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Abstract—Smartphones are starting to find use in mission-
critical applications, such as search-and-rescue operations,
wherein the mission capabilities are realized by deploying a
collaborating set of services across a group of smartphones
involved in the mission. Since these missions are deployed in
environments where replenishing resources, such as smartphone
batteries, is hard, it is necessary to maximize the lifespan of the
mission while also maintaining its real-time quality of service
(QoS) requirements. To address these requirements, this paper
presents a deployment framework called SmartDeploy, which
integrates bin packing heuristics with evolutionary algorithms
to produce near-optimal deployment solutions that are compu-
tationally inexpensive to compute for maximizing the lifespan
of smartphone-based mission critical applications. The paper
evaluates the merits of deployments produced by SmartDeploy
for a search-and-rescue mission comprising a heterogeneous mix
of smartphones by integrating a worst-fit bin packing heuristic
with particle swarm optimization and genetic algorithm. Results
of our experiments indicate that the missions deployed using
SmartDeploy have a lifespan that is 20% to 162% greater
than those deployed using just the bin packing heuristic or
evolutionary algorithms. Although SmartDeploy is slightly slower
than the other algorithms, the slower speed is acceptable for
offline computations of deployment.

I. INTRODUCTION

The unprecedented growth in smartphone technology is
giving rise to new applications that illustrate non-conventional
usage of smartphones [1]. For example, these applications may
include situational awareness in military-centric operations
(e.g., the DARPA Transformative Apps program), emergency
services, disaster search-and-recovery, and intelligent trans-
portation. Consider, for example, natural disasters of 2010
like the Haiti earthquake or the massive flooding in the state
of Tennessee. In both these situations, most of the infras-
tructure, such as the roads and phone services (both landline
and cellular), and utilities, such as gas and electricity, were
rendered unavailable. A number of instances of smartphone
usage for survival have come to light in the days following
the calamity. It is conceivable, therefore, to think of forming
ad hoc networks of smartphones carried by search-and-rescue
teams as the best means in these circumstances to identify
survivors trapped under the debris or those trapped in their
houses due to raging flood waters, and coordinate the rescue
operations.
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To operationalize smartphone-based search-and-rescue mis-
sions, it is necessary for the collection of smartphones involved
in the mission to be able to support a group of real-time
services that provide distributed sensing operations, data cor-
relation capabilities stemming from acquisition of distributed
streams of images, audio and video, and location-based ser-
vices. However, since these smartphones have limited battery
life and hardware resources, keeping the collective set of
services that make up the mission capabilities up and running
for the maximum amount of time is crucial for maximizing
the chances of finding more survivors. Maximizing the mission
lifespan is important because the smartphones operated by first
responders are often deployed in environments where readily
replenishing the resources, such as batteries, is infeasible.
Despite these constraints, key quality of service (QoS) require-
ments of real-time and reliable dissemination of information to
the concerned stakeholders, such as first responders in search-
and-rescue missions, must be met.

The requirements outlined above can be met by effectively
deploying the services that make up the mission on the
collection of smartphones involved in the mission. However,
such a deployment problem is hard for two reasons. First,
assuring the timely and reliable dissemination of information
in operating environments where availability of resources, such
as networks, is unpredictable requires deploying the individual
services on the collection of smartphones in a way that will
ensure the schedulability of the services while efficiently using
the scarce resources. Secondly, the rate of drain of smartphone
battery charge adds a new dimension of challenges to an
already challenging problem because battery drain is often
dictated by the amount of computation and communication
activities.

In this paper we focus on solving the service uptime
maximization problem, which is the problem of ensuring that
the operational capability of the mission provided by the
collection of services deployed on the group of smartphones
remains up and running for the maximum duration of time.
In other words, it is necessary to minimize the rate at which
the smartphone batteries drain themselves. Since every ser-
vice (and its software components) of the mission consumes
different computational and communication resources of the
smartphone, battery drain is impacted differently. Hence, the



service uptime maximization problem requires solving the
deployment problem that minimizes battery drain (or preserves
the battery charge) while also satisfying the QoS requirements.

