
Model-driven Generative Framework for Automated
OMG DDS Performance Testing in the Cloud ∗

Kyoungho An, Takayuki Kuroda †,
Aniruddha Gokhale

ISIS, Vanderbilt University, Nashville, TN 37235, USA
{kyoungho, kuroda, gokhale}@isis.vanderbilt.edu

Sumant Tambe and Andrea Sorbini
RTI, Sunnyvale, CA, USA

{sumant, asorbini}@rti.com

Abstract
The Object Management Group’s (OMG) Data Distribution Ser-
vice (DDS) provides many configurable policies which determine
end-to-end quality of service (QoS) of applications. It is chal-
lenging to predict the system’s performance in terms of latencies,
throughput, and resource usage because diverse combinations of
QoS configurations influence QoS of applications in different ways.
To overcome this problem, design-time formal methods have been
applied with mixed success, but lack of sufficient accuracy in pre-
diction, tool support, and understanding of formalism has prevented
wider adoption of the formal techniques. A promising approach to
address this challenge is to emulate system behavior and gather
data on the QoS parameters of interest by experimentation. To re-
alize this approach, which is preferred over formal methods due to
their limitations in accurately predicting QoS, we have developed
a model-based automatic performance testing framework with gen-
erative capabilities to reduce manual efforts in generating a large
number of relevant QoS configurations that can be deployed and
tested on a cloud platform. This paper describes our initial efforts
in developing and using this technology.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing tools

Keywords Model-driven Engineering, Generative Programming,
Publish/Subscribe, Performance Testing

1. Introduction
The OMG Data Distribution Service (DDS) [4] is a general-
purpose middleware supporting real-time publish/subscribe seman-
tics [1] for mission-critical applications. Specifically, the OMG
DDS supports real-time, topic-based, data-centric, scalable, deter-

∗ This work was supported in part by NSF CAREER Award CNS 0845789.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.
†Author is a visiting researcher from NEC Corporation, Japan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GPCE ’13, October 27–28, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2517208.2517216

ministic and anonymous pub/sub interaction semantics for large-
scale distributed applications. To support the quality of service
(QoS) requirements of a broad spectrum of application domains,
OMG DDS supports many QoS configuration policies (in the form
of configuration parameters) that when used in different combina-
tions determine the delivered end-to-end QoS properties.

An important consideration with DDS QoS policies is that not
all QoS policies can be combined with each other since certain
combinations tend to be incompatible with each other. Similarly,
the values chosen for specific QoS policies may tend to become
inconsistent when combined. Both the incompatibility and incon-
sistency issues pose significant challenges for DDS application de-
velopers who must ensure that their deployed applications have
compatible and consistent QoS configuration policies. Our prior
work [2] utilized model-driven engineering (MDE) techniques to
pinpoint existence of such errors at design-time.

Addressing these accidental challenges alone is not sufficient,
however, towards realizing high confidence DDS-based applica-
tions. Every individual QoS policy tends to impact the end-to-
end performance and behavior of the application in specific ways.
When these QoS policies are combined in various combinations, it
is hard to predict the outcome on QoS of combining these policies.
Such a problem is faced not just by application developers but also
by the OMG DDS vendors themselves, who must have an indepth
knowledge of how various combinations of configuration parame-
ters interact, and to address issues raised by their customers.

It is not possible to expect an application developer or a ven-
dor to manually write test cases that can test every QoS policy and
all possible combinations of these QoS policies (along with their
values), not to mention that they must also ensure that these com-
binations are valid. Even if one were to develop these large number
of tests, executing them sequentially is time consuming, which im-
pacts both the application developers who aim at getting their appli-
cations to market rapidly and vendors who must address customer
problems in a timely manner.

To address the combinatorial testing problem and limitations of
sequential testing, this paper presents AUTOMATIC (AUTOmated
Middleware Analysis and Testing In the Cloud), which is a frame-
work we have developed that combines MDE techniques with mul-
tiple stages of generative capabilities. Specifically, AUTOMATIC
provides a domain-specific modeling language that developers use
to model their applications and QoS policies of interest. Generative
tools synthesize essentially a product line of test cases, each test-
ing different QoS policies for the same publish/subscribe business
logic. A second set of generators synthesize cloud-based deploy-
ment logic. Finally, a testing framework automates the testing of
the generated test cases in parallel in the cloud. Although a related
effort called Expertus [3] uses aspect oriented weaving techniques
for code generation and automated testing of applications for per-

formance in the cloud, this effort does not address the QoS con-
figuration combinations and their impact on performance that we
address in this paper.

