is significantly higher thanutigzation set-point of 0.7.

At T = 500s, the presence of the second object of interest was detebedorocessor
utilization thus increased to 0.9 when the system was operaithout HIDRA, as shown
in Figure18h As Figurel8ashows that the processor utilization quickly re-converges
the set-point after a transient increase when the systenoperated with HIDRA.

At T = 700s, the presence of the third object of interest was detectesl.a Aesult,
when the system was operated without HIDRA, the procesdaatiton increased to 1, as
shown in Figurel8h Once again, Figur&8ashows that the processor utilization quickly
re-converges to the set-point after a transient increasm e system was operated with
HIiDRA.

At T = 1,100s the total number of objects being tracked by the system estlirom
3 to 2. Although there was a decrease in the processor titlizaHiDRA restored the
processor utilization to the set-point by increasing theceion rate of important data-
source/data sink pair(s). Similarly, HIDRA ensured thatpnocessor utilization converges
to the desired set-point for the remaining duration of theeexnent. Similarly, Figure$9a
and19b shows how HiDRA ensures that the wireless bandwidth utibraconverges to
the desired set-point of 0.7 within bounded time, even ufidetuating workloads.

These results show how HIDRA ensures that the processaratitin of the receiver
node—as well as the wireless bandwidth of the network—og®geto the desired set-
point within bounded time, even under fluctuating workloadé therefore conclude that
HIiDRA ensures utilization of multiple system resources amtained within the specified

bounds, thereby ensuring system stability.

11.6.6.2 Comparison of QoS

We now compare the application QoS — (1) target-trackingipi@n and (2) average

end-to-end delay.

50



UAV 1 Target Tracking Error UAV 2 Target Tracking Error

251 251 With HIDRA

With HIDRA j—mﬁk l . .
2+ 1 2+ 'Without HIDRA -
[
15 J—Lf,_J Without HIDRA | 151 |

300 500 700 1100 500 700 1100 1300
Time (sec) Time (sec)

(a) UAV-1 (b) UAV-2

Error (pixel)
Error (pixel)

UAV 3 Target Tracking Error

3 L
= 25+
[}
X
e
5 2 F Wiﬁhout HIiDRA -
£ e
) L

15+ With HIDRA
l L L
700 1100 1300 1500
Time (sec)
(c) UAV-3

Figure 20: Exp 3: Comparison of Target-tracking Error

Figure20 compares the target-tracking errors that were obtaineahwiesystem was
operated with and without HiDRA. Tableshows that during” € [300s,5008], there was
only one object of interest that was tracked by the systerd,this object was tracked
by UAV 1. When the system was operated without HIDRA, theistadnfiguration of
the system (shown in Tabl® assumed that there was a total 2 objects of interests being
tracked by the system. As a result, the Figz@ashows that the target tracking error during
T € [300s,500¢ is lower when the system was operated with HIDRA than wittiout

During T € [500s, 7005, a total of 2 objects of interest that were tracked by theesyst
and these objects were tracked by UAV 1 and UAV 2. This inputklead is the same as

the static configuration of the system. As a result, Figdesmand20bshow that the target

51



tracking error duringl € [500s, 7005 is nearly the same when the system was operated
with and without HIDRA.

DuringT € [700s,1100s|, however, a total of three objects of interest were beintked
by the system, one by each UAV. This input workload is higlentthe input workload
under which the static configuration of the system was sedecfo maintain the band-
width utilization within specified bounds, therefore, HiBRowers the quality factor of
the images transmitted by the UAVs to the receiver dufiing [700s,110Gs. As a result,
Figures20a 20k, and20c show that the target tracking error durifige [700s,1100 is
higher when the system was operated with HIDRA than withbuSimilarly, the target
tracking precision of the received images for the remaitiimg intervals can be analyzed.

These results demonstrate that HIDRA effectively mairgtaitilization of system re-
source below the specified set-points despite fluctuatioigpiut workload by gracefully

adjusting application QoS.

Number of Objects End-to-End Delay (msec)

With HIDRA | Without HIDRA
0 20 20
1 60 60
2 117 117
3 160 250

Table 7: Exp 3: Comparison of End-to-End Delay

Table7 compares the end-to-end delay when the system was operileaha without
HIDRA. This table shows that when the total number of objettsiterest tracked by the
systemwas 2 or less, the end-to-end delay was the same wheystiem was operated with
and without HIiDRA. This result occurred because the staiidfiguration of the system
was selected assuming 2 objects of interest were beingetaok the system. When the
number of objects tracked by the system increased to 3, hrewsystem resource were

over-utilized considerably when the system was operatétbwi HIDRA, as compared to

52



when the system was operated with it. As a result, when thersywas operated without
HIDRA, the end-to-end delay is significantly higher than whbe system was operated
with HIDRA.

HIiDRA reacts to fluctuations in input workload by modifying@ication parameters
such as JPEG quality factor. These adaptations ensureytitatrsresources are not over-

utilized and thus lowers average end-to-end delay.

11.6.7 Experiment 4 : Varying Bandwidth Availability and Co nstant Workload

We now present the results obtained from running the ex@grinnder varying channel
capacity of the wireless network and a constant 2 number jettdbof interest tracked by
the system. This experiment demonstrates the adaptivan@smanagement capabilities
of HIDRA under varying resource availability and constargut workload. We normalize
the channel capacity, bandwidth utilization, and bandwidilization set-point to the max-
imum channel capacity of 2Mbps. Talesummarizes the variation in channel capacity

and bandwidth utilization set-point as a function of times iAcan be seen in Tab& the

Time (sec) Channel Bandwidth Utilization Normalized Normalized Bandwidth
Capacity (Mbps)|  Set-Point (Mbps) | Channel Capacity Utilization Set-point
0-480 2.0 0.7*2.0=14 20/2.0=1.0 1.4/2.0=0.7
480 -1,480 1.0 0.7*1.0=0.7 1.0/2.0=0.5 0.7/2.0=0.35
1,480 - 2,000 2.0 0.7*2.0=14 20/2.0=1.0 1.4/2.0=0.7
Table 8: Channel Capacity and Bandwidth Utilization Set-Point as a Function of
Time

variation in the channel capacity represents a “step fanttiA step function is selected
because it is one of the most severe form of variation (oudisince) that a control system
can be subjected to. This experiment validates that HIDRAmaintain system stability

even under such severe variation in channel capacity. Isna@#aining objects of interests

53



were captured by UAVs 1 and 2. In this experiment, the statidiguration of the system

shown in Table8 was used when the system was operated without HIDRA.

11.6.7.1 Comparison of Resource Utilization

Processor Utilization Processor Utilization
1 1
081 1 081 1
c c
2 0.6 2 0.6 1
5 0.4 5 0.4
0.2f 1 0.2
O 1 1 1 L O 1 1 1
500 1000 1500 2000 500 1000 1500
Time (sec) Time (sec)
(a) Processor Utilization with HIDRA (b) Processor Utilization without HIDRA

Figure 21: Exp 4: Comparison of Processor Utilization

Figures21 and22 compare the processor utilization at the receiver node la@aor-
malized bandwidth utilization when the system was operatigd and without HiDRA.
The output of the bandwidth utilization monitor, shown igiie22b, was processed with
a Kalman filter and used by the bandwidth controller as theeotibandwidth utilization.
From Figure2laand21bit can be seen that under this experimental scenario, oces
utilization is equal to the set-point of 0.7 when the systeas wperated both with and
without HIDRA.

Figure22cshows that when the system was operated without HIiDRA, thealized
bandwidth utilization during € [0s,480s] andT < [1480s, 2000s] was 0.7, which is equal
to the set-point. During € [480s,148Cs| the normalized bandwidth utilization was 0.5,
which is equal to the normalized channel capacity and sanifly greater than the nor-

malized set-point of 0.35. From Figure8aand22h however, it can be seen that when the

54



Normalized Bandwidth Utilization Normalized Bandwidth Utilization

T E—— P — . 1
E<—Avai|able Bandwidthi =—Available Bandwidth
08} ] 08} ]
5 | 5
2 06} ] 2 06 ﬁw‘
£ £
5 o4} 5 04 1
02} CurIent Uitlization 1 02 CurJA'ent Uitlization
O L L L O L L L
500 1000 1500 500 1000 1500 2000
Time (sec) Time (sec)

(a) Normalized Bandwidth Utilization with HIDRA (b) Normalized Bandwidth Utilization with HiDRA
(processed using a Kalman Filter)

Normalized Bandwidth Utilization

i - e .
i=—Available Bandwidthi
0.8 i i
c
R
‘(E 0.6 L
1 N
5 o4t
0.2} Current Uitlization
0 L L L
500 1000 1500
Time (sec)

(c) Normalized Bandwidth Utilization without HIDRA

Figure 22: Exp 4: Comparison of Normalized Bandwidth Utilization

system was operated with HIDRA, the normalized bandwidilization converged to the
normalized utilization set-point even under varying chamapacity. HIDRA achieved this
behavior by lowering the quality factor of the images in @sge to fluctuations in network
bandwidth.

These results show that HIDRA ensures the wireless bankdwrtdization converges to
the desired set-point within bounded time, even under ugmgetwork bandwidth availabil-
ity. We therefore conclude that HIDRA ensures system resoutilization is maintained

within the specified bounds, thereby ensuring system #iabil

55



11.6.7.2 Comparison of QoS

We now compare the application QoS, which includes (1) targeking precision and

(2) average end-to-end delay.

UAV 1 Target Tracking Error UAV 2 Target Tracking Error

3 3
= 25¢1 = 25¢1
[0} [0}
= X
£ £
5 2+ . . 5 2+ . .
= With HIDRA — £ With HIDRA —
w . ﬁ . w . ﬁ .

151 Without HIDRA | 151 Without HIDRA
1 L L L 1 L L L
0 600 1200 1800 0 600 1200 1800
Time (sec) Time (sec)
(a) UAV-1 (b) UAV-2

Figure 23: Exp 4: Comparison of Target-tracking Error

Figure 23 compares the target-tracking error that was obtained whersystem op-
erated with and without HIDRA. As shown in Tab& during T € [0s,480s] and T €
[1,480s,20005 the channel capacity of the wireless network was 2 Mbps, wiiche
resource availability under which the static configuratibthe system was selected. As a
result, Figure23aand23bshow that the target tracking error during durihg: [0s, 480s|
andT € [1,480s,20005) is nearly the same when the system was operated with HIDRA and
without HIDRA.

During T € [480s,14805], however, the channel capacity of the wireless network was
1 Mbps. Within this time interval, the wireless bandwidtsaarce availability is half the
wireless bandwidth resource availability under which ttegis configuration of the sys-
tem was selected. To maintain the bandwidth utilizatiornimispecified bounds, HIDRA

lowers the quality factor of the images transmitted by the/slAo the receiver during

56



T € [4805,148(5. As a result, Figure®3aand23bshow that the target tracking error dur-
ing T € [480s,1480s] was higher when the system was operated with HIDRA than when
the system was operated without it. These results demadagirat HIDRA effectively
maintains utilization of system resource below the spetgit-points despite variations in
bandwidth resource availability by gracefully adjustingpkcation QoS.

Table9 compares the end-to-end delay when the system was operieaha without

HIiDRA. This table shows that end-to-end delay was much lomiegn the system was op-

Number of Objects End-to-End Delay (msec)
With HIDRA | Without HIDRA
2 185 276

Table 9: Exp 4: Comparison of End-to-End Delay

erated with HIDRA than without it. When the system was opetatithout HIDRA, during

T € [480s,14805, the utilization of the wireless network bandwidth is equeits channel
capacity, which increased packet loss, retransmissi@aydghnd in turn network transmis-
sion delay. This behavior accounts for the increase in teeage end-to-end delay because
the static configuration of the system was selected assulniigects of interest were be-
ing tracked by the system and a constant channel capacityMiigs. When the system
was operated with HIDRA, however, HIDRA reacts to variation channel capacity by
modifying application parameters such as JPEG qualitypfacthese adaptations ensure

that system resources are not over-utilized and thus loswenrsage end-to-end delay.

11.6.8 Experiment 5: Varying Bandwidth Availability and Va rying Workload

We finally present the results obtained from running the erpent under varying chan-
nel capacity of the wireless network, as well as varying nenab objects of interest in the
system. This experiment demonstrates the adaptive resouaoagement capabilities of

HiDRA under varying resource availability and fluctuatingut workload. We, once again,

57



normalize the channel capacity, bandwidth utilizatiord Bandwidth utilization set-point
to the maximum channel capacity of 2Mbps. Tablsummarizes the number of objects
of interests that were tracked as a function of time. T&xeimmarizes the variation of
channel capacity as a function of time. In this experimeihgmthe system was operated

without HIDRA, the static configuration of the system showiable3 was used.

11.6.8.1 Comparison of Resource Utilization

Processor Utilization Processor Utilization
1 1
0.8
c c
2 2
3 % 06
5 5 o4}
0.2+
O 1 1 1 L O 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Time (sec) Time (sec)
(a) Processor Utilization with HIDRA (b) Processor Utilization without HIDRA

Figure 24: Exp 5: Comparison of Processor Utilization

Figures24 and25 compare the processor utilization at the receiver node lamavire-
less network bandwidth utilization when the system wasateerwith and without HIDRA.
The output of the bandwidth utilization monitor, shown igéiie25b, was processed with
a Kalman filter and used by the bandwidth controller as theectibandwidth utilization.

Figure 24 and Table5 show that the increase in the processor utilizatiom at 300s
is due to the presence of the first object of interest. Fronur€ig4ait can be seen that
although the processor utilization increased above 0.thimthe next several sampling
periods, HIDRA restored the processor utilization to theigel set-point of 0.7. This be-

havior was achieved by reducing the execution rates of slatiace/receiver pair(s) deemed

58



Normalized Bandwidth Utilization Normalized Bandwidth Utilization

1 1
~—Available Bandwidth =—Available Bandwidth
0.8 i : 0.8t
c c
il il
2 0.6 1 2 0.6
S5 o4 : S5 o4
0.2 0.2 CurrerIt Uitlization
Current Uitlization
O L L L O L L L
500 1000 1500 500 1000 1500 2000
Time (sec) Time (sec)

(a) Normalized Bandwidth Utilization with HIDRA (b) Normalized Bandwidth Utilization with HiDRA
(processed using a Kalman Filter)

Normalized Bandwidth Utilization

%—Available Bandwidth
0.8t |

Utilization

Current Uitlization

500 1000 1500
Time (sec)
(c) Normalized Bandwidth Utilization without HIDRA

Figure 25: Exp 5: Comparison of Normalized Bandwidth Utilization

less importantj.e., ones that captured images where objects of interest waenabAs
shown in Figure24b, when the system was operated without HIDRA, the procedgmad
tion remained at 0.85, which is significantly higher thanutigzation set-point of 0.7.

At T = 500s, the presence of the second object of interest was detedked. result,
Figure24bshows that processor utilization increased to 0.95 whegaytbiem was operated
without HIDRA. As shown in Figur&4g however, the processor utilization quickly re-
converges to the set-point after a transient increase wiesytstem was operated with

HIDRA.
At T = 700sthe presence of the third object of interest was detectedeniie system

59



was operated without HIDRA, Figur&4b shows how the processor utilization increased
to 1. As shown in Figur@4g however, once again the processor utilization quickly re-
converges to the set-point after a transient increase wies\tstem was operated with
HIDRA.

At T = 110Gsthe total number of objects currently being tracked by trstesy reduced
from 3 to 2, although there was a decrease in the proces$imatitin, HiDRA restored the
processor utilization of 0.7 by increasing the executida o important data-source/data
sink pair(s). Similarly, HIDRA ensured that the processtlization converges to the de-
sired set-point for the remaining duration of the experitnen

These results show that HIDRA ensures that the procesdmatitn of the receiver
node converges to the desired set-point within bounded &wen under fluctuating work-
loads.

Figure25cshows that when the system was operated without HiDRA, thealzed
bandwidth utilization during € [0s,480s] andT € [14805,2000] was below the normal-
ized set-point of 0.7. During € [480s,148Cs| the normalized bandwidth utilization was
0.5, which is equal to the channel capacity and significagit®ater than the normalized
set-point of 0.35. From Figuré&baand25b, however, it can be seen that when the system
operated with HIDRA, the normalized bandwidth utilizatioonverged to the normalized
utilization set-point even under varying channel capacityis behavior was achieved by
lowering the quality factor of the images in response to #rétions in network bandwidth
availability and input workload.

These results show that HIDRA ensures that the wirelessviadiid utilization con-
verges to the desired set-point within bounded time, eveleuwarying channel capacity
and input workload. We therefore conclude that HIDRA ensurdization of system re-
sources is maintained within the specified bounds, evenrwaging resource availability

and input workload, thereby ensuring system stability.

60



11.6.8.2 Comparison of QoS
We now compare the application QoS — (1) target-trackingipi@n, and (2) average

end-to-end delay.

UAV 1 Target Tracking Error UAV 2 Target Tracking Error

3+ 3+
~ 25l ~ 25 | With HIDRA |
[0} [0}
= X
S With HIDRA — S
s 2+ 1 s 2+ Witlhout HiDRA -
] 1 ' ]

15 J—LII_J Without HIDRA | 151
1 L L 1 L L
300 500 700 1100 500 700 1100 1300
Time (sec) Time (sec)
(a) UAV-1 (b) UAV-2

UAV 3 Target Tracking Error

3 L
= 25+
[}
X
e
s 2 With HiIDRA
’ lora L
15+ Without HIDRA El
l L L
700 1100 1300 1500
Time (sec)
(c) UAV-3

Figure 26: Exp 5: Comparison of Target-tracking Error

Figure26 compares the target-tracking error that were obtained winesystem was
operated with and without HIDRA. Tableshows that during € [300s, 5005 there was
only one object of interest tracked by the system using UAWhen the system was oper-
ated without HIDRA, the static configuration of the system ghown in Tabl&) assumed
(1) that there were a total of 2 objects of interests beinckd by the system and (2) a

constant channel capacity of 2 Mbps. As a result, Fi@i@shows that the target tracking

61



error duringT € [300s,480g is lower when the system was operated with HIDRA than
without it.

During T € [480s,14805], however, the channel capacity of the wireless network was
1 Mbps. During Within this time interval, the wireless netlwdoandwidth availability
was half the bandwidth availability under which the stabafiguration of the system was
selected. To maintain the bandwidth utilization withingfied bounds, therefore, HIDRA
lowers the quality factor of the images transmitted by the/BlAo the receiver during
T € [4805,14805). As a result, Figure26a 26h, and26c¢ show that the target tracking
error duringT € [480s, 1480 was higher when the system was operated with HIDRA than
without it.

These results demonstrate that HIDRA effectively mairgtaitilization of system re-
source below the specified set-points despite fluctuatioigout workload and variations
in bandwidth resource availability by gracefully adjugtiagpplication QoS.

TablelOcompares the end-to-end delay when the system was operigiestha without

HIiDRA. This table shows that end-to-end delay is much lowkemwthe system operates

Number of Objects End-to-End Delay (msec)

With HIDRA | Without HIDRA
0 20 20
1 80 123
2 137 235
3 206 327

Table 10: Exp 5: Comparison of End-to-End Delay

with HIDRA than without it. When the system was operated aithHiDRA the utilization

of the wireless network bandwidth is equal to its channehcép duringT < [480s, 14805,
which resulted in increased packet loss, retransmissitayslewhich in turn increased
network transmission delay. This behavior accounts foirtbeease in the average end-to-

end delay because the static configuration of the system &lastad assuming 2 objects

62



of interest were being tracked by the system and a constamineth capacity of 2 Mbps.
When the system was operated with HIDRA, however, it reaxctgatiations in channel
capacity and number of objects by modifying applicationapagters, such as the JPEG
quality factor. These adaptations ensures that systeminassare not over-utilized and

thus lowers average end-to-end delay.

[1.6.9 Summary

HiDRA responds to fluctuation in input workload and the mesiese form of variation
in resource availability by periodically monitoring andhtml of resource utilization. Both
our theoretical and empirical analysis assures that thigation of system resources con-
verge to their specified utilization set-points even if apsant is specified as a time-varying
reference signal. However, the only assumption is that #ntton in the reference signal
is slower than the sampling period.

Our results show that when resources utilization increabese the desired set-point,
HiDRA lowers the utilization by modifying application pangters, such as execution rates
and JPEG quality factor. These adaptations ensure thayfigrs resources are not over-
utilized and (2) enough resources are available for imporépplications. Our results
also show that when the system was operated with indepeifeediback loops, system
resources are severely under-utilized, and as a resuicapph QoS are significantly re-
duced.

Our analysis of the results described above suggests thlyirag hierarchical adaptive
resource management to our target tracking system heldg togintain system resource
utilization within specified bounds and (2) improve ovemlstem Qo0S. These improve-
ments are achieved largely due to monitoring of system resoutilization, adaptive re-
source provisioning, and efficient system workload managgrby means of HIDRA's

resource monitors, hierarchical controllers, and effiesst@spectively.

63



1.7 Summary

This chapter described HiDRA, which is our hierarchicaltrilisited resource man-
agement architecture based on control-theoretic tecksithat provides adaptive resource
management, such as resource monitoring and applicateptatbn, that are key to sup-
porting open DRE systems. We first presented the theorditallysis that shows how
HiDRA ensures stability in our DRE system. We then evalu#itegberformance of HIDRA
using a representative target tracking DRE system implésdeamsing Real-time CORBA
and composed of two types of system resources ¢computational power at the receiver
and wireless network bandwidth) and three applicatiors, (JAV data sender/receiver
pairs). Our theoretical analysis and empirical results\sthat HIDRA delivers efficient re-
source utilization by maintaining system resource utii@awithin specified bounds even
under fluctuating work loads, thereby ensuring system Igtalaind delivering effective
QoS. However, as HIDRA tries to achieve the desired utilimaset-point of system re-
sources at all times, where there is no resource contengittvelen applications executing
in the system, the system can be operated without HIDRA ts@&we system resources.
When resource contention arises, the system can be opeviateHiDRA to ensure that

the utilization of system resources is maintained withengpecified set-point.

64



CHAPTER IlI

ADAPTIVE RESOURCE MANAGEMENT FRAMEWORKS

Achieving end-to-end quality of service (QoS) in DRE systemjuires integrating a
range of real-time capabilities, such as QoS-enabled mkfvotocols, real-time operating
system scheduling mechanisms and policies, and real-tichéieavare services, across the
system domain. Although existing research and soluti@8s34] focus on improving the
performance and QoS of individual capabilities of the sys{such as operating system
scheduling mechanism and policies), they are not suffié@mRE systems as these sys-
tems require integrating a range of real-time capabildi@®ss the system domain. Con-
ventional QoS-enabled middleware technologies, such aktiRee CORBA p2] and the
Real-time Javal0], have been used extensively as an operating platformsitd DRE
systems as they support explicit configuration of QoS asgsath as priority and thread-
ing models), and provide many desirable real-time feat(sesh as priority propagation,
scheduling services, and explicit binding of network cartioms).

QoS-enabled middleware technologies have traditionalty$ed on DRE systems that
operate irclosedenvironments where operating conditions, input workloadsl resource
availability are known in advance and do not vary signifibaat runtime. An example
of a closed DRE system is an avionics mission computg}, (where the penalty of not
meeting a QoS requirement (such as deadline) can resukt iiaillare of the entire system
or mission. Conventional QoS-enabled middleware teclyietoare insufficient, however,
for DRE systems that execute @apenenvironments where operational conditions, input
workload, and resource availability cannot be charaadriaccuratelya priori. Exam-
ples of open DRE systems include shipboard computing emviemts 68|, multi-satellite
missions ¥ §], and intelligence, surveillance and reconnaissanceioms$71].

