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Abstract—Cloud computing enables elastic and dynamic
resource provisioning while providing cost-effective computing
solutions. However, while cloud computing provides customers
access to scalable and elastic resources, it does not guarantee
the user’s expectations of Quality of Service (QoS). This is
because a number of customers share resources in the cloud
infrastructure simultaneously: compute-intensive processes and
network traffic associated with one customer often impact
the performance of other applications operated on the same
infrastructure in unexpected ways. The inability of the cloud to
enforce QoS and provide execution guarantees prevents cloud
computing from becoming useful for distributed, real-time and
embedded (DRE) systems [1].

Providing the required levels of service to support DRE
systems in the cloud is complicated for a variety of reasons:
(1) lack of effective monitoring that prevents timely auto-
scaling needed for DRE systems, (2) hypervisors and data-
center networks that do not support real-time scheduling of
resources, and (3) absence of efficient and predictable fault
tolerant mechanisms with acceptable overhead and consistency.
This paper describes ongoing and proposed doctoral research
to address these challenges.
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I. ONGOING RESEARCH

Our ongoing research has focused on real-time and fault-
tolerant cloud infrastructures for distributed real-time and
embedded (DRE) systems. To overcome Challenge 1 in
the abstract, a scalable and QoS-enabled cloud monitoring
system (SQRT-C) was developed using OMG Data Distri-
bution Service (DDS) real-time publish/subscribe (pub/sub)
middleware. As real-time applications are deployed in the
cloud, a finer-grained resource monitoring service is desired
for better auto-scaling and fault-tolerant mechanisms. The
SQRT-C design comprises two primary software artifacts as
shown in Figure 1: DDS-based pub/sub communication and
a Monitoring Manager. The DDS-based pub/sub commu-
nication is needed to disseminate monitoring information
for virtual resources from the source (i.e., publishers) to
the sinks (i.e., the subscribers) while also supporting the
QoS requirements on the dissemination of the monitored
information. The Monitoring Manager serves as the orches-
trator for the deployment of data-writers and data-readers of
the DDS pub/sub mechanism. To evaluate the performance
of our monitoring infrastruture, we compared the response
time and jitter between RESTful services that are generally

used as the communication middleware in the cloud and
our DDS-based SQRT-C. Our results indicate that SQRT-C
outperforms RESTful services in terms of response time and
jitter for real-time applications.

Monitoring 
Manager

Cluster Node

 VM

Cluster Node

VM Subscribing 
VM

Front-end Node

3. Publish Topic 5. Subscribe

Update 
VM Location Info

4. Receive 
Topic

2. Create 
Publisher 

Monitored
 VM

1. Request
Monitoring Service

TCP/IP
Multicast

DB Connection

Figure 1. SQRT-C System Architecture

II. PROPOSED RESEARCH

Developing solutions to Challenges 2 and 3 in the abstract
require a deep understanding of the problem space. Our
survey of past research in this area reveal that these have
focused on: 1) timeliness in data-center networks and hy-
pervisors, and 2) high availability via replications of virtual
machines. For example, Wilson et al. [2] suggests D3,
which is a deadline-aware control protocol customized for
the data-center environment, as a solution to achieve real-
time data-center networks with solutions to address EDF
(Earliest Deadline First) scheduling and rate reservations
in the data center. For timeliness in hypervisors, [3] and
[4] propose modifying hypervisor schedulers for real-time
computing. For example, [5] presents Remus, which is a
software system that provides high availability via efficient
virtual machine replications with support for extending the
technique to make snapshots used for live migrations.

However, resolving challenges associated with a property
such as timeliness and high availability does not mean that
the architecture with the suggested solutions can be applied



in a straightforward fashion for DRE systems. In fact, there
is a trade-off between timeliness and high availability with
strong consistency. The compromise characteristics between
response time and consistency was introduced in the com-
parison between BASE (Basically Available replicated Soft
state with Eventual consistency) and ACID (atomicity, con-
sistency, isolation, and durability) database models. Addi-
tionally, in the context of the CAP (Consistency, Availability,
and Partition tolerance) theorem, support for extremely rapid
responses and fault-tolerance make consistency to be op-
tional for developers, and a justification was made for cloud
services with weak consistency or assurance properties [6].

The ACID model has a pessimistic behavior. It will fail if
it cannot reach consistency guarantees, and response time is
less important than consistency. On the other hand, response
time is the most important factor for BASE systems, and
consistency may be sacrificed to ensure it. For DRE systems
hosted in the cloud, both availability with low latency
and strong consistency are significant, and therefore need
a solution that will make effective trade-offs between the
conflicting properties depending on service requirements. As
a result, realizing fault-tolerant cloud computing architecture
satisfying strict timeliness is a challenging research topic.
Moreover, since different DRE systems may have different
requirements, we need a solution that can be strategized.

Redundancy-based fault recovery mechanisms for DRE
systems have been researched in the past. The primary
characteristics of the fault recovery mechanisms are the
following:

1) Replication using primary-backup replication is
attractive because it consumes fewer resources in
comparison to using active replication while delivering
comparable performance in optimized conditions.

2) A proactive, resource-aware fail-over strategy at-
tempts to maximally meet response times of appli-
cations by dynamically ordering the fail-over targets
based on measured resource utilization [7].

3) A resource-aware allocation based on backup
resource overbooking leverages the properties of
the primary-backup scheme, wherein the fact that a
backup replica does not impose the same load on a
resource as the primary is exploited to pack more
backup replicas of different applications on the avail-
able resources [8].

Our proposed research related to the fault recovery mecha-
nisms is investigating how these mechanisms can be adapted
for virtualized environments to support high-availability of
cloud services while optimizing resource usage and satisfy-
ing service level agreement (SLA). Consequently, to achieve
reliable cloud-based DRE systems, the following steps are
needed, which will form the basis of the doctoral research.

• Implementation of fault-tolerant cloud architecture ap-
plying redundancy-based fault recovery mechanisms

• Performance analysis regarding the trade-off between
strict timeliness and strong consistency

• Integration of real-time hypervisors and deadline-aware
data-center networks
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