To address these challenges, we present a deployment
framework called SmartDeploy, which extends our earlier
work on ScatterD [2]. ScatterD combined bin-packing heuris-
tics with evolutionary algorithms to minimize power consump-
tion in nodes. It overcame the limitations of applying each of
these algorithms in isolation. In particular, ScatterD provided
a first-fit heuristic bin packer which places each item into the
first available bin in which it will fit. In the case of maximizing
service uptime, the software components of the services must
be deployed in a way that minimizes battery drain on each
smartphone. A first-fit heuristic may not necessarily find the
right solution to our problem. Consequently, SmartDeploy
provides a framework that can be strategized with the desired
bin packing heuristic along with a strategizable framework to
plug in the desired evolutionary algorithm so that a variant of
the hybrid algorithm can be synthesized.

To solve the service uptime maximization problem, Smart-
Deploy is strategized with the worst-fit bin packer which
ensures that services are load balanced across the collection
of smartphones used in the mission in a way that minimizes
battery drain while also delivering the QoS. The evolutionary
algorithm generates initial random vectors and evaluates them
using a fitness function. In this paper we limit ourselves
to offline deployment of services assuming that the rescue
missions and their parameters are planned a priori.

The case of determining an effective deployment at runtime
is orthogonal to the focus of this paper and is the focus of our
ongoing work, which will require additional runtime protocols
involving message exhanges among participating smartphones.
We believe that the polynomial runtime complexity of Smart-
Deploy can make it a promising approach even at runtime.

Paper organization. The rest of the paper is organized as
follows: Section II discusses related research; Section III dis-
cusses a motivating example for service uptime maximization;
Section IV discusses challenges associated with the service up-
time optimization issue; Section V describes the SmartDeploy
framework design and its instantiation for solving the Service
Uptime Maximization problem; Section VI illustrates experi-
mental results showing generated deployments and projected
lifetime of the application for a variety of parameters; and
finally Section VII discusses concluding remarks alluding to
future work.

II. RELATED WORK

Xiaoling et al are amongst the first to use evolutionary
algorithm for deployment optimization problem [3] in ad-
hoc sensor network. They optimized the coverage in sensor
network. They compared particle swarm optimization (PSO)
with the genetic algorithm in terms of faster convergence rate.
However, they did not address performance of the evolutionary
algorithms used when design space and constraints increases.
Our goal is maximizing service uptime of distributed applica-
tions comprising a large design space of hundreds of nodes

and hundreds of software components. Moreover, the design
space in our case is tightly constrained based on hardware and
software resources availability.

Francois et al developed Choco [4], a Java library for
constraint satisfaction problems (CSP) and constraint pro-
gramming (CP). It is built on an event-based propagation
mechanism with backtrackable structures. Since it is based
on CSP approach, it leads to exhaustive search in the worst
case. Hence, it is not scalable with problem sizes handled by
SmartDeploy. Howard et al developed an algorithm [5] for
deploying members of a robot team into an unknown environ-
ment. However they assumed unavailability of GPS sensors on
robots and required maintaining line-of-sight contact amongst
the team members. In our case we consider a network of
smartphones, which involves availability of GPS and other
sensors. Thus we do not need to maintain line-of-sight with
the other devices.

Howard et. al. also developed an incremental and greedy
algorithm [6] for mobile sensor network. Their test results,
however, assumed the nodes to be homogeneous and the
scalability of the algorithm was tested up to 50 nodes. In
our case we consider heterogeneous devices in terms of
power capacity, memory, CPU, etc. Moreover, we consider
deployment of hundreds of software components on hundreds
of devices.

Dougherty et. al. developed a deployment algorithm called
BLITZ [7] that minimizes the computing infrastructure re-
quired to host real-time systems. The algorithm uses first-
fit heurstics of bin packing algorithm that minimizes number
of processors. However, the service uptime maximization
requires the use of worst-fit bin packing heuristics.

White et. al. developed a spatial deployment algorithm
called ScatterD [2] that minimizes power consumption in real-
time systems. It is a hybrid algorithm that combines first-fit bin
packing heuristics with evolutionary algorithms (genetic and
particle swarm optimization algorithms). SmartDeploy extends
ScatterD to provide a strategizable framework and applies
worst-fit bin packing for the Service Uptime Maximization
problem.