Specifying and enforcing end-to-end QoS is an important @rallenging issue for

65



open systems DRE due to their unique characteristics,dmai(1) constraints in multiple
resourcesd.g, limited computing power and network bandwidth) and (2)hhygfluctu-
ating resource availability and input workload. At the hexdrachieving end-to-end QoS
are resource management techniques that enable open DREsyeadaptto dynamic
changes in resource availability and demand. In earliekwog developed adaptive re-
source managemeatgorithms(such as EUCON352], DEUCON [83], HySUCON {41],
and FMUF [L8]) and architectures such as HIDRA T70] based on control-theoretic tech-
niques. We then developed FC-OR®4], which is a QoS-enabled adaptive middleware
that implements the EUCON algorithm to handle fluctuationapplication workload and
system resource availability.

A limitation with our prior work, however, is that it tightlgoupled resource manage-
ment algorithms within particular middleware platformshieh made it hard to enhance
the algorithms without redeveloping significant portioriglee middleware. For exam-
ple, since the design and implementation of FC-ORB was bidsed to the EUCON
adaptive resource management algorithm, significant noadiiéins to the middleware was
needed to support other resource management algoritholsastDEUCON, HySUCON,
or FMUF. Object-oriented frameworks have traditionallyebeused to factor out many
reusable general-purpose and domain-specific servioc®sDRE systems and applications
[66]; however, to alleviate the tight coupling between reseumanagement algorithms and
middleware platforms and improve flexibility, this papeegents adaptive resource man-
agement frameworfor open DRE systems. Contributions of this chapter to theysbf
adaptive resource management solutions for open DRE systafnde:

e The design of a Resource Allocation and Control Engine (RACE which is a fully
customizable and configurable adaptive resource managdmerework for open DRE
systems. RACE decouples adaptive resource managemerittatgofrom the middleware
implementation, thereby enabling the usage of variousuregomanagement algorithms

without the need for redeveloping significant portions @ thiddleware. RACE can be

66



configured to support a range of algorithms for adaptive ueso management without
requiring modifications to the underlying middleware. Talelng the seamless integra-
tion of resource allocation and control algorithms into DREtems, RACE enables the
deployment and configuration of feedback control loops. EABerefore complements
theoretical research on adaptive resource managemenitlahgs that provide a model and
theoretical analysis of system performance.

As shown in Figure7, RACE provides (1yesource monitorshat track utilization of
various system resources, such as CPU, memory, and netaodwidth, (2) QoS monitors
that track application QoS, such as end-to-end delayre@)urce allocatorshat allocate
resource to components based on their resource requireraedtcurrent availability of
system resources, (4pnfiguratorsthat configure middleware QoS parameters of appli-
cation components, (®ontrollersthat compute end-to-end adaptation decisions based on
control algorithms to ensure that QoS requirements of egfiins are met, and (@ffec-

torsthat perform controller-recommended adaptations.

Applications with time-varying
resource and QoS requirements

Allocators Controllers |
" RACE -]

Application Configurators‘ ‘ Effectors ‘ System

QoS ) Resource
Component Deployment Plan Utilization

QoS-enabled Component Middleware
Infrastructure (CIAO/DANCE)

Deploy Components

QoS System domain with time-varying Resource
Monitors resource availability Monitors

Figure 27: A Resource Allocation and Control Engine (RACE) for Open DRE Sys-
tems

e The empirical evaluation of RACE’s scalability as the number of nodes and ap-

plications in a DRE system grows. Scalability is an integralperty of a framework as it

67



determines the framework’s applicability. Since open DR&eams comprise large number
of nodes and applications, to determine whether RACE carppgea to such systems,
we empirically evaluate RACE'’s scalability as the numbeamplications and nodes in the
system increases. Our results demonstrate that RACE sgalkas the number of appli-
cations and nodes in the system increases, and therefoteeagplied to a wide range of
open DRE systems.

The remainder of the chapter is organized as follows: Sedlid compares our re-
search on RACE with related work; Sectibh2 describes the architecture of RACE; Sec-
tion I11.3 presents an empirical measure of RACE’s scalability as theher of applica-
tions and nodes in the system grows; and Sedtioh concludes the chapter by presenting

a summary.

I11.1 Related Research

This section presents an overview of existing middlewacinelogies that have been
used to develop open DRE system. As in FigdBand described below, we classify
this research along two orthogonal dimensions: (1) Qo®ledaDOC middleware vs.
QoS-enabled component middleware and (2) design-timeunstime QoS configuration,

optimization, analysis, and evaluation of constraintshsas timing, memory, and CPU.

[11.1.1 Conventional and QoS-enabled DOC Middleware

Conventional middleware technologies for distributedeabcomputing (DOC), such
as The Object Management Group (OMG)’'s CORB|[and Sun’s Java RMI{6], en-
capsulates and enhances native OS mechanisms to creaibleenstwork programming
components. These technologies provide a layer of abstnatttat shields application
developers from the low-level platform-specific detailsl @efine higher-level distributed
programming models whose reusable APIs and componentmatégand extend native

OS capabilities.

68



)
N N \\\Q
@ N
@
O &
N €S
E
=
T \@\e‘
> AT N SN KT S Oo‘)
2 IR SO KPP F
3 Wl CT N o7 .
<
Q.
< g
i: -
g gL AW
: e N e (D e &)
& QO TS
<Distributed Objects————<Components—=

Middleware Technology

Figure 28: Taxonomy of Related Research

Conventional DOC middleware technologies, however, asfdoalyfunctionalaspects
of system/application development such as how to define rtedrate object interfaces
and implementations. They do not address QoS aspects @nsiagiplication develop-
ment such as how to (1) define and enforce application timgagirements, (2) allocate
resources to applications, and (3) configure OS and netwogkplicies such as priorities
for application processes and/or threads. As a result,dtie that configures and manages
QoS aspects often become entangled with the applicatian ddeese limitations with con-
ventional DOC middleware have been addressed by the falpwin-time platforms and
design-time tools:

Run-time. Early work on resource management middleware for shipbD&H systems
presented ing4, 86] motivated the need for adaptive resource management evidaé.
This work was further extended by QARMA(], which provides resource management
as aservicefor existing QoS-enabled DOC middleware, such as RT-CORRXyu [33]
also enhances RT-CORBA QoS-enabled DOC middleware bygiraya portable middle-

ware scheduling framework that offers flexible schedulind dispatching services. Kokyu

69



performs feasibility analysis based on estimated wors eascution times of applications
to determine if a set of applicationssshedulableResource requirements of applications,
such as memory and network bandwidth, are not captured &ad tato consideration by
Kokyu. Moreover, Kokyu lacks the capability to track utdizon of various system re-
sources as well as QoS of applications. To address thedatiioms, research presented
in [15] enhances QoS-enabled DOC middleware by combining Kokgu@hRMA.
Design-time. RapidSched§8] enhances QoS-enabled DOC middleware, such as RT-CORBA,
by computing and enforcing distributed priorities. Ramd&d uses PERT&T] to specify
real-time information, such as deadline, estimated exatuimes, and resource require-
ments. Static schedulability analysis (such as rate-nmmotnalysis) is then performed
and priorities are computed for each CORBA object in theesyistAfter the priorities are

computed, RapidSched uses RT-CORBA features to enforse tteanputed priorities.

[11.1.2 Conventional and QoS-enabled Component Middlewae

Conventional component middleware technologies, sucth@<ORBA Component
Model (CCM) [60] and Enterprise Java Bearts [/ 7], provide capabilities that addresses
the limitation of DOC middleware technologies in the comnteksystem design and de-
velopment. Examples of additional capabilities offeredcbyventional component mid-
dleware compared to conventional DOC middleware techriyollogiude (1) standardized
interfaces for application component interaction, (2) eldshsed tools for deploying and
interconnecting components, and (3) standards-basedamisafs for installing, initializ-
ing, and configuring application components, thus sepagatoncerns of application de-
velopment, configuration, and deployment.

Although conventional component middleware support thegiteand development of
large scale distributed systems, they do not address thiesslthe QoS limitations of DOC
middleware. Therefore, conventional component middlewan support large scale enter-

prise distributed systems, but not DRE systems that havsttimgent QoS requirements.

70



These limitations with conventional component-based teiddre have been addressed by
the following run-time platforms and design-time tools:

Run-time. QoS provisioning frameworks, such as QuD][and Qosketsg3, 65, 71] help
ensure desired performance of DRE systems built atop QaBleth DOC middleware and
QoS-enabled component middleware, respectively. Whelicagipns are designed using
Qoskets (1) resources are dynamically (re)allocated tbcgbions in response to changing
operational conditions and/or input workload and (2) aggilon parameters are fine-tuned
to ensure that allocated resource are used effectivelyr Wi approach, however, applica-
tions are augmented explicitly at design-time with Qoskehponents, such as monitors,
controllers, and effectors. This approach thus requirdssign and reassembly of existing
applications built without Qoskets. When applications geeerated at run-times(g, by
intelligent mission planners$p)), this approach would require planners to augment the ap-
plications with Qosket components, which may be infeassbiee planners are designed
and built to solve mission goals and not perform such platftmiddleware-specific oper-
ations.

Design-time. VEST [74] is a design assistant tool based on@eneric Modeling Environ-
ment[4] that enables embedded system composition from compoibeaties and checks
whether timing, memory, power, and cost constraints oftiea and embedded applica-
tions are satisfied. AIRESI{)] is a similar tool that provides the means to map design-time
models of component composition with real-time requiretada run-time models that
weave together timing and scheduling attributes. The reBgaesented in48] describes

a design assistant tool, based on MAS#[ that comprises a DSML and a suite of anal-
ysis and system QoS configuration tools and enables congpusthedulability analysis,
and assignment of operating system priority for applicatomponents. Caden89] is

an integrated environment for developing and verifying ponment-based DRE systems

by applying static analysis, model-checking, and lighgi¢formal methods. Cadena also

71



provides a component assembly framework for visualizirdydeveloping components and
their connections.

Some design-time tools, such as AIRES, VEST, and those mexsén {48], useesti-
mates such as estimated worst case execution time, estimated @Etdory, and/or net-
work bandwidth requirements. These tools are targetedy&iems that execute losed
environments, where operational conditions, input waklcand resource availability can
be characterized accuratelypriori. Since RACE tracks and manages utilization of various
system resources, as well as application QoS, it can be ngethjunction with these tools

to build open DRE systems.

[11.1.3 Unresolved Challenges

We now describe the shortcomings of existing research @mures management tools
and frameworks for large-scale DRE systems, focusing okeli@esearch challenges that
are still unresolved.

Design-time solutions.As described earlier in Sectidh3, design time solutions — for
both DOC middleware and component middleware — performyaisaénd resource man-
agement usingstimatessuch as estimated worst case execution time, estimatedq CPU
memory, and/or network bandwidth requirements. These td techniques are targeted
for systems that execute alosedenvironments, where operational conditions, input work-
load, and resource availability can be characterized atelyra priori. What is needed is

a resource management framework that tracks and manadjeatiatn of various system
resources, as well as application QoS, that can be used jarmion with these tools to
build DRE systems that execute in open environments.

Runtime solutions for QoS-enabled DOC middleware As these solutions are built atop
DOC middleware, they inherit the limitations of DOC middkw described ih.1. As

a result, these solutions do not provide higher level abtna that separates the frame-

work configuration from framework functionality. Configtie and customization of

72



these frameworks are done via source code, and theref@eicais and error-prone. With
existing solutions, incorporation of new resource manageralgorithms into the resource
management framework would involve reimplementationghfiicant portions of the mid-
dleware or framework. Moreover, existing solutions assteseurces are already allocated
to applications and do not perform on-line resource aliocatr admission control.
Runtime solutions for QoS-enabled component middlewareWith existing solution ap-
proaches, applications are augmented explicitly at detsige with Qosket components,
such as monitors, controllers, and effectors. This approlags requires redesign and re-
assembly of existing applications built without Qosketsick might not be feasible for
DRE systems with large number of legacy applications. Meggovhen applications are
generated at run-timee(g, by intelligent mission planners89]), this approach would re-
quire planners to augment the applications with Qosket @orapts, which may be infea-
sible since planners are designed and built to solve misgias and to work atop any
component middleware, not just CCM.

In summary, what is missing is a resource management frarkehat provides adap-
tive resource and QoS management capabilities in an apiphcaansparent and non-
intrusive way. In particular, the framework should allec&tPU, memory, and networking
resources to application components and track and mandgatign of various system
resources, as well as application QoS. The framework shoave the capability to de-
ploy and manage applications that are composed at designbly system designers (using
DSML tools such as PICML), as well as at run-time by inteligenission planners. The
framework should provide reusable entities, such as resaupnitors, QoS monitors, and
effectors, that can be configured to incorporate a rangeisfieg control algorithms, such
as EUCON §2] and HySUCON #1], as well as future algorithms. Moreover, the frame-
work should provide higher level of abstractions that ai¢amfiguring and customizing

the framework.

73



[11.2  Structure and Functionality of RACE

This section describes the structure and functionality ACE. RACE supports open
DRE systems built atop CIAO, which is an open-source impleateon of Lightweight
CCM. All entities of RACE themselves are designed and imgleted as CCM compo-
nents, so RACE'&\l | ocat or s andCont r ol | er s can be configured to support arange
of resource allocation and control algorithms using mattelen tools, such as PICML.

Figure 29 elaborates the earlier architectural overview of RACE igufe 27 and

shows how the detailed design of RACE is composed of theviatig components: (1)

Applications with time-varying
resource and QoS requirements

AIIocators. .Controllers
Configurators

o aon o
| - Central Monitor ) |

Application [ |:{System
QoS DeploymentPlan esource
Utilization

CIAO/DANCE

Deploy Components

QoS Resource
Monitors Monitors

System domain with time-varying
resource availability

Figure 29: Detailed Design of RACE

| nput Adapt er, (2)Central Monitor , (3) Al l ocators, (4) Confi gurators,

74



(5) Control |l ers, and (6)Ef f ect or s. RACE monitors application QoS and system
resource usage via ifResour ce Monitors, QoS- Monitors, Node Mnitors
andCentral Moni t or. Each component in RACE is described below in the context

of the overall adaptive resource management challengelieades.

[11.2.0.1 Challenge 1: Configuration and Customization of he Resource Manage-

ment Framework

|
InteractivelnputAdapter Orchestrator Conductor | QutputManager |
{meran e_roun_Adamter  Paniay =mzszn0y | 1 Assemoy PEnvenEnagr] | [ Oumvanager]
|

|

Centralized OnSMDnhnr
foemiteonn |

—————————— o

TargetManager
(e germg]

777777777
iuaie okes Mode_Manitor

[ oo Memker] Node Monitor

|
|
| 50
ER
| fe
| R
|
|
. 2

Node_Effector MNode_ Effector

{ Nooe_Emtestor] [ rode Errector]

Figure 30: PICML Model of RACE

Problem. Configuration and customization of existing resource manamt frameworks
described in Sectioltl.1 are done via source code, and therefore is tedious andmwoe.
With existing resource management frameworks, incorpmraif new resource manage-
ment algorithms into the resource management frameworkdwaolve reimplementation
of significant portions of the middleware or framework.

Solution. RACE’s novelty stems from its combination of design-timeNIlStools and
QoS-enabled component middleware run-time platforms. BA@eusable entities, such
as resource monitors, QoS monitors, implementation ofuregomanagement algorithms,

and effectors, can be configured to incorporate a range sfiegicontrol algorithms, such

75



as EUCON and HySUCON, as well as future algorithms. The eisnef RACE are
designed and implemented as CCM components, and thereSosbaavn in Figure30,
RACE can be configured using DSML tools such as PICML. RACKigies a higher level
of abstraction to configure/customize the framework comgbdo other existing resource
management frameworks, which are configured via source code

Since system QoS monitors and effectors tend to be domaaifisp&ACE provides
the capability to “plug-in” domain specific entities. Mokew, as implementation of re-
source management algorithms in RACE are encapsulatedrgmoents, RACE separates

the concerns of resource management algorithms and thdawiaic.

[11.2.0.2 Challenge 2: Domain Specific Representation of Aplication Metadata

Problem. End-to-end applications can be composed either at designdr at runtime. At
design time, CCM based end-to-end applications are condpesiag model-driven tools,
such as PICML,; and at runtime, they can be composed by igeellimission planners like
such as thepreading activation partial order plannéSA-POP) B9. When an applica-
tion is composed using PICML, metadata describing the egiadin is captured in XML
files based onthBackageConf i gur at i on schema defined by the Object Management
Group’s Deployment and Configuration specificatiéd][ When applications are gener-
ated during runtime by SA-POP, metadata is captured in anemory structure defined
by the planner.

Solution: Domain-specific customization and configuratiorof RACE’s adapters. Dur-

ing design time, RACE can be configured using PICML and aput Adapt er appro-
priate for the domain/system can be selected. For exangplaahage a system in which
applications are constructed at design-time using PICMACR can be configured with the
Pl CMLI nput Adapt er ; and to manage a system in which applications are constfucte

at runtime using SA-POP, RACE can be configured withSAROPI nput Adapt er . As

76



Application  }—

Input
Adapter

Central

[Comp 1}D—D{Comp 2

Monitor
Utilization
Component
Allocator Node CIAO/DANCE
Mapping
(Comp 1) (Comp 3) (Comp 5) (Comp 7)
(Comp 2) (Comp 4) (Comp 6) (Comp 8)

Comp 3
Comp 7 Comp 8]
Comp 5 Comp 6

QoSRequirement

E-2-E

entities of theE- 2- E IDL structure are shown in Figui@2.

Figure 31: Resource Allocation to Application Components Using RACE

Property

+name : string(idl)
+value : any(idl)

+MonitorID : string(idl)

+UUID : string(idl)
+name : string(idl)
+priority : long(idl)

ResourceRequirement

+type : string(idl)
+amount : double(idl)

Component

+node : string(idl)
+name : string(idl)

+name : string(idl)
+value : any(idl)

Property

+name : string(idl)
+value : any(idl)

Figure 32: Main Entities of RACE’s E-2-E IDL Structure

77

shown in Figure3l, thel nput Adapt er parses the metadata that describes the applica-

tion into an in-memory end-to-end{ 2- E) IDL structure that is internal to RACE. Key

The E- 2- E IDL structure populated by thenput Adapt er contains information
regarding the application, including (1) components thakenup the application and their
resource requirement(s), (2) interconnections betwesaodmponents, (3) application QoS

properties (such relative priority) and QoS requirem@r{gsch as end-to-end delay), and




(4) mapping components onto domain nodes. The mapping gbenents onto nodes need
not be specified in the metadata that describes the applicatiich is given to RACE. If
an mapping is specified, it is honored by RACE; if not, a magsrdetermined at runtime

by RACE'sAl | ocat or s.

[11.2.0.3 Challenge 3: Efficient Monitoring of System Resouce Utilization and Ap-
plication QoS
Problem. In open DRE systems, input workload, application QoS, anlization and
availability of system resource are subject to dynamicatemns. In order to ensure ap-
plication QoS requirements are met, as well as utilizatibsystem resources are within
specified bounds, application QoS and utilization/avditsttof system resources are to be
monitored periodically. The key challenge lies in designamd implementing a resource
and QoS monitoring architecture that scales well as the eamiapplications and nodes
in the system increase.
Solution: Hierarchical QoS and resource monitoring architecture. RACE’s monitor-
ing framework is composed of tligent r al Moni t or ,Node Moni t or s, Resour ce
Moni t or s, andQoS Moni t or s. These components track resource utilization by, and
QoS of, application components. As shown in FigBB RACE’s Moni t or s are struc-
tured in the following hierarchical fashion. Resour ce Mbni t or collects resource
utilization metrics of a specific resource, such as CPU or argnA QoS Moni t or col-
lects specific QoS metrics of an application, such as erahitblatency or throughput. A
Node Moni t or tracks the QoS of all the applications running on a node akagethe
resource utilization of that node. Finally,Gentral Mbnitor tracks the QoS of all
the applications running the entire system, which capttiresystem QoS, as well as the
resource utilization of the entire system, which captunesstystem resource utilization.
Resour ce Mboni t ors use the operating system facilities, such @s oc file sys-

tem inLi nux/ Uni x operating systems and tlsgstem registryn W ndows operating

78



Central
Monitor

System Resource Utilization & QoS

Node Resource E-2-E QoS
‘DNode Monitor Monitor Q_OApplicationOMonitor

Figure 33: Architecture of Monitoring Framework

systems, to collect resource utilization metrics of thale1oAs the resource monitors are
implemented as shared libraries that can be loaded at ren®®ACE can be configured
with new/domain-specific resource monitors without makamy modifications to other
entities of RACEQoS Moni t or s are implemented as software modules that collect end-
to-end latency and throughput metrics of an applicationamedlynamically installed into

a running system using DylInsi§]. This approach ensure rebuilding, re-implementation,
or re-starting of already running application componestsat required. Moreover, with
this approachQoS Moni t or s can be turned on or off on demand at runtime.

The primary metric that we use to measure the performancerainonitoring frame-
work is monitoring delay which is defined as the time taken to obtain a snapshot of the
entire system in terms of resource utilization and QoS. Toimmize the monitoring de-
lay and ensure that RACE’s monitoring architecture scateth@ number of applications
and nodes in the system increase, the RACE’s monitoringtanthre is structured in a

hierarchical fashion. We validate this claim in SectibrB8.

79



111.2.0.4 Challenge 4: Resource Allocation

Problem. Applications executing in open DRE systems are resourc&tsanand require
multiple resources such as memory, CPU, and network baridwia open DRE systems,
resources allocation cannot be performed during designdsisystem resource availability
may be time variant. Moreover, input workload affects th&aattion of system resources
by already executing applications. Therefore, the keylehgk lies in allocating various
systems resources to application components in a timefydias
Solution:On-line Resource allocation.RACE’s Al | ocat or s implement resource al-
location algorithms and allocate various domain resoufsash as CPU, memory, and
network bandwidth) to application components by deterngrthe mapping of compo-
nents onto nodes in the system domain. For certain apmitgstatic mapping between
components and nodes may be specified at design-time byrsy&eelopers. To honor
these static mappings, RACE therefore providstatic allocatorthat ensures components
are allocated to nodes in accordance with the static magpmagified in the application’s
metadata. If no static mapping is specified, howedgnamic allocatorgdetermine the
component to node mapping at runtime based on resourcereatgnts of the compo-
nents and current resource availability on the various sadéhe domain. As shown in
Figure31, input toAl | ocat or s include theE- 2- E IDL structure corresponding to the
application and the current utilization of system resosirce

The current version of RACE provides the followiAg| ocat or s: (1) a single di-
mension bin-packerdP] that makes allocation decisions based on either CPU, mgmor
or network-bandwidth requirements and availability, (2halti-dimensional bin-packer —
partitioned breadth first decreasing alloca®f][— that makes allocation decisions based
on CPU, memory, and network-bandwidth requirements anitbéiy, and (3) a static al-

locator. Metadata is associated with each allocator antlicepits typei(e., static, single

80



dimension bin-packing, or multi-dimensional bin-packeand associated resource over-
head (such as CPU and memory utilization). SiAté ocat or s themselves are CCM

components, RACE can be configured with n&w ocat or s by using PICML.

