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Abstract—Applications are increasingly being deployed in
the Cloud due to benefits stemming from economy of scale,
scalability, flexibility and utility-based pricing model. Although
most cloud-based applications have hitherto been enterprise-
style, there is a new trend towards hosting performance-
sensitive applications in the cloud that demand both high
availability and good response times. In the current state-
of-the-art in cloud computing research, there does not exist
solutions that provide both high availability and acceptable
response times to these applications in a way that also optimizes
resource consumption in data centers, which is a key consid-
eration for cloud providers. This paper addresses this dual
challenge by presenting a design of a fault-tolerant framework
for virtualized data centers that makes two important contri-
butions. First, it describes an architecture of a fault-tolerance
framework that can be used to automatically deploy replicas
of virtual machines in data centers in a way that optimizes
resources while assures availability and responsiveness. Second,
it describes a specific formulation of a replica deployment
combinatorial optimization problem that can be plugged into
our strategizable deployment framework.

Keywords-fault-tolerance, cloud computing, framework,
availability and response times.

I. INTRODUCTION

Cloud computing is a large-scale distributed computing
paradigm based on the principles of utility computing that
offers a variety of resources such as CPU and storage,
systems software, and applications as services over the
Internet [1]. The primary driving force behind the success of
cloud computing is economy of scale. Traditionally although
the cloud has been used to support enterprise applications,
lately a class of performance-sensitive applications that
demand both high availability and good response times are
moving towards cloud-based hosting [2], [3].

Supporting performance-sensitive applications in the
cloud requires that the cloud infrastructure be able to meet
the response time, reliability and high availability require-
ments of these applications. A scrutiny of contemporary
solutions for cloud computing reveals that the algorithms
and mechanisms used to support applications in the cloud are
tailored to meet the performance and reliability requirements
of enterprise applications and not the performance-sensitive
applications. To address the more stringent quality of service

(QoS) requirements of these applications including good
response times and high availability, new algorithms and
techniques will need to be designed to manage the different
cloud platform entities, such as the service architecture, data
center network architecture, and virtualized resources.

Addressing the high availability and reliability concerns
of performance-sensitive applications will require redundant
virtual machines (VMs) and state synchronization among
replica VMs as well as migrations of VMs. Traditional
statically defined schemes of replication placement and
resource allocation will often not be applicable due to the
changing dynamics of a cloud environment. Thus, in this
paper we focus on a fault tolerance architecture in the
cloud geared to provide high availability and reliability
for performance-sensitive applications. Moreover, to assure
good response times to applications despite failures while
also optimally utilizing resources, we present an Integer
Linear Programming (ILP) formulation of a problem that
allocates VMs and their replicas to physical resources in
a data center that satisfies the QoS requirements of the
applications. This and many other VM replica allocation
algorithms can be designed and plugged into the framework
we are building.

The rest of this paper is organized as follows: Section II
describes relevant related work comparing it with our con-
tributions; Section III describes the system architecture that
provides high availability solutions to performance-sensitive
applications hosted in the cloud; Section IV presents the
ILP formulation; and Section V presents concluding remarks
alluding to future work.

II. RELATED WORK

This section presents related work and compares it with
our contributions. In particular, we organize the related work
along three dimensions as described below.
Autonomic Virtual Machine Placement: A related work
closest to ours appears in [4]. The authors present a pro-
totype of a VM placement system where an autonomic
controller dynamically manages the mapping of VMs onto
physical hosts according to policies specified by the user.
As in our case, they too suggest a system architecture