III. MOTIVATING EXAMPLE

In this section we use an example of a video recognition
service for disaster monitoring as a case study to highlight the
challenges in maximizing the service uptime for smartphone-
based distributed, real-time systems. Figure 1 shows an exam-
ple of a distributed video recognition service used in disaster
monitoring and recovery. The service comprises of different
software components like video capturing (C1), segmentation
(C2), feature extraction (C3), tracking (C4), activity analysis
(C5) and information dissemination (C6). Each of these soft-
ware component has different hardware resource requirements,
such as memory and CPU, and different power consumption
rate. For simplicity, we have shown one such distributed
service (video recognition) consisting of six software com-
ponents and four smartphones for disaster monitoring. Out of
four smartphones used, two of them are Android-based HTC



phones and the other two are iPhones. Software components
Cl, C4, and CS5 can be executed only on Android-based
smartphones, while software components C2, C3, and C6 can
be executed only on iPhones.

Feature extraction.(C2)

(20 MB, 60 CPU, 50 mA/hr)
Segmentation. (C3)

(10 MB, 20 CPU, 20 mA/hr)

P1 (Android based - HTC)
(200 MB, 100 CPU, 1200 mA/hr)

Video capturing.(C1)
(90 MB, 50 CPU, 50 mA/hr)

P2 (iphone)
(150 MB, 100 CPU, 1200 mA/hr)

P3 (Android based - HTC)

P4 (iphone)
(200 MB, 100 CPU, 1000 mA/hr)

(1500 MB, 100 CPU, 1000 mA/hr)
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Tracking. (C4)
(20 MB, 30 CPU, 10 mA/hr)
Analysis (C5)
(30 MB, 20 CPU, 20 mA/hr)

Information
dissemination. (C6)
(30 MB, 30 CPU, 40 mA/hr)

Fig. 1. A Distributed Video Recognition Service for Disaster Monitoring
In general, a disaster monitoring service can be com-
posed of a combination of services such as distributed image
recognition and distributed location-based services. Such a
comprehensive service can consist of hundreds of software
components deployed onto hundreds of smartphones. The
deployment plan, which comprises a mapping of the software
components of the services to the smartphones, should meet
both the hardware resources constraints and power constraints
such that the service can last for as much time as possible
while also meeting the real-time application requirements.

IV. CHALLENGES IN MAXIMIZING SERVICE UPTIME FOR
SMARTPHONES

In this section we use our motivating example of the
distributed video recognition service (see Section III) to high-
light the challenges in finding the deployment plan which
maximizes service uptime. Although the mobile environment
made up of smartphones is attractive to realize distributed
disaster management services, multiple systemic issues impede
the total lifetime of such services making it hard to design and
deploy the services. In this section we delve into understanding
these impediments.

Challenge 1: Dealing with Complex hardware/software
design constraints: In our case study example of the dis-
tributed video recogniton service, its software components
have different hardware and software resource requirements.
For example, the video capturing component requires high
memory and communicational power as it stores the captured
video and sends it to the phone hosting feature extraction
and segmentation components. The feature extraction and seg-
mentation components require high CPU and computational
power as they run complex algorithms based on extraction and
segmentation on the video. The tracking and activity analysis
components are involved in significant communication activies
that consume battery power as they constantly communicate
with the phone hosting information dissemination component.

A disaster monitoring system comprises many distributed ap-
plications consisting of hundreds of smartphones and hundreds
of software components hosted on them. How these software
components are deployed on these smartphones will determine
how long the overall mission will last because the uptime of
the mission depends on how long the batteries will last.

In general, network embedded devices like smartphones
have limited battery power and limited hardware resources
like CPU and memory. Moreover, the software components
deployed on these devices consume power at different rates,
which is governed by the computation and communication
activities induced by the software components. The amount
of time a software component runs is directly proportional
to the amount of battery power available to it with sufficient
hardware resources. Thus, the power consumption rate of these
software components, and what devices they get deployed on
are the key factors that affects the service uptime.

Given that a mission is realized by distributing its services
across a group of smartphones, keeping the entire distributed
application up for a longer duration is challenging because
even if one of the smartphone’s battery is exhausted, then the
software components deployed on it are no longer available
which makes the overall distributed system no longer work.
Thus, a deployment plan should be generated such that each
of the software components gets maximum available power
and sufficient hardware resources which will maximize the
overall service uptime of the mission. In generating such a
deployment plan, we must consider both the computational
and communication power consumption rates of the software
components. Some components may have higher power con-
sumption rate due to high amount of computations involved,
while some components engage in more communication ac-
tivities that impacts the power consumed. The frequency of
interaction between software components affects the amount
of bandwidth consumed by them, which in turn affects their
power consumption rate.

