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ABSTRACT

Cloud computing provides an attractive solution to host en-
terprise applications due to its cost effectiveness, and its
ability to seamlessly adjust to changing application work-
loads while providing the desired performance assurances
using elastic and dynamic resource management. These ben-
efits, however, do not yet readily carry over to distributed,
real-time and embedded (DRE) systems, which are a class of
systems that require stringent assurances on quality of ser-
vice (QoS) properties including timeliness, reliability and se-
curity all at once. This doctoral research is investigating the
sources of these limitations that make it hard to host DRE
systems in the cloud, and developing solutions to overcome
them. This paper makes three contributions in this regard.
First, it outlines the key challenges that must be resolved in
supporting DRE systems in the cloud and surveys related
literature. Second, it presents ongoing work that addresses
one key challenge stemming from the need for real-time and
scalable resource monitoring in the cloud. Third, it out-
lines our proposed ideas on resolving the remainder of the
challenges.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—real-time, fault-tolerance, availability

General Terms

Monitoring, Reliability, Performance
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1. INTRODUCTION

Cloud computing is a large-scale distributed computing
paradigm based on the principles of utility computing that
offers various resources such as CPU and storage, systems
software, and applications as services over the Internet [1].
The primary driving force behind the success of cloud com-
puting is economy of scale. As the Internet technology
evolves, everything is being provided as a service (XaaS) [2],
including the well-understood patterns like SaaS (Software
as a Service), PaaS (Platform as a Service), TaaS (Infras-
tructure as a Service), and Database as a Service (DBaaS).

Traditionally although the cloud has been used to sup-
port enterprise applications, lately a class of systems called
distributed, real-time and embedded (DRE) systems that
are mission-critical and require stringent quality of service
(QoS) assurances are moving towards being hosted in the
cloud [3]. For example, [4] presents how DRE Pub/Sub sys-
tems leverage cloud computing. As a motivating example,
DRE applications for search and rescue (SAR) operations
in a cloud computing environment are used. In addition,
[5] introduces an approach to enhancing the SIP /SDP based
framework to support DDS-based DRE systems in the cloud
including air traffic management, online stock trading, and
weather monitoring over QoS-enabled WANs. However, cur-
rent algorithms and mechanisms used to support applica-
tions in the cloud are tailored to meet the performance and
reliability requirements of enterprise applications. To ad-
dress the more stringent QoS requirements of DRE systems,
new algorithms and techniques will need to be designed to
manage the different cloud platform entities, such as service
architecture, data center network architecture, and virtual-
ized resources.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the key challenges addressed in this doctoral
research and surveys existing literature in this area; Sec-
tion 3 describes our initial contributions in addressing the
resource monitoring requirements for hosting DRE systems
in the cloud; Section 4 outlines our proposed ideas to ad-
dress the unresolved challenges; and finally Section 5 offers
concluding remarks.



2. CHALLENGES SUPPORTING DRE SYS-
TEMS IN THE CLOUD

This section describes the key challenges in supporting
DRE systems in the cloud and surveys related literature. By
no means are these the only challenges, however, we list only
the key challenges we have identified based on limitations in
prior work and those that we will resolve as part of the
doctoral research.

2.1 Real-time and Scalable Resource Monitor-
ing

Context and Problem: Providing scalable and QoS-enabled

(i.e., real-time and reliable) monitoring of resources (both
virtual and physical) in the cloud is essential to supporting
application QoS properties in the cloud as well as identifying
security threats. Existing approaches to resource monitoring
in the cloud are based on web interfaces, such as RESTful
APIs and SOAP, which cannot provide real-time informa-
tion efficiently and scalably because of a lack of support
for fine-grained and differentiated monitoring capabilities.
Moreover, their implementation overhead results in a dis-
tinct loss in performance, incurs latency jitter, and degrades
reliable delivery of time-sensitive information.

Related Research: Contemporary compute clusters and
grids have provided special capabilities to monitor the dis-
tributed systems via frameworks, such as Ganglia [9] and
Nagios [10]. Additionally, NWS (Network Weather Ser-
vice) [11] provides a forecasting service for dynamically chang-
ing performance of distributed resources. However, these
frameworks are structured to monitor physical resources only,
and not a mix of virtualized and physical resources. Even
though some of these tools have been enhanced to work in
the cloud, e.g., virtual machine monitoring in Nagios' and
customized scripts used in Ganglia, they still do not focus on
the timeliness and reliability of the dissemination of moni-
tored data that are essential to support DRE systems in the
cloud.