for autonomic virtual machine placement in accordance
with algorithms defined by users. However, our research
additionally considers dynamic allocation of VM replicas
with high-availability solutions to accomplish a fault-tolerant
cloud computing architecture. Therefore, our case takes a
different problem model.
Placement Algorithms: Lee et al. [5] investigate the VM
consolidation heuristics to discover the assumptions on how
virtual machines operate when the VMs reside in the same
host machine. Additionally, they explore how the dimensions
of resource information such as CPU, memory, and network
bandwidth is in effect to augment the benefits of VM
consolidation. The work in [6] proposes a modified Best Fit
Decreasing (BFD) algorithm as VM reallocation heuristics
for an efficient resource management. The evaluation in the
paper shows that the suggested heuristics minimize energy
consumption with providing high Quality of Service (QoS).
While our work may benefit from these prior works, we are
additionally concerned with placing replicas in a way that
after failover the applications will continue to obtain the
desired QoS.
High Availability Solutions: Our solution leverages the
continuous check-pointing based Remus [7] high availability
solution to achieve fault tolerance in cloud, which we have
explained later. However, there are several other solutions
available. VMware fault tolerance [8] is one of them which
runs primary and backup VMs in lock-step [9] using de-
terministic replay. This keeps both the VMs in sync but
it requires execution at both the VMs and needs network
connection of high quality.

Kemari [10] is another approach which takes advantage
of both lock-stepping and continuous check-pointing ap-
proaches. It synchronizes primary and secondary VMs just
before the primary VM has to send an event to devices such
as storage and networks. At this point, the primary VM
pauses and Kemari updates the state of secondary VM to
the current state of primary VM. Thus, VMs are synchro-
nized with less complexity compared to lock-stepping and
output latency of continuous check-pointing due to external
buffering mechanism is also avoided.

Another important work on high availability is Hy-
draVM [11]. It is storage based, memory efficient high
availability solution which does not need a passive memory
reservation for backups. It uses incremental check-pointing
like Remus, but it maintains a complete recent image of VM
in shared storage instead of memory replication. Thus, it re-
duces hardware costs for providing high availability support
and provides greater flexibility as recovery can happen on
any physical host having access to shared storage.

III. SYSTEM ARCHITECTURE FOR DELIVERING HIGH
AVAILABILITY AND RESPONSE TIMES

This section presents our high availability system archi-
tecture to support performance-sensitive applications in the

cloud data centers. We show how the architecture supports a
pluggable VM replica allocation mechanism that can be used
to utilize resources optimally while providing good response
times to applications despite failures.

A. Overview of Remus and ACE

We briefly cover Remus and ACE, which are two software
architectures we leverage in our work.

Remus [7] is a software system that provides OS- and
application-agnostic high availability on commodity hard-
ware. The choice of Remus is based on the fact that it
provides seamless failure recovery and does not require
lock step-based whole-system replication. The use of spec-
ulative execution [7] in the Remus approach ensures that
the performance degradation due to replication is kept to
a minimum. Speculative execution decouples the execu-
tion of the application from the synchronization issues.
Since Remus provides protection against single host fail-
stop failures only, if both the primary and backup hosts
fail concurrently, the failure recovery will not be seamless;
however, Remus ensures that the system’s data will be left
in a crash consistent state.

The ADAPTIVE Communication Environment
(ACE) [12] is an open-source object-oriented framework for
concurrent communication software. The ACE framework
supports the communication software tasks including event
demultiplexing and event handler dispatching, service
initialization, inter-process communication, shared memory
management, dynamic reconfiguration of distributed
services, and concurrent execution and synchronization. For
our work, we make use of the ACE Reactor framework [13]
for dispatching events, the ACE Service Configurator
framework for configuring software components, and
the ACE Common Data Representation (CDR) for
implementing the communication protocol between
remotely located software components.

B. System Architecture

The conceptual system design of our proposed system is
illustrated in Figure 1. The system of interest is the block
with blue dashed line, and comprises Local Fault Manager
(LFM) and Global Fault Manager (GFM) applications. The
inputs of the system to these manager entities are resource
information of physical hosts and VMs gathered directly
from a virtual machine hypervisor. CPU, memory, network,
storage, and processes are some of the resource information
used in our system. The LFM and GFM applications are
responsible for deploying VM replicas in data centers.