[11.2.0.5 Challenge 5: Accidental Complexities in Configuing Platform-specific QoS

Parameters

Problem. As described in Sectioh/.2.2, real-time QoS configuration of the underlying
component middleware, operating system, and network taffle@ QoS of applications
executing in open DRE systems. Since these configuratiaplatform-specific, it is
tedious and error-prone for system developers or SA-POPécify them in isolation.
Solution: Automate configuration of platform-specific parameters. As shown in Fig-
ure34, RACE’sConf i gur at or s determine values for various low-level platform-specific
QoS parameters, such as middleware, operating system,edwdrik settings for an ap-
plication based on its QoS characteristics and requiresn&nth as relative importance

and end-to-end delay. For example, Meddl ewar eConf i gur at or configures com-

Configurator
_- a~s -
- | >Sa
-~ | RN -
- ~
A~ + S

Middleware (1] Network
Configurator Configurator Configurator

Middleware oS Network
Configuration Configuration Configuration
CIAO/DANCE oS Network

Figure 34: QoS Parameter Configuration with RACE

ponent Lightweight CCM policies, such as threading polmyprity model, and request

81



processing policy based on the class of the applicaiimpdrtantand best-effort. The
Oper at i ngSyst entConf i gur at or configures operating system parameters, such as
the priorities of theComponent Serverthat host the components based on Rate Mono-
tonic Scheduling (RMS)42] or based on criticality (relative importance) of the apph
tion. Likewise, theNet wor kConf i gur at or configures network parameters, such as
di f f ser v code-points of the component interconnections. Like oémities of RACE,
Conf i gur at or s are implemented as CCM components, so new configuratorsean b

plugged into RACE by configuring RACE at design-time usinGHL.

[11.2.0.6 Challenge 6: Computation of System Adaptation Deisions

Problem. In open DRE systems, resource utilization of applicatioightrbe significantly
different than their estimated values and availability pyétem resources may be time-
variant. Moreover, for applications executing in thesdeys, the relation between input
workload, resource utilization, and QoS cannot be chariaetba priori. Therefore, in
order to ensure that QoS requirements of applications ateand utilization system re-
sources are within the specified bounds, the system mustlbet@bhdaptto dynamic
changes, such as variations in operational conditionstiwprkload, and/or resource avail-
ability.

Solution: Use of Control-theoretic adaptive resource mangement algorithms. RACE’s
Cont r ol | er s implement various Control-theoretic adaptive resourceagament algo-
rithms such as EUCONGR], DEUCON [83], HySUCON [1], and FMUF [L8], thereby
enabling open DRE systems to adapt to changing operatiamabxt and variations in
resource availability and/or demand. Based on the contgarighm they implement,
Cont r ol | er s modify configurable system parameters, such as executienaad mode
of operation of the application, real-time configuratiottisgs — operating system priori-
ties of component servetthat host the components — and netwdik ser v code-points

of the component interconnections. As shown in FiggBgnput to the controllers include

82



current resource utilization and current QoS. SiGoat r ol | er s are implemented as

A
System Wide Per Node
Controller Adaptation Central Effector System A O D . I\cnﬁ:::glr
y Decisions Parameters A

System Resource Utilization & QoS

E-2-E
DNode () Effector DNode Monitor Q_OApplication

Figure 35: RACE’s Feedback Control Loop

CCM components RACE can be configured with @ant r ol | er s by using PICML.

[11.2.0.7 Challenge 7: Efficient Execution of System Adaptéon Decisions

Problem. Although control-theoretic adaptive resource managerakgyurithms compute
system adaptation decisions, one of the challenges we iabedding RACE is the design
and implementation adffectors- entities that modify system parameters in order to achieve
the controller recommended system adaptation. The keyeciga lies in designing and
implementing the effector architecture that scales wethasnumber of applications and
nodes in the system increase.

Solution: Hierarchical effector architecture. Effectors modify application parameters,
including resources allocated to components, executit@s i@ applications, and system
parameters including OS, middleware, and network QoShsgidtr components, to achieve
the controller recommended adaptation. As shown in Fig6y&f f ect or s are designed
hierarchically. TheCentral Effector first computes the values of various system
parameters for all the nodes in the domain to achieveCtdet r ol | er recommended

adaptation. The computed values of system parametersdbrreae are then propagated

83



to Ef f ect or s located on each node, which then modify system parametéts nbde
accordingly.

The primary metric that is used to measure the performaneenebnitoring effectors
is actuation delaywhich is defined as the time taken to execute controllermecended
adaptation throughout the system. To minimize the actnateday and ensure that RACE
scales as the number of applications and nodes in the systeease, the RACE'’s effectors
are structured in a hierarchical fashion. We validate tlagrcin Sectionlll.3.

Since the elements of RACE are developed as CCM componeAGE:Rself can be
configured using model-driven tools, such as PICML. Moreonew and/or domain spe-
cific entities such dsnput Adapt ers, Al l ocators, Control |l ers, Ef fect ors,
Confi gurators, QS Mnitors, andResource Mni tors, can be plugged di-
rectly into RACE without modifying RACE’s existing archdtire.

[11.3 Empirical Results and Analysis
This section presents the design and results of experirtfeattevaluate the scalability
of RACE. These experiments validate our claims in Sedfiica that RACE is an scalable

adaptive resource management framework.

[11.3.1 Hardware and Software Testbed

Our experiments were performed on the I1SISLab testbedated at Vanderbilt Uni-
versity. The hardware configuration consists of six nodesleardware configuration of
each nodes was the following: 2.8 GHz Intel Xeon dual pramedsGB physical memory,
1GHz Ethernet network interface, and 40 GB hard drive. Théh@eFedora Core release

4 OS with real-time preemption patché&f] was used for all the nodes.

http://ww. dre. vanderbi |l t.edu/l Sl Sl ab

84


http://www.dre.vanderbilt.edu/ISISlab

Our experiments also used CIAO/DANCE 0.5.10, which is owerepource QoS en-
abled component middleware that implements the OMG LiglgiateCCM [57] and De-
ployment and Configuratior6]l] specifications. RACE and our applications used to mea-
sure the scalability of RACE are built upon CIAO/DANCE.

Table11 summarizes the number of lines of C++ code of various estitieour mid-

dleware, RACE, and our test applications, which were measusing SLOCCouft

Entity Total Lines of Source Code
Test Applications 19,875
RACE 157,253
CIAO/DANCE 511,378

Table 11: Lines of Source Code for Various System Elements

[11.3.2 Evaluation of RACE’s Scalability

Sectionslll.2.0.3 and|ll.2.0.7 claimed that the hierarchical design of RACE’s moni-
tors and effectors enables RACE to scale as the number atapphs and nodes in the
system grows. We validated this claim by studying the immddhcreasing number of
nodes and applications on RACE’s monitoring delay and sictnialelay when RACE’s
monitors and effectors are configured hierarchically ana-imerarchically. As described
in Sectiondll.2.0.3 andlll.2.0.7, monitoring delayis defined as the time taken to obtain a
snapshot of the entire system in terms of resource utitinaind QoS andctuation delay
is defined as the time taken to execute controller recomnteadaptation throughout the
system.

To measure the monitoring and actuation delays, we instntgdeRACE’sCent r al
Moni t or andCent ral Eff ect or, respectively, with ACE High Resolution Timegq].
The timer in theCentral Moni t or measured the time duration from when requests

were sent to individudNode Moni t or s to the time instant when replies from &lbde

*htt p: / / ww. dwheel er. conml sl occount

85


http://www.dwheeler.com/sloccount

Moni t or s were received and the data (resource utilization and agtit QoS) were
assembled to obtain a snapshot of the entire system. Siyntlae timer in theCent r al

Ef f ect or measured the time duration from when system adaptatiosidesiwere re-
ceived from theCont r ol | er to the time instant when acknowledgment indicating suc-
cessful execution of node level adaption from individ&af ect or s (located on each

node) were received.

[11.3.2.1 Experiment 1: Constant Number of Application and Varying Number of

Nodes

This experiment studied the impact of varying number of sddehe system domain
on RACE’s monitoring and actuation delay. We present theltesbtained from running
the experiment with a constant of five applications, eachpmsead of six components
(plasma-sensor/camera-sensor, analysis, filter, asaly@inpression, communication, and
ground), and a varying number of nodes.

Experiment configuration. We varied the number of nodes in the system from one to
six. A total of 30 application components were evenly ditted among the nodes in
the system. The experiment was composed of two scenaripkiefhrchical and (2) non-
hierarchical configuration of RACE’s monitors and effestdeach scenario was comprised
of seven runs, and number of nodes in the system during eaclas constadt During
each run, monitoring delay and actuation delay was colleater 50,000 iterations.
Analysis of results. Figures36 and 37 compare the impact of increasing the number of
nodes in the system on RACE’s monitoring and actuation detspectively, under the
two scenarios. Figure36 and37 show that monitoring and actuation delays are signifi-
cantly lower in the hierarchical configuration of RACE’s nitoins and effectors compared
to the non-hierarchical configuration. Moreover, as the Ipeinof nodes in the system

increases, the increase in monitoring and actuation delaysignificantly ice., 18% and

3As we varied the number of nodes from one to six each scenadaliotal of seven runs.

86



3500

3000 -

2500 -

2000 -

Time (micro sec)

1500

1000 -

500 -

1 2 3 4 5 6
No of Nodes

m Hierarchical = Non Hierarchical

Figure 36: Impact of Increase in Number of Nodes on Monitoring Delay

29%, respectively) lower in the hierarchical configurattompared to the non-hierarchical
configuration. This result occurs because individual nodeitors and effectors execute
in parallel when monitors and effectors are structureddnatrically, thereby significantly

reducing monitoring and actuation delay, respectively.

2500

2000 -

1500 -
1000 -
500 '
BEREEN
1 2 3 4 5 6

No of Nodes

Time (micro sec)

M Hierarchical = Non Hierarchical

Figure 37: Impact of Increase in Number of Nodes on Actuation Delay

87



Figures36 and37 show the impact on monitoring and actuation delay when the-mo
itors and effectors are structured hierarchically and tmlmer of nodes in the system in-
crease. Although individual monitors and effectors exeauparallel, resource data aggre-
gation and computation of per-node adaptation decisiansemtralized by th€ent r al
Moni t or andCent ral Effector, respectively. The results show that this configu-
ration yields a marginal increase in the monitoring and aabn delay (.e., 6% and 9%,
respectively) as the number of nodes in the system increases

Figures36 and 37 show that when there is only one node in the system, the perfor
mance of the hierarchical configuration of RACE’s monitansl @ffectors is worse than
the non-hierarchical configuration. This result measunesoverhead associated with the
hierarchical configuration. As shown in Figurgdé and 37, however, as the number of
nodes in the system increase, the benefit of the hieraratacdiguration outweighs this

overhead.

[11.3.2.2 Experiment 2: Constant Number of Nodes and Varyirg Number of Appli-

cations

This experiment studied the impact of varying the numberppliaations on RACE’s
monitoring and actuation delay. We now present the restitailmed from running the
experiment with six nodes in the system and varying numbeapplications (from one
to five), each composed of six components (plasma-senswefeasensor, analysis, filter,
analysis, compression, communication, and ground).

Experiment configuration. We varied the number of applications in the system from one
to five. Once again, the application components were evestyiltited among the six
nodes in the system. This experiment was composed of twasosn(1) hierarchical and
(2) non-hierarchical configuration of RACE’s monitors arfttetors. Each scenario was
comprised of five runs, with the number of applications useekich run held constant. As

we varied the number of applications from one to five, for esdmnario we had a total of

88



7000 -
6000 -

5000 —

2000 -
1000 -
0 - T T T T 1
1 2 3 4 5

No. of Applications

IS
o
S
S

Time (micro sec)

w
o
o
o

m Hierarchical = Non Hierarchical

Figure 38: Impact of Increase in Number of Application on Monitoring Delay

five runs. During each run, monitoring delay and actuatidayde&as collected over 50,000
iterations.
Analysis of results. Figures38 and39 compare the impact on increase in number of appli-
cations on RACE’s monitoring and actuation delay, respelti under the two scenarios.
Figures38 and 39 show that monitoring and actuation delays are significaother un-
der the hierarchical configuration of RACE’s monitors anfik@brs compared with the
non-hierarchical configuration. These figures also showthder the hierarchical config-
uration, there is a marginal increase in the monitoringyalad negligible increase in the
actuation delay as the number of applications in the systenease.

These results show that RACE scales well with as the numbeydds and applications
in the system increase. The results also show that RACElalstity is primarily due to
the hierarchical design of RACE’s monitors and effectdrere¢ by validating our claims in

Sectiondll.2.0.3andlll.2.0.7.

111.3.3 Summary of Experimental Analysis

This section evaluated the performance and scalabilitthefRACE framework by

studying the impact of increase in number of nodes and agits in the system on

89



3500 -

3000 -

2500 -

2000 -

1500 -

Time (micro sec;

1000 -

- J I I I I
0 - T T T T 1
1 2 3 4 5

No. of Applications

W Hierarchical = Non Hierarchical

Figure 39: Impact of Increase in Number of Application on Actuation Delay

RACE’s monitoring delay and actuation delay. Our resulssthat RACE is a scalable
adaptive resource management framework. From analyzangesults in Sectionll.3.2

we observe that RACE scales well as the number of nodes aridatpms in the system
increases. This scalability stems from RACE’s the hienaalhdesign of monitors and

effectors, which validates our claims in Sectioh<.0.3 andll1.2.0.7.

1.4  Summary

This chapter described tHeesource Allocation and Control EngitRACE), which
is our adaptive resource management framework that prevadd-to-end adaptation and
resource management for open DRE systems built atop Qd3eeheomponent middle-
ware. Open DRE systems built using RACE benefit from the adggms of component-
based middleware, as well as QoS assurances provided binvadasource management
algorithms. We demonstrated how RACE helped resolve kegures and QoS man-
agement challenges of open DRE systems. As the elemente RRACE framework
are CCM components, RACE itself can be configured using maddetn tools, such as

PICML [8]. Moreover, newl nput Adapt er s, Al | ocat or s, Confi gur at ors, and

90



Contr ol | er s can be plugged into RACE using PICML without modifying it€laitec-
ture. RACE can also be used to deploy, allocate resourcesidonanage performance of,

applications that are composed at design-time and runtime.

91



CHAPTER IV

CASE STUDY: MAGNETOSPHERIC MULTI-SCALE MISSION DRE SYSTEM

This chapter presents an overview of NASA's Magnetosphdtilti-scale (MMS) mis-
sion [23] as a case study. We describe the resource and QoS managdrakenges in-
volved in developing the MMS mission using QoS-enabled comept middleware, how
we applied RACE to addresses these challenges, and we pagsempirical evaluation of

the performance of the system when it was operated with RACE.

IV.1 MMS Mission System Overview

NASA's MMS mission system is a representative open DRE systensisting of sev-
eral interacting subsystems (both in-flight and statiopaiyh a variety of complex QoS
requirements. As shown in Figud®, the MMS mission consists of a constellation of
five spacecrafts that maintain a specific formation whiletor over a region of scien-
tific interest. This constellation collects science datdgmeing to the earth’s plasma and
magnetic activities while in orbit and send it to a groundistafor further processing. In
the MMS mission spacecrafts, availability of resource sastprocessing power (CPU),
storage, network bandwidth, and power (battery) are lidréiled subjected to runtime vari-
ations. Moreover, resource utilization by, and input woekd of, applications that execute
in this system can not be accurately character&pdori. These properties make the MMS
mission system an open DRE system.

Applications executing in this system can be classified adagee, navigation, and
control (GNC) applications and science applications. ThN&EC@pplications are responsi-
ble for maintaining the spacecraft within the specified orbhe science applications are
responsible for collecting science-data, compressingsérthg the data, and transmitting

the stored data to the ground station for further processing

92



v %

‘ O Science-Applications [ ]  GNC-Applications

Figure 40: MMS Mission System

As shown in Figure40, GNC applications are localized to a single spacecraft- Sci
ence applications tend to span the entire spacecraft diatiste, i.e., all spacecrafts in the
constellation have to coordinate with each other to achikgegoals of the science mis-
sion. GNC applications are considetteald real-timeapplicationsite., the penalty of not
meeting QoS requirement(s) of these applications is vagly, loften fatal to the mission),
where as science applications are consideoétreal-timeapplicationsi(e., the penalty of
not meeting QoS requirement(s) of these applications is, fugt not fatal to the mission).

Science applications operate in three modé®v surveyfast surveyandburstmode.
Science applications switch from one mode to another irti@ato one or morevents of
interest For example, for a science application that monitors ththisgplasma activity,
theslowsurvey mode is entered outside the regions of scientificéste and enables only
a minimal set of data acquisition (primarily for health mtoning). Thefastsurvey mode is
entered when the spacecrafts are within one or more regfontecest, which enables data
acquisition for all payload sensors at a moderate rate.amph activity is detected while

in fast survey mode, the application entbtgstmode, which results in data collection at

93



the highest data rates. Resource utilization by, and imapo# of, a science application is

determined by its mode of operation, which is summarizeddiyél12.

Mode Relative Importance Resource Consumption
Slow survey Low Low
Fast survey Medium Medium

Burst High High

Table 12: Characteristics of Science Application

Each spacecraft consists of an on-board intelligent mgsi@nner, such as ttspread-
ing activation partial order plannefSA-POP) B9] that decomposes overall mission goal(s)
into GNC and science applications that can be executed camtly. SA-POP employs
decision-theoretic methods and other Al schemes (sucteearbhical task decomposition)
to decompose mission goals into navigation, control, datheging, and data processing
applications. In addition to initial generation of GNC araiesice applications, SA-POP
incrementally generates new applications in responseangihg mission goals and/or de-
graded performance reported by on-board mission monitors.

We have developed a prototype implementation of the MMS ionissystems in con-
junction with our colleagues at Lockheed Martin Advanced&aced Technology Center,
Palo Alto, California. In our prototype implementation, w&ed theComponent-Integrated
ACE ORB(CIAO) [81] and Deployment and Configuration EngifPANCE) [27] as the
QoS-enabled component middleware platform. Each spdtemsas SA-POP as its on-

board intelligent mission planner.

IV.2 Adaptive Resource Management Requirements of the MMS Nésion System

As discussed in Sectidihi.1.2, the use of QoS-enabled component middleware to de-
velop open DRE systems, such as the NASA MMS mission, carifisigmtly improve the

design, development, evolution, and maintenance of thesteras. However, when such

94



systems are built in the absence of a adaptive resource \frarkg, several key require-
ments remain unresolved. To motivate the need for RACE,sthision presents the key
resource and QoS management requirements that we addvesisetbuilding our proto-

type of the MMS mission DRE system.

IV.2.1 Requirement 1. Resource Allocation To Applications

Applications generated by SA-POP aesource sensitiva.e,, QoS is affected sig-
nificantly if an application does not receive the requiredJGihe and network bandwidth
within bounded delay. Moreover, in open DRE systems likeMivS mission, input work-
load affects utilization of system resources and QoS ofiegipbns. Utilization of system
resources and QoS of applications may therefore vary stgnifly from their estimated
values. Due to the operating conditions for open DRE systegstem resource availabil-
ity, such as available network bandwidth, may also be tinmama

A resource management framework therefore needs to (1)tamaiie current uti-
lization of system resources, (2) allocate resources irmalyi fashion to applications
such that their resource requirements are met using res@liacation algorithms such
as PBFD P4], and (3) support multiple resource allocation strateginse CPU and mem-
ory utilization overhead might be associated with impletagons of resource allocation
algorithms themselves and select the appropriate onef@ndéeng on properties of the
application and the overheads associated with variouseimghtations. Sectioh/.3.1
describes how RACE performs on-line resource allocatioapiplication components to

addresses this requirement.

95



IV.2.2 Requirement 2: Configuring Platform-specific QoS Paameters

The QoS experienced by applications depend on variousoptat§pecific real-time
QoS configurations including (XpoS configuration of the QoS-enabled component mid-
dleware such as priority model, threading model, and request ggieg policy, (2)oper-
ating system QoS configuratissuch as real-time priorities of the process(es) and tlifs¢ad
that host and execute within the components respectivetl/(3) networks QoS configu-
rations such adi f f ser v code-points of the component interconnections. Sinceethes
configurations are platform-specific, it is tedious and reprne for system developers or
SA-POP to specify them in isolation.

An adaptive resource management framework therefore riequevide abstractions
that shield developers and/or SA-POP from low-level platfgpecific details and define
higher-level QoS specification models. System developatfaintelligent mission plan-
ners should be able to specify QoS characteristics of thicagipn such as QoS require-
ments and relative importance, and the adaptive resourcageanent framework should
then configure the platform-specific parameters accorgdir@gctionlV.3.2 describes how
RACE provides higher a level abstractions and shield sysi@ralopers and SA-POP from

low-level platform-specific details to addresses this negment.

IV.2.3 Requirement 3: Enabling Dynamic System Adaptation ad Ensuring QoS
Requirements are Met

When applications are deployed and initialized, resouacesallocated to application
components based on testimatedesource utilization and estimated/current availability
of system resources. In open DRE systems, howactualresource utilization of applica-
tions might be significantly different than their estimatedues, as well as availability of
system resources vary dynamically. Moreover, for appbecatexecuting in these systems,
the relation between input workload, resource utilizateomd QoS cannot be characterized

a priori.

96



An adaptive resource management framework therefore neguevide monitors that
track system resource utilization, as well as QoS of apfiiing, at run-time. Although
some QoS properties (such as accuracy, precision, andtfidélthe produced output)
are application-specific, certain QoS (sucheasl-to-end latencand throughput) can be
tracked by the framework transparently to the applicatiblowever, customization and
configuration of the framework with domain specific monit@yeth platform specific re-
source monitors and application specific QoS monitors) lshbe possible. In addition,
the framework needs to enable the systenadaptto dynamic changes, such as varia-
tions in operational conditions, input workload, and/@aaerce availability. Sectiolv.3.3
demonstrates how RACE performs system adaptation andenQoS requirements of

applications are met to address this requirement.

IV.3 Addressing MMS Mission Requirements Using RACE
We now describe how RACE was applied to our MMS mission casgystrom Sec-
tion IV.1 and show how it addressed key resource allocation, QoS cwafign, and adap-

tive resource management requirements that we identifiSeationlV.1.

IV.3.1 Addressing Requirement 1: Resource Allocation to Aplications

RACE’s| nput Adapt er parses the metadata that describes the application taobtai
the resource requirement(s) of components that make upphiecation and populates
the E- 2- E IDL structure. TheCentral Monitor obtains system resource utiliza-
tion/availability information for RACE'sResour ce Moni t or s, and using this infor-
mation along with thestimatedesource requirement of application components captured
in the E- 2- E structure, thédl | ocat or s map components onto nodes in the system do-
main based on runtime resource availability.

RACE's| nput Adapt er ,Central Mbnitor,andAl | ocat or s coordinate with

one another to allocate resources to applications exerutiopen DRE systems, thereby

97



addressing the resource allocation requirement for opeB By&tems identified in Sec-

tionIVv.2.1.

IV.3.2 Addressing Requirement 2: Configuring Platform-speific QoS Parameters

RACE shields application developers and SA-POP from lovell@latform-specific
details and defines a higher-level QoS specification modgtes developers and SA-
POP specify only QoS characteristics of the applicatiochsas QoS requirements and
relative importance, and RACE®onf i gur at or s automatically configures platform-
specific parameters appropriately.

