1. Background and Challenges

- **Advantages of Cloud computing**
 - Elastic
 - Scalable
 - Cost-effective

- **Challenges of Cloud computing**
 - Hard to guarantee the user’s expectations of Quality of Service (e.g., reliability, timeliness)
 - Shared resources by a number of users
 - Compute-intensive processes
 - Network traffic

- **Research Challenges of Cloud Computing to Support DRE Systems**
 1. Need effective resource monitoring
 2. Real-time hypervisors and data-center networks
 3. Predictable dependability mechanisms

2. Literature Survey

- **Research criteria based on literature survey**
 1. Effective resource monitoring (common to all)
 2. Timeliness in data-center networks
 3. Real-time scheduling in hypervisors
 4. High availability via replication of virtual machines

- **Timeliness in data-center networks**
 1. DCTCP
 - TCP modified protocol
 - Better throughput than TCP
 2. D^3
 - Deadline aware control protocol
 3. D^2TCP
 - Reducing deadline miss ratio

- **Real-time scheduling in hypervisors**
 1. RT-Xen
 - 4 Fixed priority real-time schedulers used in Xen
 2. Scheduler S
 - The modified Xen scheduler for soft-real-time tasks

- **High availability via replication of virtual machines**
 1. Remus
 - Asynchronous replication and speculative execution
 - Supported with Xen
 2. Kemari
 - Lock-stepping and continuous check-pointing approach
 - Supported with KVM
 3. HydraVM
 - Storage-based and memory-efficient approach

3. Addressing Challenge 1 – Need for Effective Resource Monitoring

- **SQRT-C (A scalable and QoS-enabled cloud monitoring system)**
 - Using OMG Data Distribution Service (DDS) real-time publish/subscribe (pub/sub) middleware

- **SQRT-C software artifacts**
 - DDS-based pub/sub communication
 - Monitoring Manager

- **DDS-based pub/sub communication**
 - Disseminating monitoring information for virtual resources from the source (i.e., publishers) to the sinks (i.e., the subscribers)
 - Supporting the QoS requirements

- **Monitoring Manager**
 - Serving as the orchestrator for the deployment of data-writers and data-readers of the DDS pub/sub mechanism

- **Performance Evaluation**
 - SQRT-C outperforms RESTful services in terms of response time (Figure 2) and jitter for real-time applications

4. Ongoing and Future Work

- **Unresolved challenges**
 - Trade-off between timeliness and high-availability with strong consistency
 - Tradeoffs between response time and consistency
 - BASE (Basically Available replicated Soft state with Eventual consistency)
 - ACID (atomicity, consistency, isolation, and durability) database models

- **Redundancy-based fault recovery mechanisms for DRE systems**
 - Replication using primary-backup
 - A proactive, resource-aware fail-over strategy
 - A resource-aware allocation based on backup resource overbooking

- **Our proposed research**
 - Implementation of a fault-tolerant cloud architecture applying redundancy-based fault recovery mechanisms
 - Performance analysis for trade-off between strict timeliness and strong consistency
 - Integration of real-time hypervisors and deadline-aware data-center networks

- **Work in progress**
 - A framework for automated placement of virtual machine replicas for DRE systems
 - Bin-packing heuristics developed

5. References

Research supported in part by NSF CNS 0915976