Challenge 2 : Dealing with heterogeneity of available
resources and execution constraints: Our case study example
illustrates heterogeneity in the smartphone hardware and op-
erating systems. It is conceivable that embedded devices such
as smartphones used in mission-critical applications such as
disaster search and rescue management have different available
hardware resources like CPU type, available memory, and
lifetime of battery. Due to this heterogeneity, certain software
can execute on only certain devices. For example, smartphone
apps developed for iPhones cannot execute on Android-based
phones. As outlined in Challenge 1, the deployment topology
of these mission-critical systems must address various design
constraints like power capacity, memory, and CPU, which
is a hard problem. The problem becomes even harder with
the heterogeneity of the platforms and the software execution
constraints. In the case study example, there are two Android-
based HTC phones and the other two are iphones. Moreover,
independent software components for video capturing, track-
ing and analyis can execute only on Android-based phones.
Similarly, feature extraction, segmentation and information



dissemination can execute only on iPhones. Such constraints
affect the deployment plan which in turn affects maximizing
service uptime.

Challenge 3: Dealing with scale of the system: The
case study example of distributed video recognition service
is comprised of four devices hosting six software components
which means there exist 64 possible deployment plans. Several
optimization techniques are available to solve the deployment
challenges explored in Challenges 1 and 2 described above.
The solutions can be characterized and solved using constraint
satisfaction programming (CSPs) [8], integer programming [9]
and Bender’s decomposition [10].

Although our case study represents a very small problem
size which can be solved by bin-packing heuristics, integer
programming or evolutionary algorithms, typical mission crit-
ical applications will comprise several hundreds of devices
and many more software components. Thus, when the problem
size scales to 300'°° or even more and moreover considering
additional hardware and software design constraints, as out-
lined in Challenges 1 and 2, many of the known techniques
cannot readily scale to hundreds of software components
and hundreds of devices. In other words, the solutions are
computationally very expensive to obtain.

Bin packing heuristics have been developed to overcome
these challenges to produce valid deployment plans, however,
these plans do not necessarily produce the optimal solutions
for large problem sizes. Evolutionary algorithms are com-
monly used in deployment optimization problems. However
their performance degrades when the solution space is huge
and has tight constraints that leads a large number of invalid
points in the search space. The criticality of the application
scenario we are investigating and the fact that we focus on
offline solutions to finding the right deployment topologies,
it is desirable to achieve a near-optimal solution. Moreover,
formulating the objective function and the constraints is yet
another challenge system developers will face.

V. SERVICE UPTIME MAXIMIZATION VIA THE
SMARTDEPLOY ALGORITHM

To address the challenges described in Section IV, we
propose using a hybrid algorithm that integrates bin packing
heuristics with evolutionary algorithms so that we can reap the
benefits of both while overcoming the limitations of individual
techniques. Moreover, rather than fixing a specific heuristic or
an evolutionary algorithm, we propose to provide a framework
that enables a deployment planner to strategize the framework
with the desired techniques. The advantage of using bin-
packing heuristics is that they produce a valid deployment
topology while the advantage of using evolutionary algorithms
is that they explore multiple solutions in the design space.

This section describes SmartDeploy, which is a strategiz-
able framework for deployment planning that addresses the
three challenges described in Section IV. We show how the
SmartDeploy framework is applied to solve the Service Up-
time Maximization problem. Figure 2 shows the SmartDeploy
framework combining worst-bin packer and PSO algorithm.

It shows a generic interface to encode objective functions
and constraints, and the hybrid algorithm to solve design-time
constraint optimization problems. The algorithm for combin-
ing worst-fit bin packer and genetic algorithm is also similar.
The white colored blocks shows the newly added features
by Smartdeploy, blue colored blocks shows the integration
between original and new features and the grey colored blocks
show the original features of the ScatterD.

1. Input
values for
experiment

3. Integration between
bin-packer and PSO (Give
a portion of input
topology to bin-packer

|

2. Generation of
initial random
topologies (particles)

4. Worst-fit bin
packer

!