The LFM retrieves the resource information from a VM,
and passes that information periodically to the GFM. The
GFM employs a pluggable deployment algorithm framework
and a replication manager to decide where the replica of a
VM should reside. Replication manager is the core compo-
nent of the GFM and is responsible to run the deployment



Figure 1. Conceptual System Design

algorithm plugged in by the user in the framework. The
output of the system is the mapped host machine where
the replica of a VM will be stored. This output is then
supplied to the LFM running on the host machine where
the VM is located to take the necessary actions. Both
the LFM and GFM interact with existing high availability
services (e.g., Remus) provided in hypervisors like Xen, and
communication middleware frameworks, such as ACE.

The LFM runs a High Availability Service (HAS) to
serve the high availability functionality for VMs under its
purview. This solution is based on the Strategy pattern [14]
wherein the HAS provides an interface for managing the
high availability functionality. This includes starting and
stopping the replication operations, and automatic failover
from primary VM to the backup VM in case of a failure.

Once the HAS is started and while it is operational, it
keeps replicating state from primary VM to backup VM. If
a failure occurs during this period, it switches to the backup
VM making it the active VM. When HAS is stopped, it stops
the replication process and high availability is discontinued.
This functionality can be provided using any suitable high
availability solution in the cloud environment using the
Strategy pattern, which enables us the flexibility to change
the high availability solution if and when needed.

In the context of HAS, the job of the GFM is to provide
LFM with backup VMs which can be utilized by HAS for
providing high availability. In the event of failure of primary
VM, HAS ensures that the processing switches to the backup
VM and it becomes the primary VM. Simultaneously, the
LFM informs GFM of the failure event and requests ad-
ditional backup VMs on which a replica can start. It is the
GFM’s responsibility to provide resource to LFM in a timely

manner so that it can move from crash consistent state to
seamless recovery fault tolerant state as soon as possible
thereby assuring average response times of performance-
sensitive applications.

C. Virtual Machine Replica Placement

Deployment algorithms are used to determine which host
machine should store the VM and VM replica in the context
of fault management. There are different types of algorithms
to make this decision. Optimization algorithms, such as
bin packing, genetic algorithms, multiple knapsack, and
simulated annealing are some of the choices used in a large
number of industrial applications today. Moreover, different
heuristics of the bin packing algorithm are commonly uti-
lized techniques for VM replica placement optimization, in
particular.

In bin packing algorithms [15], the goal is to use mini-
mum number of bins to pack the items of different sizes.
Best-Fit, First-Fit, First-Fit-Decreasing, Worst-Fit, Next-Fit,
and Next-Fit-Decreasing are the different heuristics of this
algorithm. All these heuristics will be part of the middleware
we are designing, and will be provided to the framework user
to run the bin packing algorithm.

In our project, we identify VMs and host machines as
the item and bin elements of the algorithm, respectively.
Resource information of a VM, such as CPU, memory,
and network are utilized as their weights to employ the
bin packing algorithm. Resource information are aggregated
into a one single scalar value, and one dimensional bin
packing is employed to find the best host machine where the
replication of a VM will be stored. Our framework allows
plugging in of different VM replica placement algorithms. A
concrete technique we have used in our replication manager
is described in Section IV.

D. Providing High Availability

In the architecture shown in the Figure 2, replicas of VMs
are automatically deployed in hosts assigned by a GFM and
LFMs. The following are the steps of the system described
in the figure.

1) A GFM service is started, and the service waits for
connections from LFMs.

2) LFMs will join the system by connecting to the GFM
service.

3) The joined LFMs send resource information of VMs
and physical hosts such as CPU, memory, and network
bandwidth to the GFM.

4) Based on the resource information, the GFM deter-
mines an optimal deployment plan for joined physical
hosts and VMs by running a deployment algorithm
which can be selected by users.

5) The GFM will notify LFMs to execute high availabil-
ity processes in LFMs with information of source VMs
and destination hosts.