For example, consider two science applications — one execut fast survey mode
and one executing in slow survey mode. For these applicationddleware parame-
ters configured by thé ddl ewar e Confi gur at or includes: (1) CORBA end-to-
end priority, which is configured based on execution modst/§bow survey) and appli-
cation period/deadline, (2) CORBA priority propagationdab(CLIENT_PROPAGATED
/| SERVER_DECLARED), which is configured based on the appbosstructure and inter-
connection, and (3) threading model (single threaded athpool / thread-pool with lanes),
which is configured based on number of concurrent peer-caeis connected to a com-
ponent. TheM ddl ewar e Confi gur at or derives configuration for such low level
platform-specific parameters from application end-to-gtndcture and QoS requirements.

RACE’s Conf i gur at or s provides higher level abstractions and shield system de-
velopers and SA-POP from low-level platform-specific detaihus addressing the re-
quirements associated with configuring platform-specib&@arameters identified in Sec-

tionIV.2.2.

98



T O B

System Wide Per Node
Controller Adaptation Central Effector System - Q D > ﬁz:::‘g:_
y Decisions Parameters

1+ O B

System Resource Utilization & QoS

E-2-E
DNode () Effector DNode Monitor Q_OApplication

Figure 41: RACE’s Feedback Control Loop

IV.3.3 Addressing Requirement 3: Monitoring End-to-end Q& and Ensuring QoS

Requirements are Met

When resources are allocated to components at design-ginsgdtem designers us-
ing PICML, i.e. mapping of application components to nodes in the domaispeeified,
these operations are performed based on estimated readgilimaion of applications and
estimated availability of system resources. Allocatiogoathms supported by RACE’s
Al | ocat or s allocate resources to components based on current syssenrce utiliza-
tion and component’s estimated resource requirementspén ®RE systems, however,
there is often no accuratepriori knowledge of input workload, the relationship between
input workload and resource requirements of an applicatéind system resource availabil-
ity.

To address this requirement, RACE’s control architectunpleys a feedback loop to
manage system resource and application QoS and ensures$IeQuirements of appli-
cations are met at all times and (2) system stability by naanirig utilization of system
resources below their specified utilization set-points A control architecture features
a feedback loop that consists of three main componévttsti t or s, Control | er s,

andEf f ect or s, as shown in Figurdl.

99



Moni t or s are associated with system resources and QoS of the appieand pe-
riodically update theCont r ol | er with the current resource utilization and QoS of ap-
plications currently running in the system. TBent r ol | er implements a particular
control algorithm such as EUCOINZ], DEUCON [83], HySUCON @1], and FMUF [Lg],
and computes the adaptations decisions for each (or a seippfication(s) to achieve
the desired system resource utilization and (¥fS.ect or s modify system parameters,
which include resource allocation to components, exeoutites of applications, and OS/-
middleware/network QoS setting of components, to achibeeecbntroller recommended
adaptation.

As shown in Figuré1l, RACE’s monitoring frameworkCont r ol | er s, andef f ect or s
coordinate with one another and the aforementioned entifidRACE to ensure (1) QoS
requirements of applications are met and (2) utilizatiosystem resources are maintained
within the specified utilization set-point set-point($)eteby addressing the requirements
associated with runtime end-to-end QoS management idhiirfiSectiorlV.2.3. We em-

pirically validate this in Sectioifv.4.

IV.4 Empirical Results and Analysis
This section presents the design and results of experirttattsvaluate the adaptive re-
source management capabilities of RACE in the context oMMIS system. This section
also validates our claims in Sectitvi3 that RACE performs effective end-to-end adapta-
tion and yield a predictable and scalable DRE system undgingaoperating conditions

and input workload.

IV.4.1 Hardware and Software Testbed

Our experiments were performed on the I1SISLab testaeManderbilt University. The

hardware configuration consists of six nodes, five of whi¢adas spacecrafts and one that

Iwww. dre. vanderbil t. edu/ 1 Sl Sl ab

100


www.dre.vanderbilt.edu/ISISlab

acted as a ground station. The hardware configuration di@lhbdes was a 2.8 GHz Intel
Xeon dual processor, 1 GB physical memory, 1GHz Ethernetar&tinterface, and 40 GB
hard drive. The Redhat Fedora Core release 4 OS with realgi@emption patche56|
was used for all the nodes.

Our experiments also used CIAO/DANCE 0.5.10, which is owermspource QoS en-
abled component middleware that implements the OMG LiglgieCCM [57] and De-
ployment and Configuratio®[l] specifications. RACE and our DRE system case study are

built upon CIAO/DANCE.

IV.4.2 MMS DRE System Implementation

Science applications executing atop our MMS DRE system amgposed of the fol-

lowing components:

» Plasma sensor componentwhich manages and controls the plasma sensor on the

spacecraft, collects metrics corresponding to the egotaEma activity.

» Camera sensor componentwhich manages and controls the high-fidelity camera

on the spacecraft and captures images of one or more stdetiatisns.

* Filter component, which processes the data from the sensor components toveemo

any extraneous noise in the collected data/image.

» Analysis component which processes the collected data to determine if theidata
of interest or not. If the data is of interest, the data is caeaped and transmitted to

the ground station.

» Compression component which uses loss-less compression algorithms to com-

presses the collected data.

« Communication component which transmits the compressed data to the ground

station periodically.

101



» Ground component which received the compressed data from the spacecrafts an

stores it for further processing.

Estimated execution times for these components on themystst-bed is shown in Ta-
ble 13. All these components—except for the ground component-etdreon the space-
crafts? Table 14 summarizes the number of lines of C++ code of various estitieour

middleware, RACE, and our prototype implementation of thMIMDRE system case

study, which were measured using SLOCCd8unt

Component | Estimated Execution Time (msecg)
Plasma sensor 35
Camera sensol 40
Ground 50
Filter 55
Analysis 65
Compression 70
Communication 90

Table 13: Estimated Execution Times for Various Application Components

Entity Total Lines of Source Cod¢
MMS DRE System 19,875
RACE 157,253
CIAO/DANCE 511,378

Table 14: Lines of Source Code for Various System Elements

IV.4.3 Evaluation of RACE’s Adaptive Resource Management @pabilities

We now evaluate the adaptive resource management cajesbdftRACE under two

scenarios: (1) moderate workload, and (2) heavy workloaaplisations executing on our

20ur experiments used component emulations that have the sssuource utilization characteristics as
the original components.
Shtt p: // ww. dwheel er. coml sl occount

102


http://www.dwheeler.com/sloccount

prototype MMS mission DRE system were periodic, with desglkqual to their periods.
In both the scenarios, we use the deadline miss ratio of@fuins as the metric to evaluate
system performance. For every sampling period of RACEst r ol | er , deadline miss
ratio for each application was computed as the ratio of nurobémes the application’s
end-to-end latenc§ was greater than its deadline to the number of times the cijuln

was invoked.

IV.4.3.1 Summary of Evaluated Scheduling Algorithms

We studied the performance of the prototype MMS system uxdeous configura-
tions: (1) a baseline configuration without RACE and stationty assigned to application
components based on Rate Monotonic Scheduling (RM3) [2) a configuration with
RACE’s Maximum Urgency First (MUFConf i gur at or, and (3) a configuration with
RACE’s MUFConf i gur at or and Flexible MUF (FMUF) 18] Cont r ol | er. The goal
of these experiments is not to compare the performance @usadaptive resource man-
agement algorithms, such as EUCOB2];, DEUCON [83], HyYSUCON [1], or FMUF.
Instead, the goal is to demonstrate how RACE can be used tenngnt these algorithms
and there by meet the system adaptation requirements ofl@RErsystems.

A disadvantage of RMS scheduling is that it cannot providégoeance isolation for
higher importance applicationgg]. During system overload caused by dynamic increase
in the workload, applications of higher importance with & leate may miss deadlines.
Likewise, applications with medium/lower importance bighhrates may experience no
missed deadlines.

In contrast, MUF provides performance isolation to appigses of higher importance
by dividing operating system and/or middleware prioriii@® two classesq5]. All com-

ponents belonging to applications of higher importanceassgned to the high-priority

4The end-to-end latency of an application was obtained fré&\@ Rs QoSNbni t or s.

103



class, while all components belonging to applications oflion®/lower importance are as-
signed to the low-priority class. Components within a samerity class are assigned
operating system and/or middleware priorities based oRM¥8 policy. Relative to RMS,
however, MUF may cause priority inversion when an higherangmce application has a
lower rate than medium/lower importance applications. Assalt, MUF may unnecessar-
ily cause an application of medium/lower importance to niissleadline, even when all
tasks are schedulable under RMS.

To address limitations with MUF, RACE’s FMUEont r ol | er provides performance
isolation for applications of higher importance while rethg the deadline misses of ap-
plications of medium/lower importance. While both RMS antdlMassign priorities stat-
ically at deployment time, the FMUEont r ol | er adjusts the priorities of applications
of medium/lower importance dynamically based on perforceafeedback. The FMUF
Cont r ol | er can reassign applications of medium/lower importance ediigh-priority
class when (1) all the applications currently in the higloyity class meet their deadlines
while (2) some applications in the low-priority class missit deadlines. Since the FMUF
Cont r ol | er moves applications of medium/lower importance back to dvepriority
class when the high-priority class experiences deadlirssesiit can effectively deal with
workload variations caused by application arrivals andhglea in application execution

times and invocation rates.

IV.4.3.2 Experiment 1. Moderate Workload

Experiment configuration. The goal of this experiment configuration was to evaluate
RACE’s system adaptation capabilities under a moderat&load. This scenario there-
fore employed two of the five emulated spacecrafts, one @sturound station, and three
periodic applications. One application was initializeceteecute in fast survey mode and
the remaining two were initialized to execute in slow surmeyde. As described in Sec-

tion IV.1, applications executing in fast survey mode have higheative importance and

104



resource consumption than applications executing in slowey mode. Each application
is subjected to an end-to-end deadline equal to its periableI5 summarizes application

periods and the mapping of components/applications ordeso

Application Component Allocation Period Mode
Spacecraft Ground | (msec)
1 2 Station
1 Communication Analysis Ground| 1000 | Fast Survey
Plasma-sensor] Compression
2 Analysis Communication| Ground| 900 | Slow Survey
Camera-sensort Compression
Filter
3 Plasma-sensor] Communication| Ground| 500 | Slow Survey
Camera-sensort Compression
Filter

Table 15: Application Configuration under Moderate Workload

The experiment was conducted over 1,400 seconds, and weatethwariation in op-
erating condition, input workload and a mode change by periftg the following steps.
At time T = Osec¢ we deployed applications one and two. At tifie= 300se¢ the input
workload for all the application were reduced by ten percant at timel = 700secwe
deployed application three. At = 100Gse¢ application three switched mode from slow
survey to fast survey. To emulate this mode change, we isecethe rateife. reduced
the period) of application three by twenty percent. Sinaehegpplication was subjected
to an end-to-end deadline equal to its period, to evaluag#rformance of RACE, we
monitored thedeadline miss ratiof all applications that were deployed.

RACE’s FMUF Cont r ol | er was used for this experiment since the MMS mission
applications described above do not support rate adapta®8CE is a framework, how-
ever, so other adaptation strategies/algorithms, suchy&JBON (1], can be imple-
mented and employed in a similar way. Below, we evaluate sigeall FMUF for end-to-

end adaptation. Since this paper focuses on RACE—and natetsign or evaluation of

105



1 1
0.8 Medium Importance— 08
Applications
£ 06f £ 06f
S S x ¥
r Roplessgee r LR TBSIE
L 04t P £ 04} Medium Importance i L%
= . = Applications |
; ?5;"35 »
0.2+ e
o 7 L L L L L L L L L L
200 400 600 800 1000 1200 600 800 1000 1200
Time (sec) Time (sec)
(a) Baseline (RMS) (b) MUF Configurator

0.8

0.6

Miss Ratio

0.4 Medium Importance gy |mportance
Applications Applications

0.2 mlm &

200 400 600 800 1000 1200
Time (sec)

(c) MUF Configurator + FMUF Controller

Figure 42: Deadline Miss Ratio Under Moderate Workload

individual control algorithms—we use FMUF as an exampleamdnstrate RACE'’s abil-
ity to support the integration of feedback control alganhfor end-to-end adaptation in
DRE systems. RACE’s FMUF controller was configured with tblofving parameters:
sampling period = 10 seconds,= 5, andthreshold = 5%
Analysis of results. We now present the results obtained from running the exmarim
described above on our ISISlab DRE system testbed desdrilfgekctionlV.4.1. We use
deadline miss ratio as the metric to evaluate system pedioceunder varying input work-
loads and operating conditions.

Figures42a 42b, and42cshow the deadline miss ratio of applications when the system

was operated under baseline configuration, with RACE’s MOGRf i gur at or , and with

106



RACE’s MUF Conf i gur at or along with FMUFCont r ol | er, respectively. These
figures show that under all the three configurations, deadtiiss ratio of applications
(1) reduced afl = 300secdue to the decrease in the input work load, (2) increased at
T = 700secdue to the introduction of new application, and (3) furthesreased al =
1,000secdue to the mode change from slow survey mode to fast surveyematiese
results demonstrates the impact of fluctuation in input @t and operating conditions
on system performance.

Figure 42a shows that when the system was operated under the basehfigura-
tion, deadline miss ratio of medium importance applicaigapplications executing in
fast survey mode) were higher than that of low importancdiegipons (applications ex-
ecuting in slow survey mode) due to reasons explained in@ebt.4.3.1 Figures42b
and42c show that when RACE’s MUKEConf i gur at or is used (both individually and
along with FMUFCont r ol | er ), deadline miss ratio of medium importance applications
were nearly zero throughout the course of the experimegurésd2aand42bdemonstrate
that RACE improves QoS of our DRE system significantly by apiing platform-specific
parameters appropriately.

As described in18], the FMUF Cont r ol | er responds to variations in input work-
load and operating conditions (indicated by deadline msislsg dynamically adjusting the
priorities of the low importance applicationse, moving low importance applications
into or out of the high-priority class). Figurd2aand42c demonstrate the impact of the

RACE’sCont r ol | er on system performance.

IV.4.3.3 Experiment 2. Heavy Workload

Experiment configuration. The goal of this experiment configuration was to evaluate
RACE's system adaptation capabilities under a heavy warkloThis scenario therefore
employed all five emulated spacecrafts, one emulated grstatidn, and ten periodic ap-

plications. Four of these applications were initializecek@cute in fast survey mode and

107



the remaining six were initialized to execute in slow surmayde. Tablel6 summarizes

the application periods and the mapping of componentstaians onto nodes.

Application Component Allocation Period Mode
Spacecraft Ground (msec)
1 2 3 4 5 Station
1 Communication Analysis Filter Compression Ground 1000 Fast Survey
Plasma-sensor
2 Camera-sensor Filter Communication | Ground 900 Slow Survey
Compression Analysis
3 Camera-sensor | Plasma-sensor [ Communication Analysis Filter Ground 500 Slow Survey
Compression
4 Communication Filter Plasma-sensor|  Compression Ground 800 Slow Survey
Analysis
5 Communication Camera-sensor Analysis Compression Ground 1200 Slow Survey
Filter
6 Analysis Filter Communication Compression Plasma-sensor | Ground 700 Slow Survey
7 Plasma-sensor Plasma-sensor | Communication Analysis Filter Ground 600 Fast Survey
Compression
8 Communication Plasma-sensor|  Compression Ground 700 Slow Survey
Filter Analysis
9 Communication Camera-sensor Analysis Compression Ground 400 Fast Survey
Filter Plasma-sensor
10 Compression Communication Plasma-sensor | Ground 700 Fast Survey
Filter Analysis

Table 16: Application Configuration under Heavy Workload

The experiment was conducted over 1,400 seconds, and wateththe variation in
operating condition, input workload, and a mode change biypaing the following steps.
At time T = Ose¢ we deployed applications one through six. At tifie= 300se¢ the
input workload for all the application were reduced by tercpat, and at tim& = 700sec
we deployed applications seven through ten. TAt 1,000se¢ applications two through
five switched modes from slow survey to fast survey. To ereullats mode change, we
increased the rate of applications two through five by twerdscent. RACE’s FMUF
controller was configured with the following parametersmpéng period = 10 seconds,
N =5, andthreshold = 5%

Analysis of results. Figure43ashows that when the system was operated under the base-
line configuration, the deadline miss ratio of the mediumoantgnce applications were
again higher than that of the low importance applicationguifes43band43cshow that
when RACE’'s MUFConf i gur at or is used (both individually and along with FMUF
Control | er), deadline miss ratio of medium importance applicationsewearly zero

throughout the course of the experiment. Figu48a and43b demonstrate how RACE

108



1r 1r
0.8+ Medium Importance— 0.8 Medium Importance Low Importance
Applications Applications Applications ¥*
2 2 *
= = | ¥ 5
& 06¢ & 06 T
8 Low In_]poytance 8 ;
= 047 S 04
0.21) 0.2 ¢
0 L L L L L L L 0 L L L L L L
200 400 600 800 1000 1200 200 400 600 800 1000 1200
Time (sec) Time (sec)
(a) Baseline (RMS) (b) MUF Configurator
1 L
0.8 F Medium Importance Low Importance
Applications Applications

Miss Ratio

200 400 600 800 1000 1200
Time (sec)

(c) MUF Configurator + FMUF Controller

Figure 43: Deadline Miss Ratio under Heavy Workload

improves the QoS of our DRE system significantly by configytatform-specific pa-
rameters appropriately. Figurd®2aand 42c demonstrate that RACE improves system
performance (deadline miss ratio) even under heavy wodkloa

These results show that RACE improves system performangetigrming adaptive

management of system resources there by validating oun aleSectionV.3.3.

IV.4.4 Summary of Experimental Analysis

This section evaluated the performance and scalabilityhefRACE framework by
studying the impact of increase in number of nodes and agdfwits in the system on

RACE’s monitoring delay and actuation delay. We also stidiee performance of our

109



prototype MMS DRE system with and without RACE under varyapgerating condition
and input workload. Our results show that RACE is a scalattégtive resource manage-
ment framework and performs effective end-to-end adaptatnd yields a predictable and
high-performance DRE system.

From analyzing the results presented in Secliva.3, we observe that RACE signifi-
cantly improves the performance of our prototype MMS DRE@yseven under varying
input workload and operating conditions, thereby meethmg requirements of building
component-based DRE systems identified in Sedii These benefits result from con-
figuring platform-specific QoS parameters appropriately performing effective end-to-
end adaptation, which were performed by RACE®f i gur at or s andControl | ers,

respectively.

110



CHAPTER V

CASE STUDY: CONFIGURABLE SPACE MISSION SYSTEMS

In this chapter, we first presents an overview of configurapiace mission (CSM)
systems, such as the proposed Fractionated Space Middlipafid uses CSMs as a case
study to showcase the challenges of open DRE systems. Weléiseribe how we applied
RACE to addresses these challenges. We conclude this clgpteesenting an empirical

evaluation of the performance of the system when it was ¢@ensith RACE.

V.1 CSM System Overview

A CSM system consists of several interacting subsystenth (bdlight and stationary)
executing in an open environment. Such systems consistpd@esraft constellation that
maintains a specific formation while orbiting in/over a mybf scientific interest. In con-
trast to conventional space missions that involve a mdmolgatellite, CSMs distribute the
functional and computational capabilities of a converdaiamonolithic spacecraft across
multiple modules, which interact via high-bandwidth, Itatency, wireless links.

A CSM system must operate with a high degree of autonomy,tedgio (1) dynamic
addition and modifications of user-specified mission goajettives; (2) fluctuations in
input workload, application resource utilization, ando@e availability due to variations
in environmental conditions; and (3) complete or partiglslof resources such as com-
putational power and wireless network bandwidth. Moregter input workload of—and
resource utilization by—applications executing in a CSlgteyn cannot be accurately char-
acterizeda priori.

The two primary sets of applications executing in an CSMeaystan be classified
as guidance, navigation, and control (GNC) applicatiors smence applications. GNC

applications are responsible for maintaining the spafesithin the specified formation.

111



Science applications are responsible for collecting s&eatata, processing and analyzing
data, storing or discarding the data, and transmitting tbeed data to ground stations

for further processing. These applications tend to spartiiee spacecraft constellation

because the fractionated nature of the spacecraft requinggh degree of coordination to

achieve mission goals.

GNC applications havéard real-time requirements that manage mission-critical at-
tributes of the spacecraft. These applications therefxegelge on dedicated resources and
cannot countenance any significant adaptation at runtimeorntrast, science applications
are generallygoftreal-time applications that can execute on shared researmkcan often
benefit from runtime adaptation such as fine-tuning of systedior application properties
and parameters.

QoS requirements of science applications can occasioballynsatisfied without com-
promising mission success. Moreover, science applicatiora CSM system are often
periodic, allowing the dynamic modification of their exdoutrates at runtime. Resource
consumption by—and QoS of—these science applicationsiaetlg proportional to their
execution rates,e., a science application executing at a higher rate conerghathigher

value to the overall system Qo0S, but also consumes rescatredsigher rate.

V.2 Challenges Associated with the Autonomous Operation gt CSM System

Developing and validating autonomous, open DRE systend) aga CSM systems,
presents numerous challenges. This section provides axieweof key adaptation chal-

lenges in these systems.

V.2.1 Challenge 1: Dynamic Addition and Modifications of Mission Goals

An operational CSM system can be initialized with a set oflgoalated to the pri-

mary, on-going science objectives. These goals affect eiméiguration of applications

112



deployed on the system resourcegy, computational power, memory, and network band-
width. During normal operation, science objectives colldnge dynamically and mission
goals would be dynamically added and/or modified. In respdasdynamic additions/-
modifications of science goals, a CSM system must (re)poperation to assemble/-
modify one or more end-to-end application®( a set of interacting, appropriately con-
figured application components) to achieve the specifietlgader current environmental
conditions and resource availability. After one or morelmagpions have been assembled,
they will first be allocated system resources and then depliyitialized atop system re-

sources. Sectiow.3.1 describes how we resolved this challenge.

V.2.2 Challenge 2: Adapting to Fluctuations in Input Workload, Application Re-
source Utilization, and Resource Availability

To ensure the stability of open DRE systems, system resaititcaation must be kept
below specified limits, despite fluctuations in resourcelaldity and demand. Significant
under-utilization of system resources is also unacceptabhlever, since this can decrease
system QoS and increase operational cost. A CSM system harsfore reconfigure ap-
plication parameters appropriately for these fluctuat{ert, variations in operational con-
ditions, input workload, and resource availability) to eresthat the utilization of system
resources converge to the specified utilization boundg-ffsmts”). Autonomous opera-
tion of the CSM system therefore requires (1) monitoringwfent utilization of system
resources, (2) (re)planning for mission goals, considgcurrent environmental conditions
and limited resource availability, and (3) timely allocatiof system resources to applica-
tions that are produced as a result of planning. Sed#i8t2 describes how we resolved

this challenge.

113



V.2.3 Challenge 3: Adapting to Complete or Partial Loss of Sgtem Resources

In open and uncertain environments, complete or partia @dssystem resources—
nodes (computational power), network bandwidth, and peweay occur at some point.
The autonomous operation of a CSM system requires it to adagich failures at run-
time, with minimal disruption of the overall mission. Ackirg this adaptation requires
the ability to optimize overall system expected utilitye(j.the sum of expected utilities
of all science applications operating in the system) thihopgoritizing existing science
goals, as well as modifying, removing, and/or redeployioigrsce applications. Conse-
guently, autonomous operation of a CSM system requires ¢hjtaring resource liveness,
(2) prioritizing mission goals, (3) (re)planning for goailsder reduced resource availabil-
ity, and (4) (re)allocating resources to resulting appiaes. SectiorV.3.3 describes how

we resolved this challenge.