6. Service uptime
maximization

objective function

5. Integration between
bin-packer and PSO

(Return optimized |

topology to PSO)

7. Update particle’s
position and velocity

SmartDeploy portion !

8. Output value if
maximum iterations
reached or process

converges

Integrated portion between bin-
packer and PSO

o0

Original ScatterD portion

Fig. 2.  SmartDeploy framework

A. Bin-packing Heuristics for Service Uptime Maximization

The problem of packing a set of items into a number of
bins such that the total weight or volume does not exceed
some maximum value is called bin-packing problem. Various
heuristics of bin-packing algorithms are used for solving bin-
packing problem like first-fit, worst-fit, and best-fit. For the
service uptime maximization problem, we use the worst-fit
heuristic of bin packing algorithm. The reason is that in order
to maximize the service uptime, the software components
should be deployed onto the device on which it can run for
maximum amount of time. Thus the worst-fit bin packing
algorithm defines the placement of items into the largely
empty existing bin. In this way the software components are
deployed evenly across the available devices such that they
get maximum available power along with sufficient hardware
resources. As a result maximized service uptime is achieved.
However, as the problem size increases, it tends to give a
valid solution but not necessarily an optimal one. Step 4 in
Figure 2 shows the worst-fit bin packer which is pluggable in
SmartDeploy framework.

B. Evolutionary Algorithms for Service Uptime Maximization

Evolutionary algorithms [11], are meta-heuristic optimiza-
tion algorithms which are generic population based, i.e., they
involve a search from a population of solutions, not from a
single point. The individuals in the population are candidate
solutions of the optimization problem. In each iteration, a
fitness function is used to evaluate the candidate solutions
and propagates the evolution of the population. Particle swarm
optimization(PSO) [12] and genetic algorithm [13] are two



such evolutionary algorithms. Evolutionary algorithms are also
pluggable in SmartDeploy framework as shown in Step 1, 2,
6, 7 and 8 in Figure 2.

1. Particle swarm optimization (PSO): It is a stochastic
optimization technique based on population. Here, each parti-
cle is a random initial solution in the search space, i.e., random
initial topology vector vi. In each iteration, the particles are
evaluated using fitness function (objective function) F' (v_%) and
the best value of each particle is maintained. Each particle’s
best value is compared with the global best value. The global
best value gives the solution for the fitness function. At the
end of each iteration, each particle’s position and velocity
is updated based on the global best value. This process is
repeated till the number of iterations are reached or the process
converges to a single solution.

2. Genetic algorithms: It is also a stochastic technique
based on population. Here, the initial random solutions are
candidate solutions (individuals or creatures) that are encoded
by population of strings (chromosomes). In each generation,
the individuals are evaluated using fitness function F(vi),
multiple individuals are stochastically selected from current
population on the basis of fitness function, reproduced by
crossover or mutation which forms new population. This new
population is evaluated using fitness function and the process
continues till the number of iterations are reached or the
process converges to a single solution.
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Fig. 3. Representing a Spatial Deployment Topology as a Vector [2]

In general, as shown in Figure 3, members of solution
topologies (particles or genes) are represented as vectors where
the vector components denote the position of particles or
genes. The spatial deployment topology as shown in the figure
is represented as vV = [1,2,2] which in turn represents the
index positions of the software components deployed onto
the hardware node, i.e., software components 1, 2, and 3
are deployed onto device 1, 2 and 2, respectively. As the
evolution proceeds, the deployment topology vector is evolved
to T = [2,1,2] which changes the deployment topologies.
However, the performance of this algorithm degrades when the
search space contains large number of points that corresponds
to solutions that do not meet design constraints.

C. Integrating Bin Packing Heuristics with Evolutionary Al-
gorithm

To concretely describe our solution, we use our case study
example in Figure 1. Here phones P1 and P3 are Android-
based HTC phones while phones P2 and P4 are iPhones.