In recent works, [12] presents a virtual resource moni-
toring model while [13] discusses cloud monitoring architec-
ture for private clouds. Although these prior works describe
cloud monitoring systems and architectures, they do not pro-
vide experimental performance results of the models, such
as overhead and response time. Consequently, we are unable
to determine their relevance to host mission-critical applica-
tions in the Cloud. Latency results using RESTful services
are described in [14], however, they are not able to support
diverse and differentiated service levels for cloud clients.
Unresolved Challenges in Prior Work: Prior research
illustrates a general lack of resource monitoring capability in
the cloud infrastructure that is suitable for hosting mission-
critical, real-time applications. For example, the perfor-
mance of RESTful services described in [14] and [15] do not
show promise in using RESTful APIs for the fine-grained
and timely monitoring, and dissemination of resource usage
information needed to support mission-critical applications
in the cloud. Thus, we observe a significant limitation in to-
day’s state-of-the-art for cloud resource monitoring, which
is the problem we address in this paper. To date our re-
search has identified and developed a solution to address
these requirements, which is described briefly in Section 3.
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2.2 Time-critical Applications in Data Center
Networks

Context and Problem: At the heart of a cloud platform
are data centers that provide a large collection of networked
resources to host the applications. Assuring timeliness of
network flows in data center networks is crucial to complete
requested application tasks within expected deadlines. Prior
efforts to satisfy deadlines of network flows in data centers
can be categorized into two classes: (1) packet scheduling us-
ing the Earliest Deadline First (EDF) scheduling policy, and
(2) bandwidth reservations [16]. EDF scheduling and rate
reservations approaches perform relatively well towards data
center networks for time-critical flows, but still incur three
challenges. First, deadlines in DRE systems are associated
with applications flows, not packets. EDF is packet based,
and works on per-hop packet deadlines while applications
have end-to-end flow deadlines. Second, data centers today
have a diverse mix of flows with widely varying deadlines.
Related Research: Network protocols for data centers is
an active area of research. For example, DCTCP (Data
Center TCP), which is TCP modified for data center net-
works [17]. DCTCP realizes better throughput than TCP,
reducing queuing delays and congestive packet drops via Ex-
plicit Congestion Notification (ECN) to notify feedback to
the hosts. However, DCTCP does not work well for deadline
sensitive applications as deadlines of network flows are not
regarded in the protocol.

Hence, Wilson et al. [6] suggest D?, a deadline-aware con-
trol protocol customized for the data center environment,
as a solution to achieve real-time data center networks. D?
strives to maximize the number of flows that satisfy their
deadlines, accommodating burst application workflows, and
amplifying network throughput for flows without deadlines.
The key insight guiding D? design is the following: given a
flow’s size and deadline, the rate needed to satisfy the flow
deadline are determined.

Although D? enhances DCTCP by providing deadline-

awareness feature, there are two main drawbacks to D3.
First, 24% to 33% of priority of requests are inverted which
increases deadline miss ratio. Second, customized hardware
is required to use D®. This shortcoming makes its use hard
with commodity TCP and switching hardware used in data
centers without using hardware for D?. Therefore, D*TCP
is suggested to overcome these flaws [18]. D*TCP adopts
a reactive approach for bandwidth allocation. Additionally,
ECN and deadlines are used to control congestion. D>*TCP
reduces deadline miss ratio of DCTCP and D? by 75% and
50%, respectively.
Unresolved Challenges in Prior Work: The recent re-
search on data center networks has been addressing through-
put and deadline issues through adjusting protocols between
physical server machines and network switches. However,
as cloud data center employs virtualization technology, net-
work I/O resources in a single physical machine need to be
scheduled properly to realize high throughput and low la-
tency because several virtual machines share I/O resources
of a physical machine. Moreover, since a DRE system is
likely to be distributed across multiple virtual machines,
such assurances must be provided holistically.

2.3 Real-time Scheduling in Hypervisors

Context and Problem: Resource virtualization is a key
technology that improves the utilization of resources in the




data center and provides isolation among applications. Vir-
tualization allows physical machine resources to be shared
among different virtual machines that have their own oper-
ating systems by using a software layer called a hypervisor or
a virtual machine monitor (VMM). The hypervisor (VMM)
virtualizes the physical resources such as CPUs, memory,
networks, and other devices for guest domains, and the guest
domains are isolated and scheduled by the hypervisor. As
tasks from virtual CPUs are scheduled by the hypervisor,
execution and completion time of applications in guest do-
mains are dependent on a scheduling policy selected by the
hypervisor, which may not be suitable for real-time tasks.
Related Research: Prior research [19, 20, 21, 22] has fo-
cused on achieving real-time computation in virtualized en-
vironments. In [19], the Xen hypervisor’s credit scheduler is
modified to support real-time tasks. In the modified sched-
uler, deadlines, called laxity in the paper, of domains are
used to insert real-time tasks into the scheduler’s run queue
and the tasks can be scheduled in desired deadlines. To
determine the positions of the real-time tasks in the run
queue, the expected wait times of all the tasks in the queue
need to be maintained, and it is calculated by the amount of
CPU time utilized in previous run cycles gained from virtual
CPUs. The modified scheduler, however, does not change
the credit distribution mechanism of Xen’s credit scheduler
to prevent starvation.