The rest of the paper is organized as follows: Section 2 describes
the overall approach providing brief details of each stage in our ap-
proach; Section 3 provides initial insights gained in validating our
solution; and finally Section 4 offers concluding remarks alluding
to work needed to make the work robust and complete.

2. Design and Implementation of AUTOMATIC
Figure 1 describes the overall architecture and workflow of our au-
tomated performance testing framework called AUTOMATIC. AU-
TOMATIC comprises three activity domains: User, Test Automa-
tion System, and Cloud Infrastructure. The Modeling and Monitor-
ing functions included in the User domain should be conducted by
a user who prototypes DDS applications and performs performance
testing of the applications. In the Test Automation System domain,
Test Planning and Test Deployment functions are carried out by
predefined tools in our framework. When the Test Planning is com-
pleted and ready to be deployed in a testing infrastructure, a test
environment is generated for our cloud infrastructure to emulate
application testing. As a result, users need to define their models of
applications and test specifications with a modeling tool as inputs
and obtain performance results with a monitoring tool as outputs of
our framework.

Test PlanningModeling

App

Test
Spec

Test
Case

Test
Spec

Test DeploymentTest
Monitoring

Test
Result

User

Test
Env

User (App Developer) Test Automation System Cloud Infrastructure

VMGenerated
Artifacts

Manual
Artifacts

Test Env Generation

Test Execution

Function

Figure 1. Framework Architecture

The rest of this section describes each activity in detail including
the performance monitoring capability.

2.1 Domain-Specific Modeling Language
We developed a DSML using the Generic Modeling Environment
(GME) (www.isis.vanderbilt.edu/projects/GME) that sup-
ports modeling a DDS application for emulation and testing its
performance for various combinations of DDS QoS policies. GME
provides a meta-modeling environment to develop DSMLs for spe-
cific domains. Our meta-model includes modeling elements for
all OMG DDS entities including Domain, Topic, Publisher, Sub-
scriber, DataWriter, DataReader, QoS, and their connections. In
DDS applications, a scope or operating region of an application
is determined by the Domain, and applications are isolated by
different Domain IDs. DDS applications publish or subscribe via
DataWriters and DataReaders through associated Topics, and there-
fore in the meta-model the Topic and Type elements are contained
in the Domain element and Topics and Types in the Domain are
accessible by DataWriter and DataReader entities running in the

same Domain. Moreover, the Domain contains a Participant ele-
ment which is a concept to represent a processing unit for publish-
ing or subscribing or both. Lastly, the modeling capability to con-
figure QoS policies for DDS entities is contained in the Domain ele-
ment. Data communications between Participants are differentiated
and identified by a Topic, so a TopicConnection element is required
in the Domain model to be used by DataWriters and DataReaders
in Participants.

Figure 2 shows an example application defined with our mod-
eling language. This example application examines the throughput
of the application publishing octet sequence data from a Participant
containing a DataWriter to a Participant involving a DataReader.
Each DataWriter and DataReader are placed under the Participant
element and behaves as a communicating port between Partici-
pants.

Figure 2. Example Domain-Specific Model of DDS Throughput
Testing Application

The DDS Participants are deployed in virtual machines (VMs)
for testing and each Participant in the model are connected to a VM
element based on the deployment decision by users. In this exam-
ple, each Participant is deployed in a different VM. The deployment
plan (mapping of Participants and VMs) can be flexibly altered by
users in the modeling language if users like to test with different
deployment plans. Users can emulate their applications by setting
analogous hardware specifications to find similar performance re-
sults in actual environment.

Communicating DataWriters and DataReaders are connected
with directed lines which indicate communications defined by a
Topic. A Topic is shown in the top of this example model. If a name
of a line is the same as the name of a Topic, it means DataWriters
and DataReaders connected with the link communicate data by the
Topic. Each data type of a Topic is determined by a struct like data
type.

In the QoS Profile element, QoS policies used by DataWriters
and DataReaders are contained. For example, Reliability QoS has
two kinds of policies to determine the level of reliability: RELIA-
BILITY and BEST EFFORT. History QoS also has two kinds of
policies to set the number of history samples in a entity’s cache:
KEEP ALL and KEEP LAST. Some QoS policies need to set as
numeric values such as history depth in History QoS. A QoS Profile
element can be reused by multiple DataWriters and DataReaders.
In our framework, QoS policies defined in a QoS Profile element
are variations of generative artifacts, and the number of variations
are determined by ranges of configuration parameters set by users.

Finally, the configurable parameters are set in the TestSpec
element. In this element, test related information such as running
duration of the test, and the number of test cases concurrently
running is configured. A deployment tool uses this information
to decide the number VMs in a test set and schedule the test
operations.