V.3 Addressing CSM System Challenges
To address the challenges identified in Sectid?) we developed an integrated plan-
ning and adaptive resource management architecture, \WWAICh combines an intelligent
mission planner39 and RACE. IPAC, enables self-optimization, self-(re)oguaration,
and self-organization in open DRE systems by providingsienttheoretic planning, dy-
namic resource allocation, and runtime system controicesy IPAC integrates a planner,

resource allocator, a controller, and system monitoriaghgwork, as shown in Figueet.

s QoS
Ap!
Application QoS Monitors
Mission I — System
Goals Planner —Applications» Allocator ~‘ Controller - Application Parameters;r Domain
Resource Allocation

P R I{
System Resource Utilization: Me::itlof:

Figure 44: An Integrated Planning, Resource Allocation, and Control (IPAC) Frame -
work for Open DRE Systems

114



As shown in Figuret4, IPAC uses RACE’s resource monitors to track system resourc
utilization and periodically update the planner, allocatnd controller with current re-
source utilization €.g, processor/memory utilization and battery power). RACE&S
monitors tracks system QoS and periodically updates thenplaand RACE’s controller
with QoS values, such as applications’ end-to-end latemclythroughput. The planner
uses its knowledge of the available components’ functicharacteristics to dynamically
assemble applications€., choose and configure appropriate sets of interactingGaijn
components) suitable to current conditions and goalsétilbgs. During this application
assembly, the planner also respects resource constrachtspdimizes for overall system
expected utility.

IPAC uses RACE's allocators to allocate various domainueses (such as CPU, mem-
ory, and network bandwidth) to application components bigmheining the mapping of
components onto nodes in the system domain. After appiicsithave been deployed,
IPAC uses RACE'’s controller to periodically monitor and fituge application/system pa-
rameters/properties, such as execution rate, to achiggeef use of system resources.

We now describe how the capabilities offered by IPAC additessystem management

challenges for open DRE systems identified in Secti@n

V.3.1 Addressing Challenge 1: Dynamic Addition and Modificsion of Mission Goals

When IPAC’s planner receives a mission goal from a user grabtes an application
capable of achieving the provided goal, given current lgoalditions and resource avail-
ability. After the planner assembles an appropriate apptio, RACE’s allocator allocates
resources to application components and employs the ymugrhiddleware to deploy and
configure the application.

After the application is deployed successfully, the plarupdates RACE’s controller
with the application’s metadata including applicatiomsture, mapping of allocation com-

ponents to system resources, and minimum and maximum éxecates. The controller

115



uses this information to dynamically modify system/apgticn parameters (such as execu-
tion rates of applications) to accommodate the new apphicat the system and ensure re-
sources are not over-utilized as a result of this additi@ctiSnV.4.4empirically evaluates
the extent to which IPAC’s planning, resource allocatiamj auntime system adaptation
services can improve system performance in when missiols goadynamically added to

the system or modifications to goals deployed earlier ar@peed.

V.3.2 Addressing Challenge 2: Adapting to Fluctuations in hput Workload and Ap-
plication Resource Utilization
IPAC tracks system performance and resource utilizati@anRACE’s resource and

QoS monitors. RACE’s controller and effectors periodigalbmpute system adaptation
decisions and modify system parameters, respectivelyamalle minor variations in sys-
tem resource utilization and performance due to fluctuatiomesource availability, input
workload, and operational conditions. Sectiddd.5 empirically validates how RACE'’s
controller enables the DRE system to adapt to fluctuatiomspnt workload and applica-

tion resource utilization.

V.3.3 Addressing Challenge 3: Adapting to Complete or Paral Loss of System Re-
sources

When RACE’s controller and effectors cannot compensatecf@anges in resource
availability, input workload, and operational conditiofesg, due to drastic changes in
system operating conditions like complete loss of a nodeplanning in the planner is
triggered. The planner performs iterative plan repair talifyoexisting applications to
achieve mission goals. Although this re-planning may tesulower expected utility of
some applications, it allows the system to optimize ovesydtem expected utility, even in
cases of significant resource loss. Sectoh6 empirically evaluates the extent to which

IPAC enables open DRE systems to adapt to loss of systemroesou

116



V.4 Performance Results and Analysis

This section describes experiments and analyzes resalt®thpirically evaluate the
performance of our prototype of the configurable space ons@CSM) case study de-
scribed in Section/.1. These experiments evaluate the extent to which IPAC pador
effective end-to-end adaptation, thereby enabling theraarhous operation of open DRE
systems. To evaluate how individual services, planningrasdurce management services,
offered by IPAC impact the performance of the system, we harekperiments in several
configurationsge.g, (1) using IPAC with the full set of services (decision-theta plan-
ning service (planner) and dynamic resource managemeritesdRACE)) enabled and

(2) with limited sets of IPAC services enabled.

V.4.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testtzdvanderbilt University,
which is a cluster consisting of 56 IBM blades powered by Eahwdoftward. Each blade
node contains two 2.8 GHz Intel Xeon processors, 1 GB phlysiemory, 1GHz Ether-
net network interface, and 40 GB hard drive. The Redhat Fee@ore release 4 OS with
real-time preemption patchesq] was used on all nodes.

We used five blade nodes for the experiments, each acting @acasaft in our pro-
totype CSM system. Our middleware platform was CIAO 0.5vilich is an open-source
QoS-enabled component middleware that implements the Ogaweight CORBA Com-
ponent Model (CCM) $7] and Deployment and Configuratiof]] specifications. IPAC
and the test applications implementing in our CSM systertopype were written in C++

using the CIAO APIs.

Ihttp://ww. dre. vanderbi | t.edu/l SISl ab
htt p: // ww. errul ab. net

117


http://www.dre.vanderbilt.edu/ISISlab
http://www.emulab.net

V.4.2 Prototype CSM System Implementation

Mission goals of our prototype CSM system included (1) weathonitoring, (2) mon-
itoring earth’s plasma activity, (3) tracking a specificrgpattern, and (4) high-fidelity
imaging of start constellations. The relative importantéese goals are summarized in

Tablel7.

# Goal Importance
1 Weather Monitoring 100
2 | Sunspot Activity Monitoring 80
3 Star Tracking 20
4 Hi-fi Terrestrial Imaging 40

Table 17: Utility of Mission Goals

Applications that achieved these goals were periode, (applications contained a
timer component that periodically triggered the collegtifiltration, and analysis of science
data) and the execution rate of these applications coulddmbfied at runtime. Tablé8
summarizes the number of lines of C++ code of various eatitiour CIAO middleware,
IPAC framework, and prototype implementation of the CSM DdyEtem case study, which

were measured using SLOCCogint

Entity Total Lines of Source Code
CSM DRE system prototypge 18,574
IPAC framework 80,253
CIAO middleware 511,378

Table 18: Lines of Source Code for Various System Elements

Shtt p: // ww. dwheel er. conl sl occount

118


http://www.dwheeler.com/sloccount

V.4.3 Experiment Design

As described in Sectiovi 1, a CSM system is subjected to (1) dynamic addition of goals
and end-to-end applications, (2) fluctuations in applaatvorkload, and (3) significant
changes in resource availability. To validate our claint tRAC enables the autonomous
operation of open DRE systems, such as the CSM system, bgrpeny effective end-
to-end adaptation, we evaluated performance of our pn&GSM system performance
when (1) goals were added at runtime, (2) application wadtéowere varied at runtime,
and (3) a significant drop in available resources occurredtdmode failure.

To evaluate the improvement in system performance due tG |4 initially indented
to compare the system behavior (system resource utilizatiml QoS) with and without
IPAC. However, without IPAC, a planner, a resource allogadad a controller were not
available to the system. Therefore, dynamic assembly dicgtipns that satisfy goals,
runtime resource allocation to application components, @mine system adaptation to
variations in operating conditions, input workload, ansiouerce availability were not pos-
sible. In other words, without IPAC our CSM system would reglto a “static-system”
that cannot operate autonomously in open environments.

To evaluate the performance IPAC empirically, we structuvar experiments as fol-

lows:

» Experiment 1 presented in Sectiox.4.4 compares the performance of the system
that is subjected to dynamic addition of user goals at rumtivhen the full set of
services i¢e., planning, resource allocation, and runtime control) reffeby IPAC
are employed to manage the system versus when only the ptaand resource

allocation services are available to the system.

» Experiment 2 presented in Sectiox.4.5 compares the performance of the system

that is subjected to fluctuations input workload when thedet of services offered

119



by IPAC are employed to manage the system versus when omgip;and resource

allocation services are available to the system.

» Experiment 3 presented in Sectioh.6.7 compares the performance of the system
that is subjected to node failures when the full set of sewiaffered by IPAC are
employed to manage the system versus when only resoura@attio and control

services are available to the system.

For all the experiments, IPAC’s planner was configured toaveegall system expected
utility optimization and respect total system CPU usagestraints. Likewise, the allocator
was configured to use a suite of bin-packing algorithms witinstvfit-decreasing and best-
fit-decreasing heuristics. Finally, the controller wasfogured to employ the EUCONGR]

control algorithm to compute system adaptation decisions.

V.4.4 Experiment 1: Addition of Goals at Runtime

This experiment compares the performance of the system thiesfull set of services
(i.e. planning, resource allocation, and runtime control) @teby IPAC are employed
to manage the system versus when only the planning and oesallocation services are
available to the system. This experiment also adds uses ggabmically at runtime. The
objective is to demonstrate the need for—and empiricalbluate the advantages of—a
specialized controller in the IPAC architecture. We usefthiewing metrics to compare

the performance of the system under the different servinégurations:

1. System downtime,which is defined as the duration for which applications in the
system are unable to execute due to resource reallocataoraapplication rede-

ployment.

2. Average application throughput, which is defined as the throughput of applications

executing in the system averaged over the entire duratitimeagxperiment.

120



3. System resource utilization,which is measure of the processor utilization on each

node in the system domain.

We demonstrate that a specialized controller, such as EU@0ables the system to
adapt more efficiently to fluctuations in system configuratisuch as addition of appli-
cations to the system. In particular, we empirically showvhbe service provided by a

controller is complementary to the services of both thecalior and the planner.

V.4.4.1 Experiment Configuration

During system initialization, tim& = 0, the first goal (weather monitoring) was pro-
vided to the planner by the user, for which the planner askahfive applications (each
with between two and five components). Later, at tilhe= 200se¢ the second goal
(monitoring earth’s plasma activity) goal was provided hie planner, which assembled
two applications (with three to four components each) tdeaehthis goal. Next, at time
T = 400seq the third goal (start tracking) was provided to the plapmdrich assembled
one application (with two components) to achieve this g&ahally, at timeT = 600seg
the fourth goal (hi-fi imaging) was provided to the planndmjet assembled an application
with four components to achieve this goal. Tabsummarizes the provided goals—and

the applications deployed corresponding to these goalss+fasction of time. Tabl€0

Time (sec) Goal Application #
0-200 Weather Monitoring 1-5

200 - 400 | Sunspot Activity Monitoring 6-7

400 - 600 Star Tracking 8

600 - 800 Hi-fi Terrestrial Imaging 9

Table 19: Set of Goals and Corresponding Applications as a Function of Time

summarizes the application configuratiom,., minimum and maximum execution rates,

estimated average resource utilization of componentsnilaée up each application, and

121



the ratio of estimated resource utilization between thesincase workload and the average

case workload.

Application Exec. Rate (Hz) Net Estimated| Component Average Resource Util Util. Ratio
Min | Max | Init. | Resource Util.| 1 2 3 4 5 Average Case : Worst Casp
1 15 155 60 0.3 0.15| 0.1 | 0.05 0 0 1:1.86
2 35 165 | 85 0.1 0.05 | 0.05 0 0 0 1:3.00
3 10 140 50 0.5 0.2 0.1 0.1 | 0.05 | 0.05 1:1.22
4 30 170 | 80 0.3 0.25 | 0.05 0 0 0 1:3.00
5 35 180 90 0.45 0.2 0.1 0.1 | 0.05 0 1:1.22
6 10 140 65 0.35 0.15| 0.1 | 0.05| 0.05 0 1:3.00
7 35 170 95 0.35 0.25 | 0.05 | 0.05 0 0 1:1.86
8 60 95 80 0.35 0.3 | 0.05 0 0 0 1:1.86
9 40 85 60 0.40 0.15| 0.10 | 0.10 | 0.5 0 1:1.20

Table 20: Application Configuration

For this experiment, the sampling period of the controllaswet to 2 seconds. The
processor utilization set-point of the controller, as veslthebin-size of each node was
selected to be 0.7, which is slightly lower than RM&][utilization bound of 0.77. IPAC
allocator was configured to use the standard best-fit-deicig@and worst-fit-decreasing

bin-packing heuristics.

V.4.4.2 Analysis of Experiment Results

When IPAC featured the planner, the allocator, and the obety allocation was per-
formed by the allocator using the average case utilizatadnes due to the availability of
the controller to handle workload increases that wouldltesugreater than average re-
source utilization. When IPAC featured only the planner #relallocator, however, all
allocations were computed using the worst case resoulcatitin values (use of average
case utilizations can not be justified because workloaecases would overload the system
without a controller to perform runtime adaptation). Tafié and22 summarize the initial
allocation of components to nodes (for applications 1 - 5raéf = O corresponding to
the weather monitoring goal), as well as the estimated resautilization, using average

case and worst case utilization values, respectively.

122



0.8

0.6

041

Processor Utilisation

0.2

0 50 100 150 200 250 300 350 400

Time (Sampling period = 2 seconds)

‘ Set-point Node 2 - Node 4 ------
Node 1 - Node 3 Node 5 -------

(a) Utilization with the Controller

0.6 | 1

0.4

Processor Utilisation

0.2 S oo = ]

0

0 50 100 150 200 250 300 350 400
Time (Sampling period = 2 seconds)

‘ Set-point Node 2 ———- Node 4 -
Node 1 Node 3 Node 5 -~

(b) Utilization without the Controller

Figure 45: Experiment 1: Comparison of Processor Utilization

Attime T = 200se¢ when the applications for the plasma activity monitoriogigvere
deployed (applications 6 and 7 as specified in Tab)ethe system reacted differently when
operated with the controller than without it. With the catfiigr, enough available resources
were expected (using average case utilization valueshesallocator could incrementally

allocate applications 6 and 7 in the system thus require@altocation or redeployment.

123



Node | Estimated Utilization| Items (Application, Component
1 0.35 4,1 (2,1 (@35
2 0.35 3,1) (.2 4,2
3 0.35 5,1) (,3) (54
4 0.30 1,1) (3.3 (2,2
5 0.30 1,2 3,2 (1,3 (3,4)

Table 21: Allocation of Applications 1 - 5 using Average Case Utilizati

Node | Estimated Utilization| ltems (Application, Component
1 0.43 4,1 (3,5
2 0.40 3,1) (,3) (1,3
3 0.39 5,1) 5,2 34
4 0.44 1,1) (3.3 (2,2 (5,4)
5 0.40 1,2) 3,2 (2)) 4,2)

on

Table 22: Allocation of Applications 1 - 5 using Wost Case Utilization

In contrast, when the system operated without the contraleeallocation was nec-
essary as an incremental addition of applications 6 and hdosystem was not pos-
sible (allocations were based on worst case utilizatiomes). The reallocation of re-
sources requires redeployment of application componeands therefore, increases sys-
tem/application downtime. Tabl&3 and24 summarize the revised allocation of compo-
nents to nodes (for applications 1 - 7), as well as the estidhagsource utilization, using

average case and worst case utilization values, resplgctive

Node | Estimated Utilization| Items (Application, Component)
1 0.45 4,1 (21 @35 (6,2
2 0.45 31 (2 @42 (6,3) (7.2
3 0.45 5,1) (5,3) (B4 (6,4 (7.3
4 0.55 1) (33 (2,2 (7,1
5 0.45 1,2) (3,2 (1,3) (34 (6,1

Table 23: Allocation of Applications 1 - 7 using Average Case Utilizati on

At time T = 400se¢ when the application corresponding to the star trackirg g@as
provided (application 8), resources were insufficient twémentally allocate it to the sys-

tem, both with and without the controller, so reallocaticeismecessary.

124



Node | Estimated Utilization| Items (Application, Component)
1 0.615 4,1 (,3) (6,4 (54
2 0.575 (7,1) (3,2 (2,2 (7,2
3 0.605 6,1) (12 @33 42 (7.3
4 0.610 31 @@€1 2,1 (13 @4
5 0.610 (5,1) (6,2 (5,20 (6,3) (35

Table 24: Allocation of Applications 1 - 7 using Wost Case Utilization

When the IPAC was configured without the controller, theadtor was unable to find
a feasible allocation using the best-fit decreasing heciriddowever, IPAC’s allocator
was able to find a feasible allocation using the best-fit desing heuristic. Tableg26
and27 summarize the allocation of components to nodes, as wellasdtimated resource
utilization, using average case and worst case utilizatednes, respectively.

At time T = 600se¢ application corresponding to the hi-fi imaging goal (apgtion
9) had to be deployed. When operating without the contrall@vas not possible to find
any allocation of all nine applications, and the system iomeid to operate with only the
previous eight applications. In contrast, when the systatuded the controller, average
case utilization values were used during resource allmeatind application 9 was incre-
mentally allocated and deployed in the system.

When the system was operated with the full set of servicesadfby IPAC the overall
system downtinfedue to resource reallocation and application redeploymas534.375
mscompared to 15613.168swhen the system was operated without the system adaptation
service of IPAC. It is clear that the system downtime is digantly ( 50%) lower when the
system was operating with the full set of services offeredRAC than when the system
was operating without the controller.

From Figure45, it is clear that system resources are significantly undezed when

4To measure the system downtime, we repeated the experimentLo0 iterations and computed the
average system downtime.

125



operating without the controller but are near the set-poelmn the controller is used. Un-
derutilization of system resources results in reduced @&;h is evident from Tabl&5,

showing the overall system QGS.

Application Average Throughput (Hz)
With the Controller| Without the Controller
1 149.973 59.871
2 159.236 84.802
3 100.700 49.624
4 116.453 79.814
5 175.156 89.653
6 25.076 63.212
7 37.370 94.876
8 89.620 79.894
9 40.514 N/A
Entire System 99.344 66.860

Table 25: Experiment 1: Comparison of System QoS

V.4.4.3 Summary

This experiment compared system performance under dynaddition of mission
goals when the full set of IPAC serviceise(, planning, resource allocation, and runtime
control) were employed to manage the system versus whertlafglanning and resource
allocation services were available. Significant diffeeimcsystem evolution were observed
due to the fact that when the system was operated withoutdaihatler, resources were
reallocated more often than when the controller was availaHigher system downtime
resulted, further lowering average throughput and resoutitization. Moreover, when the
system was operated with the controller, additional misgi@als could be achieved by the
system, thereby improving the overall system utility andsQo

From these results, it is clear that without the controkbeen dynamic resource allo-
cation is inefficient due to the necessary pessimism in compioutilization values (worst

case values from profiling). Lack of a controller thus resitt (1) under-utilization of

5In this system, overall QoS is defined as the total througfguuall active applications.

126



system resources, (2) low system QoS, and (3) high systemtdoe. In contrast, when
IPAC featured the planner, the allocator, and the contraksource allocation was signif-
icantly more efficient. This efficiency stemmed from the prese of the controller, which
ensures system resources are not over-utilized despitdoadrincreases. These results
also demonstrate that when IPAC operated with a full setwices it enables the efficient

and autonomous operation of the system despite runtimé@udf goals.

V.4.5 Experiment 2: Varying Input Workload

This experiment executes an application correspondirtgetaveather monitoring, mon-
itoring earth’s plasma activity, and star tracking goalsp{ecations 1 - 8 described in Ta-
ble 20), where the input workload is varied at runtime. This expemt demonstrates the
adaptive resource management capabilities of IPAC undsinginput workload. We
compare the performance of the system when the full set vicgsr offered by IPACi(e.,
planning, resource allocation, and runtime control) argleged to manage the system
versus when only planning and resource allocation senacesavailable to the system.
We use deadline miss ratio, average application througapdtsystem resource utiliza-
tion as metrics to empirically compare the performance efdysstem under each service

configuration.

V.4.5.1 Experiment Configuration

At time T = 0, the system was initialized with applications 1 - 8 as dpegtin Ta-
ble 20. Upon initialization, applications execute at their ialtzation rate specified in Ta-
ble 20. When IPAC featured the planner, the allocator, and therobet, allocation was
performed by the allocator using the average case utitizatalues due to the availability
of the controller to handle workload increases that woukliltein greater than average
resource utilization. When IPAC featured only the planned ¢he allocator, however,

all allocations were computed using the worst case resautiization values. Table26

127



and27 summarize the allocation of components to nodes, as wellasdtimated resource

utilization, using average case and worst case utilizatednes, respectively.

Node | Estimated| Items (Application, Component)
Utilization
1 0.55 81 (33) (1) (34) (64
2 0.55 (41) 12 (.2) 35 (7.2
3 0.55 (7,1) 3,2 (B3 42 (7,3
4 0.55 3,1) (1,1) (6,2) (5,4) (8.2
5 0.50 (5,1) (6,1) (1,3) (2,2) (6,3
Table 26: Allocation of Applications 1 - 8 using Average Case Utilizati on
Node | Estimated Utilization Iltems (Application, Component)
1 0.69 8,1) (6,1) (2,1)
2 0.70 (4,1) (7,1
3 0.70 31 1) @11) (@1,
4 0.685 6,2) (1,2) (3.2) (33 (5.2 (2.2
5 0.695 (5,3) (42) (63) (6,4) (7.2) (7.3) (82 (34) (35 (54)

Table 27: Allocation of Applications 1 - 8 using Wost Case Utilization

Each applicationsSs end-to-end deadline is defined asn;/ri(k), wheren; is the
number of components in applicatidnandr;(k) is the execution rate of applicatidhin
thek!" sampling period. Each end-to-end deadline is evenly dividt® sub-deadlines for
its components. The resultant sub-deadline of each conmp@ogials its period, /& (k).
All application/components meet their deadlines/suldtieas if the schedulable utiliza-
tion bound of RMS 42] is used as the utilization set-point and is enforced orhalintodes.

The sampling period of the controller was set at 2 secondstendtilization set-point
for each node was selected to be 0.7, which is slightly lolvantRMS utilization bound.
Table28 summarizes the variation of input workload as a functionraét When the input
workload was low, medium, and high, the corresponding nesoutilization by applica-
tion components were their corresponding best case, aveasg, and worst case values,

respectively.

128



Time (sec) | Input Workload
0-150 Low
150 - 450 Medium
450 - 600 High
600 - 900 Medium
900 - 1,000 Low

Table 28: Input Workload as a Function of Time

V.4.5.2 Analysis of Experiment Results

When the IPAC controller is available to the system it dyrzatly modifies the execu-
tion rates of applications within the bounfiisin,max specified in Tabl€0 to ensure that
the resource utilization on each node converges to the fsgksiet-point of 0.7, despite
fluctuations in input workload. When IPAC it configured with the controlleii.g., only
the planner and the allocator are available), however,@gmins execute at their initial-
ization rate specified in Tab0.