RT-Xen [22] implements four fixed priority real-time sched-
ulers (Deferrable Server, Periodic Server, Polling Server, and
Sporadic Server) in Xen. Experimental results comparing
real-time schedulers to the traditional Xen schedulers in
terms of overhead and deadline miss ratio are presented
in the paper. In the experiments, scheduling overhead in-
cluding context switch of the suggested schedulers (4 fixed
priority real-time schedulers) are about 0.21% which is ac-
ceptable for soft real-time systems, but still worse than the
general schedulers (credit and SEDF schedulers) which are
less than 0.1%. In contrast, deadline ratios of the suggested
schedulers are better in both normal and overloaded situa-
tions. Specifically, the credit scheduler performs poorly in
terms of capacity, missing almost all deadlines even under
normal load, while the SEDF scheduler maintains a good ca-
pacity with the normal case but comparatively worse than
the fixed priority schedulers in most overloaded cases.
Unresolved Challenges in Prior Work: Similar to the
shortcomings in prior work on data center networks, related
research in real-time scheduling in hypervisors also need to
examine performance of network intensive applications with
hypervisors where real-time scheduling policies are applied.

2.4 High Availability and Tunable Adaptive Con-

sistency

Context and Problem: Hardware failure in data centers
occur frequently, which requires elegant mechanisms to sur-
vive the failure to deliver high availability of services de-
manded by mission critical systems. Special-purpose hard-
ware or re-engineering software to include complicated re-
covery logic is generally used for unceasing services, but they
are expensive and not trivial to be accomplished for the dif-
ferent services with different QoS requirements deployed in
the cloud. Therefore, mechanisms involving efficiently repli-
cating virtual machines are needed withing the cloud infras-
tructure in a general and transparent way.

A commercial product for fail-over protection against vir-

tual machine failures in virtualized environment already ex-
ists [26] to provide highly available services in the cloud.
However, in the currently available products, only the re-
sults written to disk prior to the crash are preserved without
the state of CPU and main memory [27]. Consequently, the
entire active states, network connections of applications are
lost and initiated again. Moreover, recovering a virtual ma-
chine does not appear instantly due to the virtual machine’s
booting time on another host.

Related Research: The solutions presented in [27] address
the challenge by making checkpoints of a running virtual
machine very frequently, typically tens of times per second.
Likewise, [28] presents Remus, a software system that pro-
vides high availability via efficient virtual machine replica-
tions with extending the technique to make snapshots used
for live migrations. Remus achieves it by disseminating fre-
quent checkpoints of an active virtual machine to a backup
physical host. On the backup, the image of virtual machine
is resident in memory and may immediately begin execu-
tion if failure of the active system is detected. Because the
backup is only periodically consistent with the primary, all
network output must be buffered until state is synchronized
on the backup. When a consistent image of the active virtual
machine has been received, the network buffer is released to
external clients to achieve strong consistency between ac-
tive and host machines. The virtual machine on the backup
host is not actually executed until a failure occurs. There-
fore, this consumes a relatively small amount of the backup
host’s resources.

Kemari [29] is another approach which takes advantage of
both lock-stepping and continuous check-pointing approaches.
It synchronizes primary and secondary VMs just before the
primary VM has to send an event to devices such as storage
and networks. At this point, the primary VM pauses and
Kemari updates the state of secondary VM to the current
state of primary VM. Thus, VMs are synchronized with less
complexity compared to lock-stepping and output latency of
continuous check-pointing due to external buffering mecha-
nism is also avoided.

Another important work on high availability is HydraVM [30].

It is storage based, memory efficient high availability so-
lution which does not need a passive memory reservation
for backups. It uses incremental check-pointing like Re-
mus, but it maintains a complete recent image of VM in
shared storage instead of memory replication. Thus, it re-
duces hardware costs for providing high availability support
and provides greater flexibility as recovery can happen on
any physical host having access to shared storage.