Software components C1, C4, and C5 can be executed only
on Android-based phones while software components C2,
C3, and C6 can be executed only on iPhones. The hardware
and software resource requirements of the components are
shown in the figure. The configuration of phones is also
shown in the figure. Different combinations of the topologies
are - V= [1,2,2,3,3,4] - Min(24, 17.1, 33.3, 25) =
171,V = [1,2,4,3,1,2] - Min(13.3, 50, 20, 50) = 13.3,
etc. Here the vector represents the index positions in the
array for software components 1, 2, 3, 4, 5, and 6 which
are deployed onto devices two devices represented by 1,
2, 3 and 4. The maximum service uptime can be defined
as Max(17.1, 13.3, ...). The maximum service time for this
configuration is thus 17.1 hours. In our example we have
assumed that sufficient memory and CPU is available. The
more generalized formula for service uptime maximization
function is defined as follows:-

— — —

V(t:) =r(ti) + s(t;)

. e(t;) if V() =0,
F(t;) = . ) (1)
—1%V(t;) otherwise.

where 7(£;) is a function of resource constraints like CPU
and memory, and s(t;) is a function of scheduling constraint.
Here F(t;) is equal to objective function e(t;) if the values
of hardware resource constraint and scheduling constraint
functions are 0, i.e.,, the constraints are satisfied. Constraint
functions can be added or removed as required. If the sum-
mation of constraint functions is negative then an invalid
toplogy is produced. We need to minimize the generation
of invalid initial random vectors and the evolved vectors to
realize valid deployment plan. To achieve this a subset of
deployment topology is sent to bin-packer. The heuristics of
bin-packer has more probability to generate a valid deployment
topology. However, it produces a single valid solution which
is not necessarily optimized for service uptime maximization.
The constraints in the bin packing algorithm are varied by
a semi-random vector produced by evolutionary algorithms.
Thus the evolutionary algorithms act as catalyst for exploring
the solution space through semi-randomized executions of a
bin packing algorithm.

A concrete manifestation of the SmartDeploy framework
that combines the worst-fit heuristic bin packing algorithm
with evolutionary algorithm to solve the Service Uptime
Maximization problem can be described as follows:-

1) Each population member in the evolutionary search pro-
cess is assigned a random initial vector, v; = random.
This is represented by blocks 1 and 2 in Figure 2.

2) For i = 0, @ < |v;], a worst-fit bin-packing algorithm
takes the software component referred to by position ¢
and places it on a hardware node. The node that each
component is placed on is recorded in the deployment
topology vector, T' = dv;. The software components that
are not placed on a node in Step 2 are placed into a list,



L. This is represented by block 3 in Figure 2

3) The software components in L are sorted using a
bin-packing heuristic, such as memory. Each software
component in L is placed on a hardware node using
a standard bin-packing algorithm. The node that each
component is placed on is recorded in the deployment
topology vector, dv;. This is shown as blocks 4 and 5
in Figure 2

4) The score for each population member is calculated us-
ing a fitness metric as a function of the deployment plan
F (d?},) and not directly from the population member’s
vector, v;. This is shown represented by block 6 in
Figure 2

5) An evolutionary operator, evolve(v;), is applied to each
population member to produce the population members
for the next iteration of the algorithm. This is shown
represented by block 7 in Figure 2

6) Steps 2-5 are repeated until either the maximum number
of steps is reached or the process converges on a single
solution. The highest scoring deployment topology, dv;,
is returned as the result. This is shown represented by
block 8 in Figure 2

VI. EVALUATING THE MERITS OF SMARTDEPLOY FOR
SERVICE UPTIME MAXIMIZATION

This section compares the projected lifespan of an ex-
perimental mission based on its deployment plan generated
by SmartDeploy PSO, SmartDeploy Genetic, PSO, Genetic
and worst-fit bin packing algorithms. First we describe the
experimental setup. Next we describe results of the different
experiments we conducted.

A. Experimental Strategies and Execution Platform

We compared the deployments produced by five different
deployment techniques. The five techniques we compared are:

1. Worst-fit bin packing - A worst-fit heuristic of bin-
packing algorithm.

2. PSO - Only PSO algorithm from SmartDeploy frame-
work.

3. SmartDeploy PSO - The PSO variant of SmartDeploy
which combines worst-fit bin-packer with PSO algorithm.

4. Genetic - Only Genetic algorithm algorithm from Smart-
Deploy framework.

5. SmartDeploy Genetic - The genetic variant of Smart-
Deploy which combines worst-fit bin-packer with genetic
algorithm.