2.2 Test Plan Generation
The Test Planning function traverses the modeled elements in a
model instance via a model interpreter to generate executable ap-
plications and related test specification files.

Figure 3 shows an XML-based DDS application tree model
transformed by the model interpreter based on Figure 2. Because
the aim of our automatic testing framework is to analyze appli-
cation performance by varying QoS configuration, elements under
the QoS Library are categorized into variable elements and the rest
of the elements fall into the common elements category. This ap-
proach is conducive to using generative programming to realize a
product line of test cases. The QoS Library embodies QoS elements
for DataWriters and DataReaders. To demonstrate our framework
with a simple example, we varied only the Reliability QoS. In this
example, both DataWriter QoS and DataReader QoS have Relia-
bility QoS. BEST EFFORT or RELIABILITY can be selected as a
kind of the Reliability QoS.

Figure 3. XML-based DDS Application Tree

The following procedure is used to form a tree shown in Fig-
ure 4 for all possible combinations of QoS configurations defined
in the QoS Library. In the example, four test cases can be generated
as each DataWriter and DataReader QoS has Reliability QoS that
can choose from BEST EFFORT and RELIABLE. Once the com-
bination tree for variable elements is complete, the combination
tree is traversed with depth-first search to create trees for variables
elements actually used by the applications for testing.

Figure 4. Variable Element Combination Tree

As a final outcome, four trees for variable elements are created
as shown in Figure 5. The tree numbered 2 is discarded by the inter-
preter because the QoS configurations are not compatible. The rea-
son is that if the DataWriter’s Reliability QoS is BEST EFFORT
and DataReader’s Reliability QoS is RELIABLE, then no commu-
nication between them is feasible according to the DDS specifica-
tion.

We checked for all compatibility and inconsistency violations
in the model interpreter though this task can be accomplished us-
ing the Object Constraint Language in the model itself as shown by
our prior work [2] or the runtime environment may also be able to
flag these cases as errors. As the final step, the trees for variable ele-
ments are combined with the tree for common elements introduced
in Figure 3, and the executable applications are generated.

Figure 5. Variable Element Tree

2.3 Test Deployment
To deploy the XML-based DDS testing applications in a cloud-
based testing infrastructure, specifications related to the deploy-
ment are also generated by the model interpreter. The specifications
are composed of three parts: Test Specification, VM Specification,
and Application Specification. The Test Specification describes the
environment including a reference to the VM Specification, concur-
rency level, duration for test execution, publication period of pub-
lishers. Each test case is defined with an assigned ID and a referring
specification file. The referred specification files have information
about application’s topology and the execution command.

The VM Specification example describes required VMs for
testing and information of VMs such as VM instance type and
image. These specifications are fed into our deployment tool. VM
instance types indicate specifications of VM such as the number
of virtual CPUs, memory size, and storage capacity. According to
the user-selected VM image and VM instance type, the Test Env
Generation function deploys a proper VM in a cloud infrastructure.
When the VM has booted up, a SSH connection is established and
a test case application is sent to the VM over the SSH connection
by the Test Execution function.

We implemented our deployment tool in Python 2.7 for the Test
Deployment function. Our private cloud for testing adopted Open-
Stack as a cloud operating system, and the Python Boto library is
exploited to control cloud resources via Amazon AWS APIs. The
generated XML-specified application that is moved to the deployed
VM is subsequently executed on that VM using a tool provided
by RTI called the RTI Prototyper (http://community.rti.com/
content/page/download-prototyper).

2.4 Test Monitoring
We employed another product from RTI called the RTI Monitor to
detect DDS applications’ performance while it is executing on the
VM. The RTI Monitor is a tool to visualize monitoring data of ap-
plications. The RTI Monitor helps users to understand their systems
easily via graphical interfaces and to verify behaviors of entities as
expected. Moreover, it comes to the aid of improving performance
throughput provided statistics such as CPU and memory usage, and

throughput. The experimental results illustrated in Section 3 were
collected using this tool.

3. Technology Validation
Our efforts at validating the claims in AUTOMATIC thus far have
focused on a scenario where an application developer seeks to make
appropriate tradeoffs trying to balance the conflicting requirements
of reliability and timeliness. To that end, the experiment evaluates
performance of an example DDS application by combining the RE-
LIABILITY, HISTORY and DEADLINE QoS policies. In this ex-
periment, DDS applications use core libraries of RTI Connext DDS
5.0 (which is an implementation of OMG DDS) and executable
scripts provided with RTI Connext Prototyper 5.0. Our OpenStack-
based cloud testbed employs KVM as a virtual machine (VM) hy-
pervisor. Each VM machine type used in this experiment consists
of 1 virtual CPU and 512 MB memory.