Unresolved Challenges in Prior Work: The solutions sug-
gested above employ the active replication approach rather
than passive primary-backup replication. In systems that
use primary-backup replication for fault-tolerance, main-
taining system availability after failures refers not just to
ensuring the liveness of application functionality at a backup
replica but also to ensuring that the state of the promoted
backup matches that of the failed primary. DRE systems
may demand different levels of availability and state consis-
tency requirements. Consequently, as single scheme as pro-
posed in prior research will not suffice. New algorithms and
mechanisms are needed that can tune the replica consistency
algorithms at runtime in accordance with the workloads, re-
source availabilities, and QoS requirements. Additionally,
in the current state-of-the-art, there does not exist a flexible




and practical framework, which provides both high avail-
ability and acceptable response times to DRE applications
while optimizing resource consumption in data centers.

3. REAL-TIME AND SCALABLE RESOURCE

MONITORING

Scalable and QoS-enabled monitoring of cloud resources
is required to support mission critical applications in the
cloud. Contemporary compute clusters and grids have pro-
vided special capabilities to monitor the distributed systems
via frameworks, such as Ganglia [9] and Nagios [10]. Addi-
tionally, [?] provides a comparative study of pub/sub mid-
dleware for real-time grid monitoring in terms of real-time
performance and scalability. According to [?], one of the dis-
tinctions between grids and clouds is that cloud resources are
more abstracted and virtualized compared to grid resources.
However, these frameworks are structured primarily to mon-
itor physical resources only, and not a mix of virtualized and
physical resources.

Moreover, existing web-based approaches to resource mon-
itoring in the current cloud cannot provide resource infor-
mation efficiently and scalably because of a lack of support
for fine-grained and QoS capabilities. We surmise that pub-
lish/subscribe (pub/sub) paradigm can overcome the limi-
tations with existing monitoring and dissemination mecha-
nisms that use RESTful APIs. To that end we have designed
an OMG Data Distribution Service (DDS)-based solution
called Scalable and QoS-enabled virtual resource monitoring
system for Real-Time applications in Clouds (SQRT-C) [?].
SQRT-C is our solution to address the challenge of real-time
monitoring described in Section 2.1.

3.1 Architecture of SQRT-C

Figure 1 illustrates the SQRT-C architecture to describe
how the solution interacts with a cloud platform and clients.
We have borrowed terminology, such as Cluster Node and
Front-end Node, from the OpenNebula [31] open source cloud
platform to represent the physical computing entities inside
the cloud. SQRT-C uses the DDS-based pub/sub technol-
ogy to disseminate resource usage information for virtual
resources from the source (i.e., publishers) to the sinks (i.e.,
the subscribers) while also supporting the QoS requirements
on the dissemination of the monitored information.
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Figure 1: SQRT-C System Architecture

The building blocks of the SQRT-C architecture comprises

Publisher, Subscriber, Monitoring Manager, and clients re-
siding in different virtual machines. We refer to clients as the
cloud users who will be hosting their QoS-sensitive applica-
tions in the cloud and hence will be interested in obtaining
timely resource usage information at the specified QoS lev-
els and intervals of time. Each client consists of command
line interface APIs to subscribe to the monitoring data from
Publishers residing in Cluster Nodes.

Each Cluster Node has a Publisher, which disseminates
resource information of virtual machine instances to a Sub-
scriber. A Subscriber is deployed in a client machine (usu-
ally a virtual machine) which does auto-scaling and/or pro-
vides fault-tolerance for its applications hosted in the cloud.
To isolate computation overhead on monitored virtual ma-
chines, a Publisher is hosted in a physical Cluster Node and
not a deployed virtual machine.

The Monitoring Manager, which is located in the Front-
end Node or on an individual physical node (if a database
connection is established remotely), serves as an orchestrator
to manage DDS connections between Publishers and Sub-
scribers, receiving requests from clients and sending com-
mands to Cluster Nodes.

3.2 Experimental Results

In Figure 2, we demonstrate the average message latency
(note the logarithmic scale) comparison between by SQRT-C
and RESTful services. We compared the performance with
only a RESTful service since it is a conventional communi-
cation service used in current cloud platforms for monitoring
resources, but comparing with other communication middle-
ware technologies such as RMI, and SOAP would be needed
to strengthen our hypothesis in the future.
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Figure 2: Average Message Latency Comparison of
SQRT-C and RESTful by Number of VMs

Since SQRT-C uses a pub/sub model of communication,
which is inherently asynchronous and one way, computing
average message latency is tricky. We choose an approach
where it is calculated by increasing the number of publish-
ers for a single subscriber. This is because in a pub/sub
model of communication, publishers and subscribers are de-
coupled from each other, and thus increasing the number of
subscribers does not affect the latency as a publisher does
not care about how many subscribers are interested in what
it is publishing. However, the number of messages received
by a subscriber can be increased by increasing the number
of publishers for that subscriber. Therefore, increasing pub-
lishers for a single subscriber will cause increase in latency
for messages received by the subscriber. We therefore create



a scenario where a single subscriber is subscribing for re-
source information from up to 50 different virtual instances.