The experiments were conducted on a single Windows XP
desktop with 2.19 GHz Intel Core 2 Duo processor and 2
GB RAM. Java Virtual Machine (JVM) version 1.6 was used
for the experiments. For both PSO and genetic algorithm, a
population size of 20, local learning coefficient of 0.5, global
learning coefficient of 2, and 20 search iterations (generations)
were used. The genetic algorithm allowed a total of 10% of
the population to be passed through to the next generation,
selected the top 25% of solutions for mating, and applied
a mutation probability of 5%. A uniform distribution for

generating initial random vectors is used to cover more area
and not inadvertently bias our search to a specific region.

B. Experiments

Experiments 1 and 2 described below were conducted using
100 nodes and 100 software components. The number of nodes
tested for the experiment ranges from 30 to 100. The number
of software components are kept constant.

Experiment 1: Homogeneous nodes, heterogeneous soft-
ware components —
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Fig. 4. Homogeneous nodes, Heterogeneous software components

The first experiment was conducted using homogeneous
nodes, i.e., each of them having the same amount of mem-
ory and power capacity on them. The software components
deployed on them were heterogeneous, i.e., each of them
requiring different amount of memory and power consumption
capacity. Here the constraints based on the amount of memory
available on all nodes and the amount of memory required by
all the software components are used, i.e., total hardware and
software resource requirements should not exceed their total
availability.

Hypothesis: SmartDeploy should provide significant in-
crease in service uptime compared to the bin-packing al-
gorithm and PSO. Here although the nodes have homoge-
neous properties for the amount of memory and the battery
power capacity, the heterogeneous properties of the software
components i.e., each of them requiring different amount of
memory and power consumption capacity causes SmartDeploy
to produce better results than the worst-fit bin packer and and
evolutionary algorithms alone.

Analysis of results: As seen in the Figure 4, SmartDeploy
algorithms show 94% and 58% improvement in maximizing
service uptime over PSO and genetic algorithms, respectively.
However, it gives only 20% improvement over worst-fit bin
packer. After careful analysis, it can be seen that due to
the homogeneous properties of the nodes, the worst-first bin
packer gives better results as compared to both the evolution-
ary algorithms, and are close to that of SmartDeploy.
Experiment 2: Heterogeneous nodes, heterogeneous soft-
ware components —

The second experiment was conducted using heterogeneous
nodes, i.e., half the number of nodes have one set of properties



while the other half have another set of similar properties. For
lack of space we do not report on other variations. The soft-
ware components deployed on them were also heterogeneous,
i.e., each of them requiring different amount of memory and
power consumption capacity. Here the constraints based on the
amount of memory available on all nodes and the amount of
memory required by all the software components were used,
i.e., total hardware and software resource requirements should
not exceed their total availability.

Hypothesis: SmartDeploy should provide significant im-
provement in service uptime compared to the bin-packing
algorithm and evolutionary algorithms. Here the nodes having
heterogeneous properties for the amount of memory and the
battery power capacity, the heterogeneous properties for the
software components, i.e., each of them requiring different
amount of memory and power consumption capacity should
cause the SmartDeploy algorithms to produce better results
than the worst-fit bin packer and evolutionary algorithms
alone.

Analysis of results: As seen in Figure 5, due to the
heterogeneous properties of nodes and software components,
and large problem size, the performance of evolutionary al-
gorithms degrades. PSO gives invalid topologies in this sce-
nario. Genetic algorithm gives invalid toplogies when software
components are tightly packed onto devices. Even when the
number of devices increases, SmartDeploy algorithms provide
up to 162% better service uptime. They also provide up to
75% more service uptime than worst-fit bin packer.
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Experiment 3: Varying the number of software com-
ponents (heterogeneous) deployed on fixed number of
heterogeneous nodes —

The third experiment was conducted by varying the number
of heterogeneous software components being deployed on
fixed number of heterogeneous nodes. The number of software
components varied from 100 to 200 with increments of 20.
Here the constraints were based on the amount of memory
available on all nodes and the amount of memory required by
all the software components are used, i.e., total hardware and
software resource requirements should not exceed their total
availability.