Figure46g Figure47a and Table28 show the execution of the system when it contains
the IPAC controller. During & T < 150, when the input workload is low, the controller
increases the execution rates of applications such thapritneessor utilization on each
node converges to the desired set-point of 0.7. This behaxgures effective utilization of
system resources. When IPAC does not provide the contedleice,however, Figuressh
and47bshow that the applications execute at a constant rategfiadtion rate) and system
resources are severely underutilized.

When input workload is increased from low to mediumT at 150s, the corresponding
increase in the processor utilization can be seen in Figard-igures46aand47ashow
that when IPAC included the controller, although the prsoesitilization increased above
the set-point, within a few sampling periods the contrakestored the processor utilization
to the desired set-point of 0.7 by dynamically reducing tkecation rates of applications.
Under both service configuration of IPAC, with the controbed without the controller,
the deadline miss ratio was 0 throughout the duration of xpeement. Figurel6ashows

that the application deadline miss ratio was unaffectedchbyshort duration during which

129



0.4

Processor Utilisation

0.2

0 100 200 300 400 500 600
Time (Sampling period = 2 seconds)

Set-point Node 2 - Node 4 ------
Node 1 ——-— Node 3 Node 5 -------
(a) With the Controller
1
c
S o8t
IS
2 [
5 o6 " “}I !
5 :
§ 0.4 PP |
(S
S
o 0.2
0

0 100 200 300 400 500 600
Time (Sampling period = 2 seconds)

Set-point Node 2 - Node 4 —---
Node 1 Node 3 Node 5 -------

(b) Without the Controller

Figure 46: Experiment 2: Comparison of Processor Utilization

processor utilization was above the set-point. FinallguFe 46b shows that without the
controller, the system resources remained under-utikxea after the workload increase.
At T = 450s, the input workload was further increased from medium tdhids a
result, the processor utilization on all the nodes incréasdich is shown in Figurd®6.
Figures46aand47b show that the controller was again able to dynamically mothie
application execution rates to ensure that the utilizatimmverged to the desired set-point.

Figure46b shows that when IPAC did not feature the controller, the @ssor utilization

130



was at the set-point under high workload conditions (c@uesling to the worst case re-
source utilization used to determine the allocation of congmts to processors in that

case).

300

250 |
200 |
150 [
100 |

Execution Rate (Hz)

0 100 200 300 400 500
Time (Sampling period = 2 seconds)

Taskl —— Task3 Task5 Task?7 -~~~
Task2 Task4 Task6 Task8 -----

(a) With the Controller

300
250 -
200 -
150

100 .

Execution Rate (Hz)

50 f

0 100 200 300 400 500 600
Time (Sampling period = 2 seconds)

Taskl ——  Task3 - Task5 ------ Task7 -~~~
Task2 ———- Task4 Task6 - Task8 ————-

(b) Without the Controller

Figure 47: Experiment 2: Comparison of Application Execution Rates

At T = 600s, when the input workload was reduced from high to mediunmffig-
ure46it can be seen that the processor utilization on all the nddeseased. When IPAC
included the controller, however, the controller restateglprocessor utilization to the de-
sired set-point of 0.7 within a few sampling periods. Withthe controller, processor

utilization remained significantly lower than the set-goBimilarly, atT = 900s, the input

131



workload was further reduced from medium to low, and FigtBshows another decrease
in processor utilization across all nodes. When IPAC featuhe controller, processor uti-
lization again returned to the desired set-point withinva $ampling periods. Without the

controller, processor utilization remained even furtheoty the set-point.

Figure46 shows that system resources are significantly underwdilideen operating
without the controller, but are near the set-point when thr@roller is used. Underutiliza-
tion of system resources results in reduced QoS, which deatifrom Table29, showing
the overall system QoSIn contrast, when IPAC featured the controller, the apfilica
execution rates were dynamically modified to ensure utibreon all the nodes converged

to the set-point, resulting in more effective utilizatidrsgstem resources and higher QoS.

Application Average Throughput (Hz)
With the Controller| Without the Controller

1 113.17 59.930

2 162.817 84.903

3 101.240 45.964

4 54.507 76.909

5 166.959 89.905

6 13.460 62.088

7 35.219 94.896

8 80.019 79.702
Entire System 90.923 74.287

Table 29: Experiment 2: Comparison of System QoS

V.4.5.3 Summary

This experiment compared system performance during inptkiead fluctuations when
the system was operated with the full set of IPAC services planning, resource alloca-
tion, and runtime control) versus when only the planning msburce allocation services
were available to the system. The results show how IPAC andaihtroller (1) ensures

system resources are not over-utilized, (2) improves ¢th&atem QoS, and (3) enables

8n this system, overall QoS is defined as the total througfguall active applications.

132



the system to adapt to drifts/fluctuations in utilizationsgtem resources Hine-tuning

application parameters.

V.4.6 Experiment 3: Varying Resource Availability

This experiment demonstrate the need for—and advantagea pfanner in our IPAC
architecture. It also demonstrates that although a spssiatontroller can efficiently han-
dle minor fluctuations in the system, it is unable to handlgmnféuctuations in the system,
such as loss of one or more nodes in the system.

We compare the performance of the system when the full se¢rofces offered by
IPAC (i.e., planning, resource allocation, and runtime control) arpleyed to manage
the system versus when only resource allocation and cosgrgices are available to the
system. We use system expected utility and system resotilization as metrics to em-

pirically compare the performance of the system under eahcg configuration.

V.4.6.1 Experiment Configuration

For this experiment, the goals provided to the system were/€ather monitoring, (2)
sunspot monitoring, (3) star-tracking, and (4) hi-fi imapgoals. The sampling period of
the controller was set to be 2 seconds. The processor titlizset-point of the controller,
as well as théin-size of each node was selected to be 0.7. Under both configusatibn
IPAC (i.e., (1) when IPAC featured the planner, allocator, and coldraind (2) when IPAC
featured only the allocator and the controller), allocatieas performed by the allocator
using the average case utilization values due to the av@yadif the controller to handle
workload increases that would result in greater than aeeregpurce utilization.

When IPAC featured only the allocator and the controlleg, allocator is augmented
such that if it is unable to allocate all applications givkea teduced system resources, the

allocator incrementally removes applications from coesation by lowesutility density

133



until a valid allocation can be found. We define utility depsis the expected utility of the

application divided by its expected resource usage.

1
c
o
o
5 ,}:” e Vs A ¥
g 04
(8] il
8 4
a 0.2
0 1 1 1 1 1
0 50 100 150 200 250 300
Time (Sampling period = 2 seconds)
Set-point Node 2 - Node 4 ------
Node 1 - Node 3
(a) With the Planner
1
c
8 0.8 |
= .
5 0.6 4;’{
S ;
@ 04f
(8]
< |
o 0.2
O 1 1 1 1 1
0 50 100 150 200 250 300
Time (Sampling period = 2 seconds)
Set-point Node 2 - Node 4 -—----
Node 1 - Node 3

(b) Without the Planner

Figure 48: Experiment 3: Comparison of Processor Utilization

V.4.6.2 Analysis of Experiment Results

When IPAC featured only the allocator and the controlleg,dbmplete loss of a node
triggered reallocation by the allocator. With the reducgstem resource, however, the
allocator was able to allocate applications correspontiirige weather monitoring, plasma

monitoring, and hi-fi imaging goals only.

134



In contrast, when IPAC featured the planner, the allocatud, the controller, the com-
plete loss of a node triggers re-planning in the planner. glaener then assembled a new
set of applications, taking into account the significanuan in system resources. Al-
though some applications had a lower expected utility tharotiginal ones, all four goals
were still achieved with the resources of the four remaimades.

Figure48 shows that both with and without the planner, the contralesures that the
resource utilization on all the nodes are maintained withenspecified bounds.

Table30 compares the utility of the system when IPAC did/did-notdeathe planner.
This figure shows how system adaptations performed by thmplan response to failure
of a node result in higher system utility compared to theesysadaptation performed by

just the allocator and the controller. The results Ta@leccur because IPAC’s planner was

Application Expected Utility
With Planner| Without Planner

1 18 18
2 6 6
3 30 30
4 20 20
5 26 26
6 38 40
7 36 40
8 16 -
9 40 40

Entire System 230 220

Table 30: Experiment 3: Comparison of System Utility

able to assemble modified applications for some missiorsgoalresponding to applica-
tions 6, 7, and 8), albeit with somewhat lower expectedtytivhereas the allocator had to

completely remove an application to meet the reduced res@awailability.

135



V.4.6.3 Summary

This experiment shows that although a specialized coetrodn efficiently handle mi-
nor fluctuations in resource availability, it may be incdpatf effective system adaptation
in the case of major fluctuations, such as loss of one or modesym the system. Even
with the addition of an intelligent resource allocation ecte, system performance and
utility may suffer unnecessarily during major fluctuationgesource availability. In con-
trast, IPAC’s planner has knowledge of system compohamttionalityand desired mis-
sion goals. As a result, it can perform more effective sysadaptation in the face of major

fluctuations, such as the loss of a system node.

136



CHAPTER VI

CASE STUDY: SEAMONSTER SENSOR-WEB

In this chapter, we first presents an overview of the SEAMOBRBensor-web sys-
tem [28]. We use this system as a case study to showcase the rescameg@mnent chal-
lenges of large scale open DRE systems. We then describe bapplied RACE to ad-
dresses these challenges. We conclude this chapter bynpngsan empirical evaluation

of the performance of the system when it was operated withiRAC

VI.1 SEAMONSTER Sensor-web Overview

Sensor-websZp] are large scale open DRE systems consisting of severahuiieg
subsystems and enable the study of scientific and envirotafrestivities, such as weather
monitoring/forecasting, ecosystem monitoring, and naimy of earth’s geological activ-
ities, in real-time. Sensor-webs also facilitate the teak analysis and recovery of large
volumes of collected scientific data.

One such sensor-web is the SEAMONSTER sensor-&8pb [Currently, the primary
focus of SEAMONSTER sensor-web is to monitor geologicaivéets occurring in the
Lemon Creek watershed near Juneau, Alaska. The objectiisagensor-web is to mon-
itor and collect data regarding glacier dynamics and maksbe, watershed hydrology,
coastal marine ecology, and human impact/hazards in anchdrihe Lemon Creek wa-
tershed. The collected data is used to study the correl@ivveen hydrology, glacier
velocity, and temperature variation at the Lemon Creek nghtsl.

The SEAMONSTER sensor-web is comprised of multiple groupseasors that are
deployed “in the field” and collect data of scientific intdreBhe data collected by multiple
sensor groups are relayed to a cluster of servers via botdvaind wireless network for

processing, correlation, and analysis. These data priogesgplications are built atop the

137



Component-Integrated ACE ORBIAO) [81] and Deployment and Configuration Engine
(DANCE) [27] QoS-enabled component middleware platform.

Scientific data collected by the sensors are passed to datagsing applications that
execute at the server cluster. Data processing applicati@y be added or removed to/-
from the server cluster during normal operation. The resoutilization by these applica-
tions can not be accurately characterizedriori as it depends on the input workload of
these applications, which in turn is affected by a plethdr@enwironmental conditions and
activities. For example, during nominal operation of theASEONSTER sensor web, only
a subset of the sensors are operational (primarily for besehonitoring of the Lemon
Creek Glacier and Lemon Creek watershed area). Theretoeenput workload of the
applications processing the collected data is minimal. él@& when evidence is detected
that the glacial lake on Lemon Creek Glacier is draining, noosll of the sensors in the
sensor web transition to an operational state and muchrlgrgetities of sensor data are
collected to allow in-depth analysis of the effects of thieeldraining through the glacier
into Lemon Creek. During this event, input workload of theadgrocessing applications

are significantly higher than during normal operation.

VI.2 Adaptive Resource Management Requirements of the SEAKMNSTER
Sensor-web

As discussed in Sectidihi.1.2, the use of QoS-enabled component middleware to de-
velop open DRE systems, such as the SEAMONSTER sensor-aelsignificantly im-
prove the design, development, evolution, and maintenahtieese systems. However,
when such systems are built in the absence of a adaptivercesipameworks, several key
requirements remain unresolved. To motivate the need fdCERAhis section presents
the key resource and QoS management requirements that wesaeld while building the

SEAMONSTER sensor-web.

138



VI1.2.1 Requirement 1: Online Resource Allocation To Data Pocessing Applications

Data processing applications executing in the serverel@stresource sensitiye.e.,
QoS of the sensor-web is affected significantly if an appilicedoes not receive the re-
quired CPU time and network bandwidth within bounded deMyreover, in open DRE
systems like the SEAMONSTER sensor-web, input workloaecadf utilization of system
resources and QoS of applications. Utilization of systesnueces and QoS of applications
may therefore vary significantly from their estimated value

A resource management framework therefore needs to mahéaurrent utilization of
system resources and allocate resources in a timely faghiapplications such that their
resource requirements are met using resource allocatymmitims such as PBFI24.
SectionVI.3.1 describes how RACE performs on-line resource allocatioapplication

components to addresses this requirement.

VI.2.2 Requirement 2. Enabling the Sensor-web to Dynamic& Adapt to Fluctua-
tions in Input Workload

When applications are deployed and initialized, resouacesallocated to application
components based on testimatedesource utilization and estimated/current availability
of system resources. In open DRE systems, howactualresource utilization of applica-
tions might be significantly different than their estimatatlies. Moreover, for applications
executing in these systems, the relation between inputlaadk resource utilization, and
QoS cannot be characterizagbriori.

An adaptive resource management framework therefore neguievide monitors that
track system resource utilization, as well as QoS of apiiiing, at run-time. Although
some QoS properties (such as accuracy, precision, andtyfidélthe produced output)
are application-specific, certain QoS (sucheas-to-end latencgnd throughput) can be

tracked by the framework transparently to the applicatiblowever, customization and

139



configuration of the framework with domain specific monit@yeth platform specific re-
source monitors and application specific QoS monitors) lshbe possible. In addition,
the framework needs to enable the systeradaptto dynamic changes, such as variations
in operational conditions and/or input workload. Sectilr8.2 demonstrates how RACE
performs system adaptation and utilization of system nessuare maintained within the

specified utilization set-point set-point(s) to address thquirement.

V1.3 Addressing SEAMONSTER Requirements Using RACE

We now describe how RACE was applied to the SEAMONSTER sensbrdescribed
in SectionVI.1 and show how it addressed key resource allocation and adapsource

management requirements that we identified in Sedfilc2.

VI.3.1 Addressing Requirement 1: Online Resource Allocatin

First, RACE’s, using itd nput Adapt er, parses the metadata that describes the ap-
plication to obtain the resource requirement(s) of comptsihat make up the application.
TheCent ral Monit or obtains system resource utilization/availability inf@tion for
RACE’s Resour ce Mbni tors, and using this information along with thestimated
resource requirement of application components captureapplication’s metadata, the
Al | ocat or s map components onto nodes in the system domain based omeurd
source availability.

RACE's| nput Adapt er ,Central Mbnitor,andAl | ocat or s coordinate with
one another to allocate resources to applications exerutiopen DRE systems, thereby
addressing the resource allocation requirement for opeg By&tems identified in Sec-

tion VI.2.1.

140



VI.3.2 Addressing Requirement 2: Runtime System Adaptatia

Allocation algorithms supported by RACEA | ocat or s allocate resources to com-
ponents based on current system resource utilization amgpaoent’s estimated resource
requirements. In open DRE systems, however, there is oft@ccurate priori knowledge
of input workload and the relationship between input woakland resource requirements
of an application.

To address this requirement, RACE’s control architectunpleys a feedback loop to
manage system resource and application QoS and ensures$IeQuirements of appli-
cations are met at all times and (2) system stability by naanirig utilization of system
resources below their specified utilization set-pointsOEA control architecture features
a feedback loop that consists of three main componevibsti t or s, Control | ers,
andEf f ect or s.

Moni t or s are associated with system resources and QoS of the applicand pe-
riodically update theCont r ol | er with the current resource utilization and QoS of ap-
plications currently running in the system. TBent r ol | er implements a particular
control algorithm such as EUCOINS2], DEUCON [83], HySUCON @1], and FMUF [Lg],
and computes the adaptations decisions for each (or a seippfication(s) to achieve
the desired system resource utilization and fS.ect or s modify system parameters,
which include resource allocation to components, exeoutites of applications, and OS/-
middleware/network QoS setting of components, to achibeeecbntroller recommended
adaptation.

RACE’s monitoring frameworkCont rol | er s, andEf f ect or s coordinate with
one another and the aforementioned entities of RACE to end)rQoS requirements of
applications are met and (2) utilization of system resasieze maintained within the spec-
ified utilization set-point set-point(s), thereby addnegthe requirements associated with
runtime end-to-end QoS management identified in Se&tidh2. We empirically validate

this in SectionV1.4.

141



V1.4 Performance Results and Analysis
This section presents the design and results of experiniest&valuate the adaptive
resource management capabilities of RACE in the context@SEAMONSTER sensor-
web. This section also validates our claims in Sectiv3 that RACE performs effective
end-to-end adaptation and yield a predictable and scalREe system under varying op-

erating conditions and input workload.

VI.4.1 Hardware and Software Testbed

Our experiments were performed on the ISISLab testtadvanderbilt University,
which is a cluster consisting of 56 IBM blades powered by Eahidoftwaré. Each blade
node contains two 2.8 GHz Intel Xeon processors, 1 GB phlysiemory, 1GHz Ether-
net network interface, and 40 GB hard drive. The Redhat fee@ore release 4 OS with
real-time preemption patchesq) was used on all nodes.

We used five blade nodes for the experiments to emulate thiersguster of our proto-
type SEAMONSTER sensor-web. Our middleware platform wasaD0.5.10, which is an
open-source QoS-enabled component middleware that ingplesnthe OMG Lightweight
CORBA Component Model (CCM¥7] and Deployment and Configuratiof]] specifi-

cations.

VI.4.2 System Implementation and Experiment Design

Data processing application that executed on our proto8/HAMONSTER sensor-
web can be classified as (1) glacier dynamics monitoringwégrshed hydrology analy-
sis, and (3) coastal marine ecology analysis applicatibhese applications were periodic
(i.e., applications contained a timer component that perioljyi¢degered the collection,

filtration, and analysis of science data) and the executta of these applications could

http://ww. dre. vanderbi | t.edu/l Sl Sl ab
2htt p: // ww. ermul ab. net

142


http://www.dre.vanderbilt.edu/ISISlab
http://www.emulab.net

be modified at runtime. Tabl&l summarizes the number of lines of C++ code of various
entities in our CIAO middleware, RACE, and our implemertatof the data processing
applications that executed on the prototype SEAMONSTER®@®eweb, which were mea-

sured using SLOCCouht

Entity Total Lines of Source Code
Data processing applications 18,574
RACE framework 157,253
CIAO middleware 511,378

Table 31: Lines of Source Code for Various System Elements

As described in SectiolI.1, the SEAMONSTER sensor-web is subjected fluctua-
tions in application workload. To validate our claim that ®&A enables the autonomous
operation of open DRE systems, such as the SEAMONSTER searmnrby performing
effective end-to-end adaptation, we evaluated performaricour prototype SEAMON-
STER sensor-web performance when application workloads wexried at runtime. Our
experiment compares the performance of the system thabjsectad to fluctuations input
workload when the system is operated with and without RACEexXecution rates of appli-
cations that executed in this system could be dynamicallgifieal at runtime, RACE was
configured to employ the EUCONG®] control algorithm to compute system adaptation

decisions.

VI.4.3 Evaluation of RACE’s Adaptive Resource Management @pabilities

In this experiment input workload to data processing appilbims were varied at run-
time. This experiment demonstrates the adaptive resoustegagement capabilities of
RACE under varying input workload. We compare the perforoeaof the system when

it was operated with and without RACE. We use deadline miss,raverage application

Shtt p: // ww. dwheel er. conl sl occount

143


http://www.dwheeler.com/sloccount

throughput and system resource utilization as metrics tpirgcally compare the perfor-

mance of the system under each service configuration.

VI.4.3.1 Experiment Configuration

Application Exec. Rate (Hz) Net Estimated| Component Average Resource Utill

Min | Max | Init. | Resource Util.| 1 2 3 4 5

1 15 155 | 60 0.3 0.15| 0.1 | 0.05 0 0

2 35 165 | 85 0.1 0.05 | 0.05 0 0 0

3 10 140 | 50 0.5 0.2 0.1 0.1 | 0.05| 0.05

4 30 170 | 80 0.3 0.25 | 0.05 0 0 0

5 35 180 | 90 0.45 0.2 0.1 0.1 | 0.05 0

6 10 140 | 65 0.35 0.15| 0.1 | 0.05| 0.05 0

7 35 170 | 95 0.35 0.25 | 0.05 | 0.05 0 0

Table 32: Application Configuration

Attime T = 0, the system was initialized the applications specifiedabld32 to per-
form glacier dynamics monitoring, watershed hydrologylgsia, and coastal marine ecol-
ogy analysis. Upon initialization, applications executéhair initialization rate specified
in Table32. Each applicationsS end-to-end deadline is definet aq; /ri(k), wheren; is
the number of components in applicati§randr; (k) is the execution rate of applicatidn
in thek!" sampling period. Each end-to-end deadline is evenly divid® sub-deadlines
for its components. The resultant sub-deadline of each coent equals its period/L(k).
All application/components meet their deadlines/suldtieas if the schedulable utiliza-
tion bound of RMS 42] is used as the utilization set-point and is enforced orhalintodes.

The sampling period of the controller was set at 2 secondshandtilization set-point
for each node was selected to be 0.7, which is slightly loian tRMS utilization bound.
Table33 summarizes the variation of input workload as a functionragét When the input
workload was low, medium, and high, the corresponding nesoutilization by applica-
tion components were their corresponding best case, aveasg, and worst case values,

respectively.

144



Sampling Period Input Workload
0-50 Low
50-150 Medium

150 - 250 High
250 - 350 Medium
350 - 400 Low

Table 33: Input Workload as a Function of Time

VI.4.3.2 Analysis of Experiment Results

When RACE is available to the system it dynamically modiftes éxecution rates of
applications within the boundsnin,max specified in Tabl82 to ensure that the resource
utilization on each node converges to the specified set-pbid.7, despite fluctuations in
input workload. When the system operated without RACE, hanepplications execute
at their initialization rate specified in TabB2.

Figure49a Figure50g and Table33 show the execution of the system when RACE is
employed. During & T < 100, when the input workload is low, the controller increstbe
execution rates of applications such that the procesdaatiton on each node converges to
the desired set-point of 0.7. This behavior ensures effectilization of system resources.
When RACE is not used, however, Figud3band50bshow that the applications execute
at a constant rate (initialization rate) and system ressuace severely underutilized.

When input workload is increased from low to mediumT at 100s, the corresponding
increase in the processor utilization can be seen in Fig@rd-igures49aand50ashow
that when RACE is used, although the processor utilizatieneiased above the set-point,
within a few sampling periods the controller restored thecpssor utilization to the desired
set-point of 0.7 by dynamically reducing the executiongatkapplications. The deadline
miss ratio for the entire duration of the experiment was pleskto be 0005 and 00184
when the system was operated with and without RACE, resfabgtiFinally, Figure49b
shows that without RACE, the processor utilization was Wwellbe set-point for all the
nodes in the system, except for node 5.