Figure 2. System Architecture

A GFM service can be deployed on a physical machine
host or a virtual machine host. In our system design, to
accomplish the high availability of a GFM service, a GFM
is deployed in a VM and a GFM’s VM replica is located
in another physical host. When the host where the GFM is
located fails, the backup VM containing the GFM service
is up and running to continue the GFM service via a high
availability process.

The GFM framework provides an interface for a deploy-
ment algorithm. Through the framework interfaces, system
developers can implement their own algorithms and examine
performance of the algorithms comparing to other existing
algorithms. The Strategy pattern is used to provide a more
flexible way for system developers to implement the algo-
rithms and change the deployment algorithm at run-time for
system administrators. The ACE Reactor framework [13] is
used to detect and dispatch the events occurred in the GFM,
and the ACE CDR is used to process a stream of data from
LFMs by a defined protocol between a GFM and LFMs.

LFMs are placed in physical hosts used to run VMs in data
centers. LFMs work with a hypervisor and a high availability
system to collect resource information of VMs and hosts and
to replicate VMs to other backup hosts, respectively.Through
the high availability solution, a VM’s disk, memory, and
network connections are actively replicated to other hosts
and a replication of the VM in a backup host is instantiated
when the primary VM is failed. Like a GFM, to implement
the LFM framework, the ACE Reactor framework is used
to detect and dispatch events such as time out events for
sending resource information and input events from a GFM

to control processes of high availability systems. The ACE
CDR is also used to process a stream of data from a GFM
according to the protocol. A LFM connects and gets resource
information from a hypervisor via the libvirt library.

E. System Configuration

Figure 3 shows the use case diagram of the system in
which roles and responsibilities of software components are
defined. A user as a system administrator should configure
and run a GFM service and LFM services. A user as a
system developer can implement deployment algorithms to
find and use a better deployment solution. The LFM services
continuously update resource information of VMs and hosts
using a configured interval by a user. The GFM service uses
the deployment algorithms and the resource information to
create a deployment plan for replications of VMs. Then, the
GFM sends messages to LFMs to run a backup process via
high availability solutions.

Local Fault Manager (LFM)

Global Fault Manager (GFM)

System Admin

Configure/Run 
GFM

Configure/Run 
LFM

GFM System

LFM System
Run/Stop backup 

process

Update VM and Host 
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Run deployment 
algorithms

«uses»

Implement  
deployment 
algorithms
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System Developer

Figure 3. Use Case Diagram

IV. INTEGER LINEAR PROGRAMMING PROBLEM
FORMULATION

One of our goals is to develop a framework that enables
plugging in different user-supplied placement algorithms.
We expect that our framework will compute replica place-
ment decisions in an online manner in contrast to making
offline decisions. This section describes an instance of
VM replica placement algorithm we have developed. We
have formulated it as an Integer Linear Programming (ILP)
problem.

In our ILP formulation we assume that a data center
comprises multiple hosts. Each host can in turn comprise
multiple VMs. We also account for the utilizations of the
physical host as well as the VMs on each host. Furthermore,
not only do we account for CPU utilizations but also memory
and network bandwidth usage. All of these resources must
be accounted for in determining the placement of the replicas
because on a failover we expect our applications to continue
to receive their desired QoS properties. Table I describes the
variables used in our ILP formulation.



Table I
NOTATION AND DEFINITION OF THE ILP FORMULATION

Notation Definition
xij Boolean value to determine the ith VM to

the jth physical host mapping
x′
ij Boolean value to determine the replication

of the ith VM to the jth physical host
mapping

yj Boolean value to determine usage of the
physical host j

ci CPU usage of the ith VM
c′i CPU usage of the ith VM’s replica
mi Memory usage of the ith VM
m′

i Memory usage of the ith VM’s replica
bi Network bandwidth usage of the ith VM
b′i Network bandwidth usage of the ith VM’s

replica
Cj CPU capacity of the jth physical host
Mj Memory capacity of the jth physical host
Bj Network bandwidth of the jth physical

host

We now present the ILP problem formulation with defined
constraints that need to be satisfied to find an optimal
allocation of VM replicas.