Unlike SQRT-C, RESTful services use a client-server model

of communication which is “pull’-based. In case of SQRT-C,
the clients or subscribers, and servers or publishers are com-
pletely unaware of each other. However, in case of RESTful
service, clients and servers have to be aware of each other
since clients request for information from the server on a
per-requirement basis. Therefore, to calculate average mes-
sage latency for RESTful service, we increased the number
of clients (subscribers) for a single server (publisher) and
measured the round-trip latency.

From this figure it is clear that latency increases with
increase in number of clients. This is because we have a
single physical server which is serving requests from all of
the clients. If we compare this result with the results for
SQRT-C average message latency, we can see that both of
them show linear increase, however, the latencies observed
for RESTful services are orders of magnitude larger than
those for SQRT-C. For example, the average latency for
RESTful service starts from just less than 1,000 millisec-
onds (compared to the order of just a few milliseconds in
the SQRT-C case) for 5 clients and increases significantly
to around 9,200 milliseconds for 50 clients. These initial re-
sults provide an idea of the significant scalability advantage
of SQRT-C over RESTful approaches.

4. PROPOSED IDEAS TO ADDRESSING UN-

RESOLVED CHALLENGES

Our survey of related research in QoS support in the cloud
has focused on 1) timeliness in data-center networks and hy-
pervisors, and 2) high availability via replications of virtual
machines. However, resolving the challenges associated with
a property such as timeliness and high availability does not
mean that the architecture with the suggested solutions can
be applied in a straightforward fashion for DRE systems.

In fact, there needs to be a trade-off made between time-
liness and high availability with strong consistency. The
compromise characteristics between response time and con-
sistency was introduced in the comparison between BASE
(Basically Available replicated Soft state with Eventual con-
sistency) and ACID (atomicity, consistency, isolation, and
durability) database models. Additionally, in the context
of the CAP (Consistency, Availability, and Partition toler-
ance) theorem, support for extremely rapid responses and
fault-tolerance make consistency to be optional for devel-
opers, and a justification was made for cloud services with
weak consistency or assurance properties [32].

The ACID model has a pessimistic behavior. It will fail
if it cannot reach consistency guarantees, and response time
is less important than consistency. On the other hand, re-
sponse time is the most important factor for BASE systems,
and consistency may be sacrificed to ensure it. For DRE sys-
tems hosted in the cloud, both availability with low latency
and strong consistency are significant, and therefore will
need a solution that will make effective trade-offs between
the conflicting properties depending on service requirements.
As a result, realizing fault-tolerant cloud computing archi-
tecture satisfying strict timeliness is a challenging research
topic. Moreover, in the current cloud computing, there does
not exist a flexible and practical framework, which provides
both high availability and acceptable response times opti-

mizing resource consumption in data centers.
To realized reliable cloud-based DRE systems, the follow-
ing will form the doctoral research.

e Experimental analysis to identify the possible tradeoffs
will be our first focus. This step will include:

1. Performance analysis regarding the trade-off be-
tween strict timeliness and strong consistency.

2. Performance analysis of deadline-aware data cen-
ter networks in virtualized environment.

e Designing and developing a framework for fault-tolerance
for cloud-based real-time applications will include:

1. Investigating the use of replication using primary-
backup replication, which is attractive because
it consumes fewer resources in comparison to us-
ing active replication while delivering comparable
performance in optimized conditions.

2. Investigating the use of a proactive, resource-aware
fail-over strategy, which attempts to maximally
meet response times of applications by dynami-
cally ordering the fail-over targets based on mea-
sured resource utilization [33].

3. Developing a resource-aware allocation based on
backup resource overbooking, which leverages the
properties of the primary-backup scheme. In this
scheme, a backup replica does not impose the
same load on a resource as the primary is ex-
ploited to pack more backup replicas of different
applications on the available resources [34].

5. CONCLUDING REMARKS

Recent trends in cloud computing reveal an increased push
towards supporting DRE systems in the cloud. However,
the existing algorithms and mechanisms in the cloud are
not suitable to host DRE systems. In this paper we have
surveyed the literature that attempt to address one or more
of these challenges and outlined a number of open challenges
that this doctoral research is attempting to address. Our
preliminary results on real-time and scalable monitoring of
resources in the cloud are encouraging.
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