At T = 300s, the input workload was further increased from medium tdhids a

145



1 L
c
2 |
g osr |
2 0.6 7 5\‘»;/
§ H Svitor A
i3 0.4 {if
(8] !
o i
o 0.2¢F
0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Sampling period (2 sec)
Set-point Proc 2 Proc 4 -—----
Proc 1 - Proc 3 Proc 5 -------
(a) With RACE
1r g .
c : i
kel ‘
ﬁ 0.8 |
2 06
5
@ -
0} 0.4 |
[5]
e PP
o 0.2
0

0 50 100 150 200 250 300 350 400
Sampling period (2 sec)

Set-point Proc 2 - Proc 4 ——-
Proc 1 ——— Proc 3 Proc 5 -
(b) Without RACE

Figure 49: Comparison of Processor Utilizations

result, the processor utilization on all the nodes incréasdich is shown in FigurdO.
Figures49aand50bshow that RACE was again able to dynamically modify the ajapion
execution rates to ensure that the utilization convergelddalesired set-point. Figudfb
shows that without RACE, the processor utilization on mésthe nodes in the system was
significantly higher than the was at the set-point under kigtkload conditions.

At T = 500s, when the input workload was reduced from high to mediunmffig-
ure 49 it can be seen that the processor utilization on all the nodéescased. With the

system was operated with RACE, however, RACE restored theegsor utilization to the

146



300

250

200

150 [

100 ¢

Execution Rate(Hz)

50 ‘

0 50 100 150 200 250 300 350 400

Sampling period (2 sec)

AppL —— App3 — J = AppT
App2 App4 App6 -

(a) With RACE

300
250
200
150 -

Execution Rate(Hz)

50.. ............................................................................................................

0 50 100 150 200 250 300 350 400
Sampling period (2 sec)

Appl —— App3 e App5 === App7 -
App2 App4 App6 -
(b) Without RACE

Figure 50: Comparison of Application Execution Rates

desired set-point of 0.7 within a few sampling periods. WithRACE, processor utiliza-
tion for all nodes except node 5 remained significantly lothan the set-point. Similarly,
atT = 700s, the input workload was further reduced from medium to lowd &igure49
shows another decrease in processor utilization across@ds. When the system featured
RACE, processor utilization again returned to the desistepsint within a few sampling
periods. Without RACE, processor utilization remainedrefegther below the set-point.
Figure 49 shows that system resources are either significantly utitized or over-

utilized when operating without RACE, but are near the seitpwhen RACE is used.

147



Underutilization and/or over-utilization of system resms results in reduced QoS, which
is evident from Tabl&4, showing the overall system Qd3n contrast, when the system
featured RACE, the application execution rates were dyoalhgimodified to ensure uti-
lization on all the nodes converged to the set-point, raguin more effective utilization

of system resources and higher QoS.

Application Average Throughput (Hz)
With RACE | Without RACE
1 110.326 59.930
2 160.891 84.903
3 60.532 45.964
4 133.894 76.909
5 124.232 89.599
6 21.476 63.2362
7 37.264 94.896
Entire System|  92.660 74.445

Table 34: Comparison of System QoS

VI1.4.3.3 Summary

This experiment compared system performance during inptkiead fluctuations when
the system was operated with and without RACE. The resubte $low RACE (1) ensures
system resources are not over-utilized, (2) improves ¢th&atem QoS, and (3) enables
the system to adapt to drifts/fluctuations in utilizationsgtem resources Hine-tuning

application parameters.

4In this system, overall QoS is defined as the total througfgull active applications.

148



CHAPTER VII

CONCLUDING REMARKS

Open distributed real-time and embedded (DRE) systemsreequd-to-end QoS en-
forcement from their underlying operating platforms to i@te correctly. These systems
often run in environments where resource availability ibjsct to dynamic change. To
meet end-to-end QoS in these dynamic environments, DREmgstan benefit from adap-
tive resource management architectures that monitoresraysgsources, performs efficient
application workload management, and enables efficienures provisioning for execut-
ing applications. Resource management mechanisms basedial-theoretic techniques
are emerging as a promising solution to handle the chalkofy@pplications with stringent
end-to-end QoS executing in DRE systems. These mechanisab$eeadaptive resource
management capabilities in open DRE systems and adaptfgitgde fluctuation in re-
source availability and application resource requirena¢nantime.

To address key resource management challenges of open D¥REnsy this disserta-
tion presented adaptive resource management algorithnetgtesctures, and frameworks
for large-scale DRE systems. Chaptedescribed HIDRA, which is a hierarchical dis-
tributed resource management architecture based on ttimdaretic techniques that pro-
vides adaptive resource management, such as resourceonmgnand application adapta-
tion, that are key to supporting open DRE systems. Chéalptdso presented an evaluation
of the performance of HIDRA using a representative targatking DRE system imple-
mented using RT-CORBA and composed of two types of systeauress (computational
power at the receiver and wireless network bandwidth) arekethpplications (UAV data
sender/receiver pairs).

Chapterlll described RACE, which is an adaptive resource managemanework

that provides end-to-end adaptation and resource managéonepen DRE systems built

149



atop QoS-enabled component middleware. Chdfitatso demonstrated how RACE helps
resolve key resource and QoS management challenges dsdowith DRE systems. Fi-
nally, ChapterdV, V, and VI presented three representative DRE system case studies
where we successfully applied RACE. These chapters détditeadaptive resource man-
agement challenges of each DRE system and presented arncaigialuation of adaptive

resource management capabilities of RACE in the contexach ®RE system.

VIl.1 Lessons Learned

We now summarize the lessons learned from our work on adapgsource manage-

ment algorithms, architectures, and frameworks for DREesyS.

VII.1.1 Adaptive Resource Management Algorithms and Archtectures

The lessons learned by applying HiDRA to our target trackiysfem thus far include:

» HiDRA's Control-theoretic approaches yielded inahaptiveresource management
architecture that can gracefully handle fluctuations irowese availability and/or

demand for open DRE systems.

» The formalisms presented in the chapter form the founddtioa resource manage-
ment framework based on control-theoretic principles tzat be used to perform

system stability analysis and obtain theoretical ass@rabout system performance.

» Developing applications in which parameters can be fimeduto modify the ap-
plication operation and utilization of system resourcdpsiachieve higher QoS of
applications and enables HiDRA to maintain system resoutitiezation within de-

sired bounds.

150



VII.1.2 Adaptive Resource Management Frameworks

The lessons learned in building RACE and applying it threeEDdgstem thus far in-

clude:

» Challenges involved in developing open DRE systemAchieving end-to-end QoS
in open DRE systems requires adaptive resource managefgygtem resources,
as well as integration of a range of real-time capabiliti@eS-enabled middleware,
such as CIAO/DANCE, along with the support of DSMLs and tpsigh as PICML,
provide an integrated platform for building such systent ame emerging as an op-
erating platform for these systems. Although CIAO/DAnCH &1CML alleviate
many challenges in building DRE systems, they do not addseds adaptive re-
source management challenges and requirements of open \REns. Adaptive
resource management solutions are therefore needed tedps8 requirements of

applications executing atop these systems are met.

» Decoupling middleware and resource management algorithmsimplementing
adaptive resource management algorithms within the migatke tightly couples the
resource management algorithms within particular middlewplatforms. This cou-
pling makes it hard to enhance the algorithms without reldg@weg significant por-
tions of the middleware. Adaptive resource managementvasrks, such as RACE,
alleviate the tight coupling between resource managenigatitnms and middle-

ware platforms and improve flexibility.

» Design of a framework determines its performance and appliability. The de-
sign of key modules and entities of the resource managemanefvork determines
the scalability, and therefore the applicability, of thanfrework. To apply a frame-
work like RACE to a wide range of open DRE system, it must sealéhe number
of nodes and application in the system grows. Our empiricaliss on the scala-

bility of RACE showed that structuring and designing key mies of RACE é.g,

151



monitors and effectors) in a hierarchical fashion not omiygicantly improves the

performance of RACE, but also improves its scalability.

Need for configuring/customizing the adaptive resource maagement frame-
work with domain specific monitors. Utilization of system resources, such as
CPU, memory, and network bandwidth, and system performasweh as latency
and throughput, can be measured in a generic fashion aaoess system domains.
In open DRE systems, however, the need to measure utilizatidomain-specific
resources, such as battery utilization, and applicatpeci§ic QoS metrics, such as
the fidelity of the collected plasma data, might occur. Dawspecific customization
and configuration of an adaptive resource management frarkesuch as RACE,
should therefore be possible. RACE supports domain-spexi§tomization of its
Moni t or s. In future work, we will empirically evaluate the ease ofegtation of

these domain-specific resource entities.

Need for selecting an appropriate control algorithm to manage system perfor-
mance. The control algorithm that@ont r ol | er implements relies on certain sys-
tem parameters that can be fine-tuned/modified at runtimehtie\ee effective system
adaptation. For example, FMUF relies on fine-tuning opegasystem priorities of
processes hosting application components to achieveedesistem adaptation; EU-
CON relies on fine-tuning execution rates of end-to-endiagfibns to achieve the
same. The applicability of a control algorithm to a specifioéin/scenario is there-
fore determined by the availability of these runtime confadplie system parameters.
Moreover, the responsiveness of a control algorithm an@dimg r ol | er in restor-
ing the system performance metrics to their desired valatshines the applicabil-
ity of a Cont r ol | er to a specific domain/scenario. During system design time a

Cont r ol | er should be selected that is appropriate for the system ddscaimario.

152



System Domain

Resource Group Resource Group Resource Group

Figure 51: Hierarchical Composition of RACE

* Need for distributed/decentralized adaptive resource maagement. It is easier
to design, analyze, and implemesgntralizedadaptive resource management algo-
rithms that manage an entire system than it is to designyamabnd implement
decentralizechdaptive resource management algorithms. As a the sizeystans
grows, however, centralized algorithms can become beittlensince the computa-
tion time of these algorithms can scale exponentially astimaber of end-to-end
applications increases. One way to alleviate these bettlenis to partition system
resources inteesource groupsnd employ hierarchical adaptive resource manage-
ment, as shown in Figurgl. In our future work we plan to enhance RACE so that a
local instance of the framework can manage resource allocatio8,c@nfiguration,
and runtime adaption within a resource group, wheregelzalinstance can be used

to manage the resources and performance of the entire system

VII.2 Future Research Directions
Based on our experience in designing and developing adapsource management
algorithms, architectures, and frameworks for DRE systemesnow present some future
research directions. Our views and ideas on future resefirebtions are summarized

below.

» Decentralized and/or decoupled resource management algtrms and archi-

tectures. Our solutions to manage resources in DRE systems are buh the

153



assumption that a centralizéskdback lane- communication channel between mon-
itors, centralized controller, and effectors — is alwaysropnd available. Although
this is a reasonable assumption for a significantly largebarmof DRE systems, this
assumption does not hold true for certain flavors of DRE syst@here the availabil-
ity of a communication channel between various pieces ofylséem is intermittent.
Therefore, to broaden the applicability of adaptive reseunanagement solutions,
future research is necessary to design and develop adaptvarce management
solutions that minimize the reliance on a centralized feekldane. To address this
challenge, one potential approach would involve the desmngihdevelopment of adap-
tive resource management solutions that (1) are decergdadind/or decoupled and
(2) employ multiple individual/local feedback lanes in t@st to existing solutions

that a employ centralized controller and rely heavily ondbetralized feedback lane.

Techniques that enable the coordinated and simultaneous epation of multiple
resource management solutions.Adaptation in open DRE systems can be per-
formed at the various levels. These levels of adaptatioludlec(1) thesystem level
e.g, where applications can be deployed/removed end-to-effidrio the system,
(2) theapplication structure levek.g, where components (or assemblies of compo-
nents) associated with one or more applications executitiggisystem can be added,
modified, and/or removed, (3) tihesource levele.g, where resources can be applied
to application components to ensure their timely comphetand (4) theapplication
parameter levele.g, where configurable parameters (if any) of application comp
nents can be tuned. These adaptation levels are intededatee they directly or
indirectly impact system resource utilization and encektal QoS, which affects mis-
sion success. Adaptations at various levels must theré®merformed in a stable
andcoordinatedashion. In ChapteY we presented aimtegratedadaptive resource
management architecture that performed system adapttbes# levels in a coordi-

nated fashion. However, in ultra large-scale syste38k f single integrated resource

154



management solution cannot be employed to manage the gydiem, primarily due
to scalability and reliability concerns. Therefore, flduesearch is needed to design
and develop techniques that enable the simultaneous apeaodtmultiple resource

management solutions in a coordinated and stable fashion.

Techniques that enable the certification of adaptive resouwre management so-
lutions. In the past, certification has been performed extensivetiiegnrdomains of
pharmaceuticals, health-care, automobile productiomufagturing, and assembly.
Certification has not been widespread in the field of softvdeneslopment because
the software industry is relatively young compared to otinelustries. However,
recently since DRE systems are being used in many missiboatriomains, cer-
tification orverification and validatiorf37] of such systems is gaining momentum.
In order to certify the system that can be deployed in hoshigronments, accurate
a priori knowledge of the system behavior (system performance (Qo&)esource
utilization) is required, and system behavior must meetsghecified requirements.
However, when adaptive resource management solutionsrgteged in a system,
determining the behavior of the systenpriori accurately is extremely difficult, if
not impossible. Therefore, currently, the use of adaptg®urce management so-
lutions in mission critical DRE systems is minimal. Futuesearch is necessary to
study and develop new verification and validation techrsghat enable the certifi-
cation of adaptive resource management solutions, andlihemabling the use of

adaptive resource management solutions in mission draystems.

155



APPENDIX A

LIST OF PUBLICATIONS

Our research on HIDRA and RACE has lead to the following jaliroonference and

workshop publications.

A.1 Refereed Journal Publications

1. Nishanth Shankaran, Nilabja Roy, Douglas C. Schmidtgivimg Chen, Xeno-
fon Koutsoukous, and Chenyang Lu, “The Design and Perfocend&valuation of
an Adaptive Resource-management Framework for DistribReal-time Embed-
ded SystemsgEURASIP Journal on Embedded Systems (EURASIP JES): Sisecial
sue on Operating System Support for Embedded Real-TimecAjphs Edited by
Michael Gonzalez, 2008.

2. Nishanth Shankaran, Xenofon Koutsoukos, Chenyang Luglas C. Schmidt, and
Yuan Xue, “Hierarchical Control of Multiple Resources irsibuted Real-time and
Embedded Systemsthe Springer Real-time Systems Journ@lume 39, Numbers
1-3, August, 2008, pages 237-282.

A.2 Refereed Conference Publications
1. Nilabja Roy, John S. Kinnebrew, Nishanth Shankaran, &auiswas, and Douglas
C. Schmidt, “Toward Effective Multi-capacity Resource @dhtion in Distributed
Real-time and Embedded System%he 11th IEEE International Symposium on
Object/Component/Service-oriented Real-time Disted@omputingMay 5-7 2007,

Orlando, Florida.

2. Nishanth Shankaran, Douglas C. Schmidt, Yingming Chema¥on Koutsoukous,

156



and Chenyang Lu, “The Design and Performance of Configu@blaponent Mid-
dleware for End-to-End Adaptation of Distributed RealgifBmbedded Systems”,
The 10th IEEE International Symposium on Object/Compd8entice-oriented Real-

time Distributed ComputingMay 7-9 2007, Santorini Island, Greece.

. Amogh Kavimandan, Krishnakumar Balasubramanian, Migh&hankaran, Anirud-
dha Gokhale, and Douglas C. Schmidt, “QUICKER: A Model-dnvQoS Map-
ping Tool”, The 10th IEEE International Symposium on Object/Compd8entice-

oriented Real-time Distributed Computingay 7-9 2007, Santorini Island, Greece.

. John S. Kinnebrew, Ankit Gupta, Nishanth Shankaran, @a@iswas, and Douglas
C. Schmidt, “A Decision-Theoretic Planner with Dynamic Qmonent Reconfigu-
ration for Distributed Real-Time ApplicationsThe 8th International Symposium
on Autonomous Decentralized Systems (ISADS 2@&dona, Arizona, Wednesday
March 21 - Friday March 23, 2007.

. Dipa Suri, Adam Howell, Douglas C. Schmidt, Gautam Biswhsn Kinnebrew,

Will Otte, and Nishanth Shankaran, “A Multi-agent Architigie for Smart Sensing in
the NASA Sensor WebThe 2007 IEEE Aerospace ConferenBeg Sky, Montana,

March 3-10, 2007.

. Nilabja Roy, Nishanth Shankaran, and Douglas C. Schriddtis-Eye: A Resource
Provisioning Service for Enterprise Distributed Realdiand Embedded Systems”,
Proceedings of the International Symposium on Distrib@egects and Applications

(DOA), Montpellier, France, Oct 30 - Nov 1, 2006.

. John Kinnebrew, Nishanth Shankaran, Gautam Biswas, angjlBs Schmidt, “A
Decision-Theoretic Planner with Dynamic Component Regamétion for Distributed
Real-Time Applications”, poster paper at theenty-First National Conference on

Artificial Intelligence Boston, Massachusetts, July 16-20, 2006.

157



10.

11.

2.

Nishanth Shankaran, Xenofon Koutsoukos, Chenyang Lugl@s C. Schmidt, and
Yuan Xue, “Hierarchical Control of Multiple Resources irsibuted Real-time and
Embedded SystemsRroceedings of the 18th Euromicro Conference on Real-Time

Systems (ECRTS Q®)resden, Germany, July 5-7, 2006.

Dipa Suri, Adam Howell, Nishanth Shankaran, John KinaebWill Otte, Douglas
C. Schmidt, and Gautam Biswas, “Onboard Processing usegdaptive Network
Architecture”,Proceedings of the Sixth annual NASA Earth Science TeaimGlon-
ference College Park, MD, June 27-29, 2006.

Nishanth Shankaran, Jaiganesh Balasubramanian, &00g6chmidt, Gautam Biswas,
Patrick Lardieri, Ed Mulholland, and Tom Damiano, “A FranaWwfor (Re)Deploying
Components in Distributed Real-time and Embedded Systeposter paper at the
Dependable and Adaptive Distributed Systems, Track of ilse RCM Symposium

on Applied Computingdijon, France, April 23-27, 2006.

Nishanth Shankaran, Raymond Klefsatd, “ZEUS: A CORBAnkework for Ser-
vice Location and Creation’Rroceedings of the 2004 International Symposium on

Applications and the Internet (SAINTokyo Japan, January 26-30, 2004.

A.3 Refereed Workshop Publications
Nishanth Shankaran, John S. Kinnebrew, Xenofon D. Kakiss, Chenyang Lu,
Douglas C. Schmidt, and Gautam Biswas, “Towards an Intedgr&anning and
Adaptive Resource Management Architecture for DistridUReal-time Embedded
Systems” Proceedings of the Workshop on Adaptive and ReconfigurahleeHded
Systems (APRES§]) thel4th IEEE Real-Time and Embedded Technology and Appli-
cations Symposiunst. Louis, MO, United States, April 22 - April 24, 2008.

John S. Kinnebrew, Nishanth Shankaran, Gautam Biswdd)anglas C. Schmidt,

158



“A Decision-Theoretic Planner with Dynamic Component Rdauration for Dis-
tributed Real-time and Embedded Systen®rdceedings of the Workshop on Arti-
ficial Intelligence for Space Applications at IJCAI 2Q00Hyderabad, India, January
6-12, 2007.

. John M. Slaby and Nishanth Shankaran, “Software Didiobun Ultra Large-scale
Systems,Proceedings of the ACM OOPSLA 2006 Workshop on Ultra-L&gale
SystemgPortland, Oregon, October 26, 2006.

. Nishanth Shankaran, Xenofon Koutsoukos, Douglas C. &ithmand Aniruddha
Gokhale, “Evaluating Adaptive Resource Management fotrbisted Real-Time
Embedded SystemsProceedings of the 4th Workshop on Adaptive and Reflective
Middleware Grenoble, France, November 28, 2005.

159



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

IEEE Std 802.11-1997 Information Technology — Telecomeations and Informa-
tion Exchange Between Systems — Local and Metropolitan Retaorks — Specific
requirements — Part 11: Wireless Lan Medium Access Conldl¢) And Physical
Layer (PHY) SpecificationdEEE Computer Society, 345 E. 47th St, New York, NY
10017, USA, Nov 1997.

Tarek F. Abdelzaher, John Stankovic, Chengyang Lu, RaagZhang, and Ying Lu.
Feedback Performance Control in Software ServitEEE: Control System23(3):
74-90, June 2003.

Luca Abeni and Giorgio Buttazzo. Hierarchical QoS Maaagnt for Time Sensitive
Applications. InThe Proceedings of the Seventh Real-Time Technology and App
cations Symposium (RTAPRrge 63, Washington, DC, USA, 2001. IEEE Computer
Society.

Akos Lédeczi, Arpad Bakay, Miklés Maroti, Péter Volgyessreg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai. Composing domaicifgpdesign environ-
ments. Computey 34(11):44-51, 2001. ISSN 0018-9162. doi: http://dxalgi/10.
1109/2.963443.

Anne Thomas, Patricia Seybold Group. Enterprise JamsaBeTechnology.
java.sun.com/products/ejb/white_paper.html, DecemB88. Prepared for Sun Mi-
crosystems, Inc.

Karl Johan Astrom and Bjorn WittenmarkComputer-Controlled Systems: Theory
and Design, Second EditioRrentice-Hall, Englewood Cliffs, NJ, 1990.

N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Walin Hard real-time
scheduling: The deadline monotonic approachPtaceedings 8th IEEE Workshop
on Real-Time Operating Systems and Softwatalanta, 1991.

Krishnakumar Balasubramanian, Jaiganesh Balasubmamaleff Parsons, Anirud-
dha Gokhale, and Douglas C. Schmidt. A platform-indepethcimponent modeling
language for distributed real-time and embedded systemRTAS '05: Proceedings
of the 11th IEEE Real Time on Embedded Technology and ApiplhsaSymposium
pages 190-199, Washington, DC, USA, 2005. IEEE Computere§ocISBN 0-
7695-2302-1. doi: http://dx.doi.org/10.1109/RTAS.200D5

Giuseppe Bianchi. Performance Analysis of the IEEE 80Distributed Coordina-
tion FunctionIEEE Journal on Selected Areas in Communicatjdi®1-2):535-547,
Mar 2000. ISSN 0733-8716.

Greg Bollella, James Gosling, Ben Brosgol, Peter DebBiteve Furr, David Hardin,
and Mark Turnbull.The Real-time Specification for Javaddison-Wesley, 2000.

160



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Stuart A. Boyer. Supervisory Control and Data AcquisitionISA, 1993. ISBN
15561721009.

S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A Dynamiadlity of Service Mid-
dleware Agent for Mediating Application Resource UsageRTiES '98: Proceedings
of the IEEE Real-Time Systems Symposjpee 307, Washington, DC, USA, 1998.
IEEE Computer Society. ISBN 0-8186-9212-X.

Scott A. Brandt, Scott Banachowski, Caixue Lin, and @thy Bisson. Dynamic
Integrated Scheduling of Hard Real-Time, Soft Real-Timé Hon-Real-Time Pro-
cesses. IiProceedings of the 24th IEEE International Real-Time Sgst8ymposium
(RTSS '03)page 396, Washington, DC, USA, 2003. IEEE Computer Sacl&gN
0-7695-2044-8.

Owen Brown and Paul Eremenko. Fractionated Space fectires: A Vision for
Responsive Space. FProceedings of the 4th Responsive Space ConferénseAn-
geles, CA, 2006. American Institute of Aeronautics & Astatics.