minimize
m∑
j=1

yi (1)

subject to
m∑
j=1

xij = 1 ∀i (2)

m∑
j=1

x′
ij = 1 ∀i (3)

n∑
i=1

cixij +

n∑
i=1

c′ix
′
ij ≤ Cjyj ∀j (4)

n∑
i=1

mixij +

n∑
i=1

m′
ix

′
ij ≤Mjyj ∀j (5)

n∑
i=1

bixij +

n∑
i=1

b′ix
′
ij ≤ Bjyj ∀j (6)

n∑
i=1

xij +

n∑
i=1

x′
ij = 1 ∀j (7)

xij = {0, 1}, x′
ij = {0, 1}, yj = {0, 1} (8)

The objective function of the problem is to minimize
the number of physical hosts by satisfying the requested
resource requirements of VMs and their replicas. Constraints
(2) and (3) ensure every VM and VM’s replica is deployed
in a physical host. Constraints (4), (5), (6) guarantee a

total capacity of CPU, memory, and network bandwidth
of deployed VMs and VMs’ replicas are packed into an
assigned physical host, respectively. Constraint (7) checks
that a VM and its replica is not deployed in the same
physical host since the physical host may become a single
point of failure, which must be prevented.

V. CONCLUSION

As performance-sensitive applications move to the cloud,
it becomes important for cloud platforms to implement
algorithms that provide the QoS properties (e.g., timeliness,
high availability, reliability) of these applications. In turn
this implies providing algorithms and mechanisms for effec-
tive fault tolerance and assuring application response times
while simultaneously utilizing resources optimally. Thus, the
desired solutions require a combination of algorithms for
managing and deploying replicas of virtual machines on
which the performance-sensitive applications are deployed
in a way that optimally utilizes resources, and algorithms
that ensure timeliness and high availability requirements.

This paper presented our preliminary work in this area
describing a framework we are developing. The paper
presented the architectural details of a framework for a
fault-tolerant cloud computing infrastructure that can au-
tomatically deploy replicas of VMs according to flexible
algorithms defined by users. Finding an optimal placement
of VM replicas in data centers is an important problem
to be resolved because it determines the QoS delivered to
performance-sensitive applications running in the cloud. To
that end this paper presents an instance of an online VM
replica placement algorithm we have formulated as an ILP
problem.

The work presented in this paper is not sufficient to
address the vast number of challenges. For example, schedul-
ing of virtual machines (VMs) on the host operating system
(OS) and in turn scheduling of applications on the guest OS
of the VM in a way that assures application response times
is a key challenge that needs to be resolved. Scheduling
alone is not sufficient; the resource allocation problem must
be addressed wherein physical resources including CPU,
memory, disk and network must be allocated to the VMs
in a way that will ensure that application QoS properties
are satisfied. In doing so, traditional solutions used for hard
real-time systems based on over-provisioning are not feasible
because the cloud is an inherently shared infrastructure,
and operates on the utility computing model. Autoscaling
algorithms used in current cloud computing platforms must
be such that response times are not adversely impacted when
resources are scaled up or down, and applications must be
migrated.

The gamut of the problem space described above is
vast. Addressing these needs forms the bulk of our future
work. Our ongoing research is focusing on implementing the



proposed architecture, and providing a framework that en-
ables pluggability of VM placement algorithms. Additional
dimensions of future work involves validating our approach
on a variety of performance-sensitive applications hosted in
the cloud. To that end we are leveraging a private cloud
testbed we have deployed at our institution where we have
access to a variety of latest hardware and network switches,
as well as a variety of open-source cloud infrastructure
platforms, such as OpenStack and OpenNebula as well as
hypervisors, such as Xen and KVM.
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