Hypothesis: As the number of software components
increases, the topologies become tightly constrained. If the
solution space increases, then it should cause the bin-packer

to provide a less than optimal value. The tightly constraint
solution space should cause evolutionary algorithms to degrade
in their performance.

Analysis of results: As seen in the Figure 6 the devices
become tightly packed with increasing number of software
components and constraint on memory requirements. The evo-
lutionary algorithms degrade in performance and give invalid
deployment toplogies. The SmartDeploy algorithms give up to
50% more service uptime as compared to worst-fit bin packer.
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Experiment 4: Comparison of service uptime by all the
algorithms with that of brute-force algorithm —

We attempted to obtain the optimum service uptime using
brute-force algorithm which tries each and every combinations
of deployment topologies. However, we observed that running
the brute-force algorithm even for even small problem sizes
takes significant time. So it was not practical to run it for large
problem sizes of hundreds of nodes and hundreds of software
components. Table I shows the running time for brute-force
algorithm over a small problem size.

TABLE 1
TIME TAKEN TO RUN BRUTE-FORCE ALGORITHM FOR SERVICE UPTIME

Nodes Software components Service uptime(msec)
5 5 78
5 7 1219(1.2 secs)
5 9 33312(33.3 secs)
5 11 1261211(21 minutes)

Experiment 5: Comparison of computation time taken by
each of five algorithms to execute — The fifth experiment
was conducted to observe the average time taken by each
of the five algorithms to execute. Here the experimental
values used in experiment 2 were used, i.e., heterogeneous
nodes and heterogeneous software components. The average
values for service uptime for the entire range of nodes were
taken. As seen in Figure 7, worst-fit bin packer takes least
amount of time to run, i.e., 47 milliseconds. The SmartDeploy
algorithms take most amount of time to run, i.e., between 2,000
milliseconds to 3,200 milliseconds. Since we are considering
an offline solution for deployment topology, a delay in few
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seconds is tolerable to achieve better service uptime. Hence the
use of SmartDeploy algorithms is desirable in such situations.

VII. CONCLUDING REMARKS AND LESSONS LEARNED

Service uptime maximization in distributed applications
hosted on a network of smartphones can be achieved through
effective deployment. Several optimization techniques are
commonly used for deployment problems in distributed real-
time and embedded (DRE) systems. Algorithms with expo-
nential runtime complexity like integer programming are not
scalable when the problem size increases up to hundreds of
devices. Bin-packing heuristics tend to generate valid deploy-
ment topologies, but they may not give optimal solutions when
problem size increases. Evolutionary algorithms are commonly
used for deployment problems since they explore a variety
of design solutions. However, as the number of constraints
and the problem size increases, they tend to degrade in
performance.

The paper described a framework called SmartDeploy that
provides a hybrid deployment technique to achieve service
uptime maximization. It builds upon our earlier work called
ScatterD, which combines first-fit bin packer with the evo-
lutionary algorithm to reduce power consumption in DRE
systems. SmartDeploy enables a user to strategize both the
evolutionary algorithm as well as the bin packing heuristic.
A concrete manifestation of SmartDeploy using the worst-
case bin packer along with evolutionary algorithms is pre-
sented to solve the service uptime maximization problem for
smartphone-based mission critical applications.

Using worst-fit bin packer heuristic, the software compo-
nents of the distributed application can be evenly deployed
on the available devices such that they can obtain maximum
available battery power and sufficient hardware resources.
The experimental results show that SmartDeploy framework
increased service uptime from 20% to 162% beyond that pro-
vided by worst-fit bin packer and evolutionary algorithms used
independently. The following lessons were learned conducting
this research:

e Since the running time of the SmartDeploy algorithms
is only slightly more than the algorithms we compared
against, it is practical to use the hybrid algorithm. In fu-
ture work we intend to investigate the use of SmartDeploy
framework in runtime deployment decisions.

o We also intend to investigate other distribution techniques
for generation of initial random topologies of evolution-
ary algorithms like Gaussian distribution to see if they
can achieve better solutions.

+ We intended to run the brute-force optimal algorithm to
compare the service uptime solutions from each of the
five algorithms we used in our experiments to see how
our solutions compare to the optimal one. However, we
observed that running the brute-force algorithm even for
small problem sizes takes considerable amount of time.
Hence it was not practical to test it out for the large
problem size that we use.
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