Kevin Bryan, Lisa C. DiPippo, Victor Fay-Wolfe, MattheMurphy, Jiangyin Zhang,
Douglas Niehaus, David T. Fleeman, David W. Juedes, Chamd binnie R. Welch,
and Christopher D. Gill. Integrated CORBA Scheduling anddrece Management
for Distributed Real-Time Embedded SystemsRIPAS '05: Proceedings of the 11th
IEEE Real Time on Embedded Technology and Applications &jimp pages 375—
384, Washington, DC, USA, 2005. IEEE Computer Society. ISBR695-2302-1.
doi: dx.doi.org/10.1109/RTAS.2005.30.

Bryan Buck and Jeffrey K. Hollingsworth. An API for Rumte Code Patchingint.
J. High Perform. Comput. Appll4(4):317-329, 2000. ISSN 1094-3420. doi: dx.doi.
0rg/10.1177/109434200001400404.

Rolf Carlson. High-Security SCADA LDRD Final Report.edhnical report, Ad-
vanced Information and Control Systems Department, Saxali@nal Laboratories,
Albuguerque, New Mexico, USA, April 2002.

Yingming Chen and Chenyang Lu. Flexible Maximum Urgeiidrst Scheduling
for Distributed Real-Time Systems. Technical Report WUEBBR6-55, Washington
University in St. Louis, October 2006.

David Corman. WSOA-Weapon Systems Open Architectueenbnstration-Using
Emerging Open System Architecture Standards to Enablev&tive Techniques for
Time Critical Target (TCT) Prosecution. DASC’2001 October 2001.

David Corman, Jeanna Gossett, and Dennis Noll. Expeegin a Distributed Real-
time Avionics Domain. InProceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISOR®@Jashington, D.C., April 2002.
IEEE/IFIP.

161



[21] CORPORATE Computer Science and Telecommunicatiorss@®deeping the U.S.
Computer Industry Competitive: Systems IntegratioNational Academy Press,
Washington, DC, USA, 1992. ISBN 0-309-04544-4.

[22] Tommaso Cucinotta, Luigi Palopoli, Luca Marzario, &#ppe Lipari, and Luca
Abeni. Adaptive Reservations in a Linux Environment. IEEE Real-Time and
Embedded Technology and Applications Sympaognages 238-245, 2004.

[23] S. Curtis. The Magnetospheric Multiscale MissionesBlving Fundamental Pro-
cesses in Space Plasm&ASA STI/Recon Technical Reportgdges 48257—+, De-
cember 1999.

[24] Dionisio de Niz and Raj Rajkumar. Partitioning Bin-Ragy Algorithms for Dis-
tributed Real-time Systemgnternational Journal of Embedded Syster?&3):196—
208, 2006.

[25] K.A. Delin and S.P. Jackson. Sensor Web for In Situ Esqtion of Gaseous Biosig-
natures. 2000.

[26] Frank Dellaert and Chuck Thorpe. Robust Car Trackingnty&alman Filtering and
Bayesian Templates. l@onference on Intelligent Transportation Systeh897.

[27] Gan Deng, Jaiganesh Balasubramanian, William Otteyglas C. Schmidt, and
Aniruddha Gokhale. DANCE: A QoS-enabled Component Depkayimand Con-
figuration Engine. InProceedings of the 3rd Working Conference on Component
Deployment (CD 2005pages 67—-82, Grenoble, France, November 2005.

[28] D. R. Fatland, M. J. Heavner, E. Hood, and C. Connor. TEABBONSTER Sensor
Web: Lessons and Opportunities after One Yeé«dU Fall Meeting Abstractgpages
A3+, December 2007.

[29] John D. Fernandez and Andres E. Fernandez. SCADA Sgstéuainerabilities and
RemediationJ. Comput. Small Coll20(4):160-168, 2005.

[30] David Fleeman, Matthew Gillen, A. Lenharth, M. Delandyonnie R. Welch,
David W. Juedes, and Chang Liu. Quality-Based Adaptive ResoManagement
Architecture (QARMA): A CORBA Resource Management Servite 18th Inter-
national Parallel and Distributed Processing SymposiuRDOPS 2004)IEEE Com-
puter Society, 2004.

[31] G. F. Franklin, J. D. Powell, and M. Workmamigital Control of Dynamic Systems,
3rd edition Addition-Wesley, 1997.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and JohrsMks. Design Patterns:

Elements of Reusable Object-Oriented Softwafedison-Wesley, Reading, MA,
1995.

162



[33] Christopher D. Gill. Flexible Scheduling in Middleware for Distributed Rates®d
Real-time ApplicationsPhD thesis, Department of Computer Science, Washington
University, St. Louis, 2002.

[34] M. Gonzélez Harbour, J. J. Gutiérrez Garcia, J. C. R&@e@utiérrez, and J. M. Drake
Moyano. MAST: Modeling and Analysis Suite for Real Time Ajgglions. InPro-
ceedings of the 13th Euromicro Conference on Real-Time®g¢tECRTS '01page
125, Washington, DC, USA, 2001. IEEE Computer Society.

[35] John Hatcliff, William Deng, Matthew Dwyer, Georg Jurand Venkatesh Prasad.
Cadena: An Integrated Development, Analysis, and VeriboaEnvironment for
Component-based Systems. Rroceedings of the 25th International Conference on
Software Engineeringpages 160-172, Portland, OR, May 2003.

[36] Gavin Holland, Nitin Vaidya, and Paramvir Bahl. A Raielaptive MAC Pro-
tocol for Multi-Hop Wireless Networks. IiMobiCom '01: Proceedings of the
7th Annual International Conference on Mobile Computingl &etworking pages
236-251, New York, NY, USA, 2001. ACM Press. ISBN 1-581124® doi:
doi.acm.org/10.1145/381677.381700.

[37] IEEE Computer SocietyStd-1012 1998: IEEE Standard for Software Verification
and Validation New York, 1998.

[38] Software Engineering Institute. Ultra-Large-Scalst®ms: Software Challenge of
the Future. Technical report, Carnegie Mellon Univerdftigtsburgh, PA, USA, Jun
2006.

[39] John Kinnebrew, Nishanth Shankaran, Gautam Biswag,Zouglas Schmidt. A
Decision-Theoretic Planner with Dynamic Component Receoatipn for Distributed
Real-Time Applications. IiPoster paper at the Twenty-First National Conference on
Artificial Intelligence Boston, MA, July 2006.

[40] Sharath Kodase, Shige Wang, Zonghua Gu, and Kang G. $&hjoroving Scalabil-
ity of Task Allocation and Scheduling in Large Distributedd®time Systems using
Shared Buffers. IfProceedings of the 9th Real-time/Embedded Technology pnd A
plications Symposium (RTAS 2008jashington, DC, May 2003. IEEE.

[41] Xenofon Koutsoukos, Radhika Tekumalla, Balachand¥amtarajan, and Chenyang
Lu. Hybrid Supervisory Control of Real-time Systems.|HEE Real-time and Em-
bedded Technology and Applications SymposiBan Francisco, California, March
2005. IEEE Computer Society.

[42] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic dciieg algorithm: exact
characterization and average case behavioRTSS '89: Proceedings of the IEEE
Real-Time Systems Symposjpages 166—171, Washington, DC, USA, 1989. IEEE
Computer Society. doi: 10.1109/REAL.1989.63567.

163



[43] Baochun Li and Klara Nahrstedt. A Control-based Miaeee Framework for QoS
AdaptationsIEEE Journal on Selected Areas in Communicatjdn9):1632—-1650,
September 1999.

[44] Giuseppe Lipari, Gerardo Lamastra, and Luca Abeni. kTagnchronization in
Reservation-Based Real-Time Systent£E Trans. Computer$3(12):1591-1601,
2004.

[45] C.L. Liuand J.W. Layland. Scheduling Algorithms for Miprogramming in a Hard-
Real-time EnvironmentJACM, 20(1):46—61, January 1973.

[46] Jane W. S. LiuReal-time System®&rentice Hall, New Jersey, 2000.

[47] Jane W.S. Liu, Juan Redondo, Zhong Deng, Too Tia, Ri&ettati, Ami Silber-
man, Matthew Storch, Rhan Ha, and Wei Shih. PERTS: A Protagygnvironment
for Real-Time Systems. Technical report, Champaign, ILAUE93.

[48] M. LopezS., S. Armando Alfonzo G., J. Perez O., J.G. GtezS., and A. Montes R.
A metamodel to carry out reverse engineering of c++ code umib sequence dia-
grams. Electronics, Robotics and Automotive Mechanics ConfereR006 2:331—
336, Sept. 2006. doi: 10.1109/CERMA.2006.100.

[49] Joseph P. Loyall, Richard E. Schantz, David Corman, efain. Paunicka, and
Sylvester Fernandez. A Distributed Real-Time Embeddedliégion for Surveil-
lance, Detection, and Tracking of Time Critical Targets|H&EE Real-Time and Em-
bedded Technology and Applications Symposipages 88-97, San Francisco, CA,
2005.

[50] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Feedback Control
Real-Time Scheduling: Framework, Modeling, and AlgorithrReal-Time Syst23
(1-2):85-126, 2002.

[51] Chenyang Lu, Xiaorui Wang, and Christopher Gill. Feaclb Control Real-time
Scheduling in ORB Middleware. IRroceedings of the 9th IEEE Real-time and Em-
bedded Technology and Applications Symposium (R pages 37—-48, Washington,
DC, May 2003.

[52] Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos.dbaek Utilization Control
in Distributed Real-time Systems with End-to-End TaskSEE Trans. on Par. and
Dist. Sys. 16(6):550-561, 2005. ISSN 1045-9219. doi: dx.doi.ord/109/TPDS.
2005.73.

[53] Prakash Manghwani, Joseph Loyall, Praveen SharmahBatGillen, and Jianming
Ye. End-to-End Quality of Service Management for DistrémiReal-Time Embedded
Applications. In18th International Parallel and Distributed Processingngyosium
(IPDPS 2005)volume 03, Los Alamitos, CA, USA, 2005.

164



[54] Pau Marti, Caixue Lin, Scott A. Brandt, Manel Velascadalosep M. Fuertes. Op-
timal State Feedback Based Resource Allocation for ReseQomstrained Control
Tasks. InProceedings of the 25th IEEE International Real-Time Syst8ymposium
(RTSS'04) pages 161-172, Washington, DC, USA, 2004. IEEE Computeie§o
ISBN 0-7695-2247-5. doi: dx.doi.org/10.1109/REAL.2088L.

[55] D. Mills. The Network Time Protocol. IRFC 1059 Network Working Group, 1988.

[56] Ingo  Molnar. Linux  with  Real-time Pre-emption Patches
http://ww. ker nel . org/ pub/Iinux/kernel/projects/rt/, Sep
2006.

[57] Light Weight CORBA Component Model Revised Submissiinect Management
Group, OMG Document realtime/03-05-05 edition, May 2003.

[58] Object Management Groug:he Common Object Request Broker: Architecture and
Specification, Revision 2.®bject Management Group, December 2001.

[59] Common Object Request Broker Architecture Version 1Qbject Management
Group, OMG Document formal/2004-03-12 edition, March 2004

[60] CORBA Component©bject Management Group, OMG Document formal/2002-06-
65 edition, June 2002.

[61] Deployment and Configuration Adopted Submissi@bject Management Group,
OMG Document mars/03-05-08 edition, July 2003.

[62] Object Management GroupReal-time CORBA SpecificatioObject Management
Group, OMG Document formal/05-01-04 edition, August 2002.

[63] Moonju Park and Yookun Cho. Feasibility Analysis of darReal-Time Periodic
Tasks. J. Syst. Softw.73(1):89-100, 2004. ISSN 0164-1212. doi: dx.doi.org/10.
1016/S0164-1212(02)00236-X.

[64] Binoy Ravindran, Lonnie Welch, and Behrooz Shirazi.s&&ce Management Mid-
dleware for Dynamic, Dependable Real-Time SysteReal-Time Syst20(2):183—
196, 2001. ISSN 0922-6443. doi: dx.doi.org/10.1023/A8D01921230.

[65] Richard Schantz, Joseph Loyall, Michael Atighetchi) @artha Pal. Packaging Qual-
ity of Service Control Behaviors for Reuse. Rioceedings of thé!" IEEE Inter-
national Symposium on Object-Oriented Real-time DistadlComputing (ISORC)
pages 375385, Crystal City, VA, April/May 2002.

[66] Douglas C. Schmidt and Stephen D. Hust@+ Network Programming, Volume
2. Systematic Reuse with ACE and FrameworRgldison-Wesley, Reading, Mas-
sachusetts, 2002.

165


http://www.kernel.org/pub/linux/kernel/projects/rt/

[67] Douglas C. Schmidt, David L. Levine, and Sumedh Mungé&ke Design and Per-
formance of Real-time Object Request Broke@omputer Communication21(4):
294-324, April 1998.

[68] Douglas C. Schmidt, Rick Schantz, Mike Masters, Josea#ss, David Sharp, and
Lou DiPalma. Towards Adaptive and Reflective Middleware Katwork-Centric
Combat Systems. I8rossTalk - The Journal of Defense Software Engineepages
10-16, Hill AFB, Utah, USA, nov 2001. Software Technologygart Center.

[69] Samarth H. Shah, Kai Chen, and Klara Nahrstedt. Dyn&aicdwidth Management
for Single-hop Ad Hoc Wireless Networkislob. Netw. Appl.10(1-2):199-217, 2005.
ISSN 1383-469X. doi: doi.acm.org/10.1145/1046430.1@%64

[70] Nishanth Shankaran, Xenofon Koutsoukos, Chenyanddauglas C. Schmidt, and
Yuan Xue. Hierarchical Control of Multiple Resources in tilsuted Real-time and
Embedded Systems. RProceedings of the Euromicro Conference on Real-Time Sys-
tems (ECRTS 0pPresden, Germany, July 2006.

[71] Praveen Kaushik Sharma, Joseph P. Loyall, George hefgan, Richard E. Schantz,
Richard Shapiro, and Gary Duzan. Component-based dynamsi@daptations in
distributed real-time and embedded systems.CaoplS/DOA/ODBASE (2)pages
1208-1224, Agia Napa, Cyprus, 2004. Springer.

[72] David C. Sharp and Wendy C. Roll. Model-Based Integratiof Reusable
Component-Based Avionics System. Proceedings of the Wogken Model-Driven
Embedded Systems in RTAS 2003, May 2003.

[73] David C. Sharp, Edward Pla, Kenn R. Luecke, and Ricardda$san Il. Evaluating
Real-time Java for Mission-Critical Large-Scale Embed8gdtems. IMEEE Real-
time and Embedded Technology and Applications Sympo¥Siuashington, DC, May
2003. IEEE Computer Society.

[74] John A. Stankovic, Ruiging Zhu, Ram Poornalingam, Giaeig Lu, Zhendong Yu,
Marty Humphrey, and Brian Ellis. VEST: An Aspect-Based Casifion Tool for
Real-Time Systems. IRTAS '03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Sympospage 58, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1956-3.

[75] David B. Stewart and Pradeep K. Khosla. Real-time Sahegd of Sensor-Based
Control Systems. In W. Halang and K. Ramamritham, editBesl-time Program-
ming Pergamon Press, Tarrytown, NY, 1992.

[76] SUN. Java Remote Method |Invocation (RMI) Specification
j ava. sun. coni product s/ jdk/ 1. 2/ docs/ gui de/ rm /spec/rm TOC. doc. ht m ,
2002.

166


java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Sun Microsystems. Enterprise JavaBeans Specification
java.sun.com/products/ejb/docs.html, August 2001.

Dipa Suri, Adam Howell, Nishanth Shankaran, John Kbmes, Will Otte, Dou-
glas C. Schmidt, and Gautam Biswas. Onboard Processing trsenAdaptive Net-
work Architecture. InProceedings of the Sixth Annual NASA Earth Science Technol-
ogy ConferenceCollege Park, MD, June 2006.

G. K. Wallace. The JPEG Still Image Compression Stathdaommunications of the
ACM, 34(4):30-44, April 1991.

Nanbor Wang and Christopher Gill. Improving real-tisyestem configuration via a
gos-aware corba component modelHICSS '04: Proceedings of the Proceedings of
the 37th Annual Hawaii International Conference on Systermariges (HICSS’04) -
Track 9 page 90273.2, Washington, DC, USA, 2004. IEEE Computeie§0dSBN
0-7695-2056-1.

Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale@j@Rodrigues, Balachan-
dran Natarajan, Joseph P. Loyall, Richard E. Schantz, andtGpher D. Gill. QoS-

enabled Middleware. In Qusay Mahmoud, editdiddleware for Communications
pages 131-162. Wiley and Sons, New York, 2004.

Xiaorui Wang, HuangMing Huang, Venkita Subramoniahg@yang Lu, and Christo-
pher Gill. CAMRIT: Control-based Adaptive Middleware foeR-time Image Trans-
mission. InProc. of the 10th IEEE Real-time and Embedded Tech. and égifins
Symp. (RTAS)oronto, Canada, May 2004.

Xiaorui Wang, Dong Jia, Chenyang Lu, and Xenofon Koutsis. Decentralized
utilization control in distributed real-time systems. RTSS '05: Proceedings of the
26th IEEE International Real-Time Systems Sympogpages 133-142, Washington,
DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2490-Gi: dx.doi.org/10.
1109/RTSS.2005.15.

Xiaorui Wang, Chenyang Lu, and Xenofon Koutsoukos. &rding the Robustness of
Distributed Real-Time Middleware via End-to-End Utilimat Control. INnRTSS '05:
Proceedings of the 26th IEEE International Real-Time Syst&ymposiuppages
189-199, Washington, DC, USA, 2005. IEEE Computer Soci8BN 0-7695-2490-
7. doi: dx.doi.org/10.1109/RTSS.2005.20.

Greg Welch and Gary Bishop. An introduction to the Kainfalter: Course 8. In
Computer Graphics, Annual Conference on Computer Gragrnddnteractive Tech-
niques Los Angeles, CA, USA, August 2001. SIGGRAPH, ACM Press, iadd-
Wesley Publishing Company.

L. R. Welch, B. A. Shirazi, B. Ravindran, and C. BruggeamaDeSiDeRaTa: QoS
Management Technology for Dynamic, Scalable, Dependab#-tRne Systems. In

167



IFACs 15th Workshop on Distributed Computer Control Syst@dCCS98) IFAC,
September 1998.

[87] Brian White and Jay Lepreau et al. An Integrated Expernital Environment for Dis-
tributed Systems and Networks. Bioceedings of the Fifth Symposium on Operating
Systems Design and Implementatipages 255-270, Boston, MA, December 2002.
USENIX Association.

[88] Victor Fay Wolfe, Lisa C. DiPippo, Ramachandra Bethial&gr, Gregory Cooper,
Russell Johnston, Peter Kortmann, Ben Watson, and Stevéaie\Ws. RapidSched:
Static Scheduling and Analysis for Real-Time CORBA. WORDS '99: Proceed-
ings of the Fourth International Workshop on Object-OrenhiReal-Time Depend-
able Systemgage 34, Washington, DC, USA, 1999. IEEE Computer SociS§N
0-7695-0101-X.

[89] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distribut®8ject Model for the Java
System.USENIX Computing Systen®4):265-290, November/December 1996.

[90] John A. Zinky, David E. Bakken, and Richard Schantz. hectural Support for
Quality of Service for CORBA Object3.heory and Practice of Object SysterB€L):
1-20, 1997.

168



	Dedication
	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Evolution of Middleware Technology
	Distributed Object Computing (DOC) Middleware
	QoS-enabled DOC Middleware
	Conventional Component Middleware
	QoS-enabled Component Middleware

	Overview of Research Challenges
	Research Approach
	Research Contributions
	Dissertation Organization

	Adaptive Resource Management Algorithms and Architectures
	Case Study: Target Tracking DRE System
	Related Research
	Unresolved Challenges
	The Hierarchical Distributed Resource-management Architecture (HiDRA)
	Control Design and Analysis
	Problem Formulation
	Stability Analysis

	Performance Results and Analysis
	Hardware and Software Testbed
	Target Tracking DRE System Implementation
	Experiment Configuration
	Experiment 1 : Constant Bandwidth Availability and Constant Workload
	Experiment 2: Decoupled Independent Feedback Control Loops
	Experiment 3: Constant Bandwidth Availability and Varying Workload
	Experiment 4 : Varying Bandwidth Availability and Constant Workload
	Experiment 5: Varying Bandwidth Availability and Varying Workload
	Summary

	Summary

	Adaptive Resource Management Frameworks
	Related Research
	Conventional and QoS-enabled DOC Middleware
	Conventional and QoS-enabled Component Middleware
	Unresolved Challenges

	Structure and Functionality of RACE
	Empirical Results and Analysis
	Hardware and Software Testbed
	Evaluation of RACE's Scalability
	Summary of Experimental Analysis

	Summary

	Case Study: Magnetospheric Multi-scale Mission DRE System
	MMS Mission System Overview
	Adaptive Resource Management Requirements of the MMS Mission System
	Requirement 1: Resource Allocation To Applications
	Requirement 2: Configuring Platform-specific QoS Parameters
	Requirement 3: Enabling Dynamic System Adaptation and Ensuring QoS Requirements are Met

	Addressing MMS Mission Requirements Using RACE
	Addressing Requirement 1: Resource Allocation to Applications
	Addressing Requirement 2: Configuring Platform-specific QoS Parameters
	Addressing Requirement 3: Monitoring End-to-end QoS and Ensuring QoS Requirements are Met

	Empirical Results and Analysis
	Hardware and Software Testbed
	MMS DRE System Implementation
	Evaluation of RACE's Adaptive Resource Management Capabilities
	Summary of Experimental Analysis


	Case Study: Configurable Space Mission Systems
	CSM System Overview
	Challenges Associated with the Autonomous Operation of a CSM System
	Challenge 1: Dynamic Addition and Modifications of Mission Goals
	Challenge 2: Adapting to Fluctuations in Input Workload, Application Resource Utilization, and Resource Availability
	Challenge 3: Adapting to Complete or Partial Loss of System Resources

	Addressing CSM System Challenges
	Addressing Challenge 1: Dynamic Addition and Modification of Mission Goals
	Addressing Challenge 2: Adapting to Fluctuations in Input Workload and Application Resource Utilization
	Addressing Challenge 3: Adapting to Complete or Partial Loss of System Resources

	Performance Results and Analysis
	Hardware and Software Testbed
	Prototype CSM System Implementation
	Experiment Design
	Experiment 1: Addition of Goals at Runtime
	Experiment 2: Varying Input Workload
	Experiment 3: Varying Resource Availability


	Case Study: SEAMONSTER Sensor-web
	SEAMONSTER Sensor-web Overview
	Adaptive Resource Management Requirements of the SEAMONSTER Sensor-web
	Requirement 1: Online Resource Allocation To Data Processing Applications
	Requirement 2: Enabling the Sensor-web to Dynamically Adapt to Fluctuations in Input Workload

	Addressing SEAMONSTER Requirements Using RACE
	Addressing Requirement 1: Online Resource Allocation
	Addressing Requirement 2: Runtime System Adaptation

	Performance Results and Analysis
	Hardware and Software Testbed
	System Implementation and Experiment Design
	Evaluation of RACE's Adaptive Resource Management Capabilities


	Concluding Remarks
	Lessons Learned
	Adaptive Resource Management Algorithms and Architectures
	Adaptive Resource Management Frameworks

	Future Research Directions

	List of Publications
	Refereed Journal Publications
	Refereed Conference Publications
	Refereed Workshop Publications

	REFERENCES

