
ACE Overview Kyoungho An

1

ACE Overview
ADAPTIVE Communication Environment

Kyoungho An
Dept. of EECS, Vanderbilt University
July 26, 2012

ACE Overview Kyoungho An

2

Presentation Roadmap	

•  ACE Overview
•  Benefits of Using ACE
•  The Structure and Functionality of ACE

–  The ACE OS Adapter Layer
–  C++ Wrapper Facades for OS Interfaces
–  Frameworks
–  Distributed Services and Components
–  High-level Distributed Computing Middleware Components

•  Reference

ACE Overview Kyoungho An

3

ACE Overview	

•  Object-oriented network framework implementing core design

patterns for concurrent network software
•  Provide C++ wrapper façades and framework components

across various OS platforms
•  Communication software tasks provided by ACE

–  Event demultiplexing and event handler dispatching
–  Signal handling
–  Service initialization
–  IPC
–  Shared memory management
–  Dynamic reconfiguration of distributed services
–  Concurrent execution and synchronization

ACE Overview Kyoungho An

4

Benefits of Using ACE	

•  Increased portability

–  Easy to port applications to other OS platforms
•  Increased software quality

–  flexibility, extensibility, reusability, modularity through
using key design patterns

•  Increased efficiency and predictability
–  Support a wide range of application QoS requirements
–  Low latency for delay-sensitive applications
–  High performance for bandwidth-intensive applications

•  Provide standard high-level middleware
–  The ACE ORB (TAO), which is an open-source standard-compliant

implementation of CORBA

ACE Overview Kyoungho An

5

The Structure and Functionality of ACE	

ACE Overview Kyoungho An

6

The ACE OS Adapter Layer	

•  Reside directly atop the native OS APIs written in C
•  Shield the other layers and components in ACE from

platform-specific dependencies associated with the following
OS APIs
–  Concurrency and synchronization
–  IPC and shared memory
–  Event demultiplexing mechanisms
–  Explicit dynamic linking
–  File system mechanisms

•  ACE ported OS platforms
–  Windows, MacOS X, Linux, RTOSs, iOS, Android, etc.

ACE Overview Kyoungho An

7

The Structure and Functionality of ACE	

ACE Overview Kyoungho An

8

C++ Wrapper Facades for OS Interfaces	

•  Possible to program directly atop ACE’s OS adaptation layer
•  However… most ACE developers use the C++ wrapper

façade layer
•  Simplify application development by providing typesafe C++

interfaces that encapsulate and enhance the following
–  Concurrency and synchronization components
–  IPC and filesystem components
–  Memory management components

•  C++ wrappers are strongly typed
–  Detect system violations at compile-time rather than

run-time

ACE Overview Kyoungho An

9

The Structure and Functionality of ACE	

ACE Overview Kyoungho An

10

Frameworks	

•  ACE Framework

–  Event demultiplxeing components
•  Reactor, Proactor

–  Service initialization components
•  Acceptor, Connector

–  Service configuration components
•  Service Configurator

–  Hierarchically-layered stream components
•  Streams

•  ACE Framework Implementation
–  C++ language features (templates, inheritance, dynamic binding)
–  Design patterns (Abstract Factory, Strategy, Service Configurator)
–  OS mechanisms (multi-treading, dynamic linking)

ACE Overview Kyoungho An

11

The Structure and Functionality of ACE	

ACE Overview Kyoungho An

12

Distributed Services and Components	

•  Provide a standard library of distributed services
•  Not part of the ACE framework library
•  However… play two roles in ACE

–  Factoring out reusable distributed application building blocks
•  naming, event routing, logging, time synchronization

–  Demonstrating common use-cases of ACE components

ACE Overview Kyoungho An

13

The Structure and Functionality of ACE	

ACE Overview Kyoungho An

14

Distributed Middleware Components	

•  Developing robust, extensible, and efficient communication applications is

challenging
–  Network addressing and service identification
–  Encryption, compression, and network byte-ordering conversions

between heterogeneous end-systems
–  Process and thread creation and synchronization
–  Library interfaces to IPC mechanisms

•  Higher-level distributed middleware (CORBA, DCOM, RMI)
–  Alleviate complexity of developing communication applications

•  Authentication, authorization, and data security
•  Service location and binding
•  Service registration and activation
•  Demultiplexing and dispatching in response to events
•  Implementing message framing atop byte stream-oriented communication

protocol like TCP

ACE Overview Kyoungho An

15

Distributed Middleware Components	

•  ACE의 higher-level middleware applications

–  The ACE ORB (TAO)
•  Real-time implementations of CORBA using ACE
•  Based on the standard OMG CORBA reference model
•  Overcome the shortcomings of conventional ORBs for high-

performance and real-time applications
–  JAWS

•  High performance, adaptive Web server using ACE
•  JAWS components and frameworks

– Concurrency Strategy (Thread per request vs. Thread pool)
–  I/O Strategy (synchronous vs. asynchronous)
–  Protocol Handlers (HTTP 1.0 vs. HTTP 1.1)
– Cached Virtual File System (LRU vs. LFU)

ACE Overview Kyoungho An

16

The Structure and Functionality of ACE	

ACE Overview Kyoungho An

17

Questions?

ACE Overview Kyoungho An

18

Reference	

•  http://www.cs.wustl.edu/~schmidt/ACE-overview.html