In our example, the publisher periodically publishes a topic con-
taining octet sequence typed data of 64K bytes to the subscriber. We
chose a large packet size in the hope of congesting the network. The
publishing period is decided by the DEADLINE QoS setting and
was fixed at 1 millisecond. The purpose of this experiment is to un-
derstand deadline miss rate for different RELIABILITY QoS con-
figurations. The HISTORY setting was KEEP ALL, which means
the publisher and subscriber hold on to all the data samples so they
can be used for retransmissions when complete reliability is de-
sired. The RELIABILITY setting is varied between RELIABLE
(for eventual consistency) versus BEST EFFORT (where no at-
tempt is made to retry transmissions when samples are lost). The
generated test cases are shown in Figure 5.

Figure 6 shows deadline miss counts of DataReader’s (an entity
on the subscriber side) in the test cases. If a sample is not arrived in
a DataReader within 1 millisecond, it is counted as a missed dead-
line. Each test case runs for 4 minutes and values are monitored
every 5 seconds. The X axis indicates time and Y axis presents
deadline missed samples for 5 seconds.

Figure 6. Deadline Miss Counts for Different Reliability QoS
Settings

In test case 1, most samples do not miss the deadline and the
range of the samples spans up to 10 as maximum. If Reliability
QoS is set to BEST EFFORT, a DataWriter keeps publishing data
regardless of the status of a DataReader and therefore it is beneficial
to be used for applications demanding low latency. In a congested
network environment, it would possibly lose samples, however,
since our test network is not congested, there were no lost samples.

In test case 3, deadline miss counts are monitored from 9 to 35
where they keep occurring during the entire testing period. If the

data cache of a DataWriter with the RELIABLE Reliability QoS is
filled with unacknowledged samples, the DataWriter’s write opera-
tion is blocked for a while to control the sending rate to avoid con-
gestion which increases the latency of samples delivered. Accord-
ingly, high latency causes deadline miss counts on the DataReader
side. However, samples can reliably arrive at the DataReader due
to the middleware supporting the retransmissions.

4. Concluding Remarks
Modern middleware, such as the OMG Data Distribution Ser-
vice (DDS), provide substantial flexibility to applications by
virtue of supporting a large number of configuration options.
These configuration options when combined in different ways
can lead to vastly different performance and behavioral char-
acteristics for the applications. Although some intuition is al-
ways available on the potential impact of individual configura-
tions, and some guidelines do emerge after a few years of ex-
perience using multiple configurations on real applications (e.g.,
community.rti.com/best-practices), application developers
continue to face numerous challenges deciding the right combina-
tions of options they must use for their application for the chosen
deployment environments. It is infeasible for developers to manu-
ally create and test each possible scenario to understand the impact
of the configuration options.

To address these challenges in the context of OMG DDS mid-
dleware, this paper combines model-driven engineering (MDE) and
generative programming techniques to provide a tool called AU-
TOMATIC (AUTOmated Middleware Analysis and Testing In the
Cloud). MDE helps application developers with intuitive abstrac-
tions to rapidly describe their scenarios. Generative programming
is needed since the test cases that combine configuration options
can be considered a product line where the DDS application busi-
ness logic remains common while the configurations can vary. De-
ployment and testing in the cloud is chosen as an approach because
of its elastic nature where we can automate the parallel execu-
tion and collection of test statistics for a large number of gener-
ated tests from our tooling. Although the presented technology is
showcased for the OMG DDS middleware, the principles behind
AUTOMATIC are applicable to other middleware. Moreover, our
technology has significant practical utility to both application de-
velopers and middleware vendors.

The presented work illustrates the feasibility of such an idea.
Our ongoing work is focusing on making AUTOMATIC com-
plete and robust for OMG DDS, and test it on a large number
of deployment scenarios. Future work is also looking into gener-
ating application business logic. Current artifacts in AUTOMATIC
are available for download from www.dre.vanderbilt.edu/

~kyoungho/AUTOMATIC/.

References
[1] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec. The many faces of publish/subscribe. ACM Com-
puter Survey, 35:114–131, June 2003.

[2] Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale. A QoS Policy
Configuration Modeling Language for Publish/Subscribe Middleware
Platforms. In Proceedings of International Conference on Distributed
Event-Based Systems (DEBS), pages 140–145, Toronto, Canada, June
2007.

[3] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Qingyang Wang, Junhee
Park, and C. Pu. Expertus: A Generator Approach to Automate Perfor-
mance Testing in IaaS Clouds. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pages 115–122, 2012.

[4] Object Management Group. Data Distribution Service for Real-time
Systems Specification, 1.2 edition, January 2007.

