
Chapter 1 

Model-Driven Development of  
Distributed Real-time and Embedded Systems 

 

ABSTRACT 
Despite advances in standards-based commercial-off-the-shelf (COTS) technologies, 
key challenges must be addressed before mission-critical distributed real-time and 
embedded (DRE) systems can be developed effectively and productively using 
COTS component-based software.  For example, developers of DRE systems con-
tinue to use ad hoc means to select and compose their applications and middleware 
due to the lack of formally analyzable and verifiable building block components.  
This chapter shows how Model-Driven Development (MDD) techniques and tools 
can be used to specify, analyze, optimize, synthesize, validate, and deploy standards-
compliant component middleware platforms that can be customized for the needs of 
next-generation DRE systems.  Our results show how MDD techniques and tools 
have been integrated successfully with standards-based QoS-enabled component 
middleware to significantly improve the quality and productivity associated with 
developing mission-critical DRE systems. 
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1.1. INTRODUCTION 

1.1.1. EMERGING TRENDS AND CHALLENGES 
Over 90 percent of all microprocessors are now used for embedded systems, in 

which computer processors control physical, chemical, or biological processes and 
devices in real-time.  Examples of real-time and embedded systems include mobile 
phones, pacemakers, and electronic games.  Creating high quality software for real-
time embedded systems has historically been hard due to memory constraints and 
processors with limited capacity, which precluded the use of modern software lan-
guages, tools, and techniques. 

Due to advances in hardware technology, however, real-time and embedded sys-
tems now often have more memory and computational power.  Moreover, individual 
computing nodes are increasingly combined to form distributed real-time and em-
bedded (DRE) systems containing many processors that interoperate via networks 
and interconnects.  Examples of DRE systems include hot rolling mill control sys-
tems, particle accelerators, electrical power grids, chemical plants, and air- traffic 
control systems, as shown in Figure 1. 

 
Figure 1. Example DRE Systems 

It is hard to design DRE systems that implement their required quality of service 
(QoS) capabilities, are dependable and predictable, and are parsimonious in their use 
of computing resources.  It is even harder to build them on time and within budget.  
Moreover, due to global competition for market share and engineering talent, devel-
opers now also face the problem of delivering new products in compressed time-
frames.  It is therefore essential that the production of DRE systems take advantage 
of languages, tools, platforms, and methods that enable higher levels of software 



MDD of Component Based DRE Systems     3 

productivity by moving from a third-generation language programming-centric 
paradigm to a component-based assembly-centric paradigm. 

DRE systems have historically been developed in a hard-coded manner, e.g., 
with dedicated software written for specific types of hardware, using unstructured 
“spaghetti” designs and code.  This approach has yielded stove-piped and proprie-
tary solutions, such as legacy avionics and radio systems shown in Figure 2, that are 
tedious, error-prone, and costly to develop, validate, and evolve.  In particular, small 
changes to software structure or functionality in these tightly coupled systems often 
led to large (negative) impacts on DRE system QoS and maintainability.  
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Figure 2. Unstructured DRE Systems Based on Stove-piped and Proprietary Software 

1.1.2. A PARTIAL SOLUTION: QOS-ENABLED COMPONENT MIDDLE-
WARE 

Over the past decade, standards-based QoS-enabled distributed computing mid-
dleware, such as Real-time CORBA [CORBA:02b] and Real-time Java [RTSJ:00], 
has emerged to reduce the complexity of DRE systems.  This type of middleware 
simplifies the development of DRE systems by factoring out reusable mechanisms 
and services from application code, thereby off-loading many tedious and error-
prone aspects of the software process from developers of vertical applications to de-
velopers of horizontal middleware platforms.  Figure 3 illustrates examples of mid-
dleware-based DRE systems, such as modern avionics mission computing 
[Sharp:03] and software-defined radio [SCA:01] systems, where application devel-
opers are shielded from low-level, tedious, and error-prone computing and commu-
nication details.  Moreover, middleware amortizes software lifecycle costs by lev-
eraging previous development expertise and capturing implementations of key pat-
terns in reusable frameworks, rather than rebuilding them manually for each use.  
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Figure 3. Structured DRE Systems Based on Reusable and Standard Middleware 

During the past decade, a substantial amount of R&D effort has focused on de-
veloping component middleware [Szyperski:02, Heineman:01], which enables reus-
able services to be composed, configured, and installed to create applications rapidly 
and robustly.  The CORBA Component Model (CCM) [CorbaComponents:02] is 
standard component middleware that extends earlier versions of CORBA 
[CORBA:02a] to support the concept of components and establishes standards for 
specifying, implementing, packaging, assembling, and deploying components.   
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Figure 4. Ports in the CORBA Component Model 

A component in CCM is the primary unit of implementation, reuse, and compo-
sition that exposes a set of ports, named interfaces and connection points that com-
ponents use to collaborate with each other.  Ports include the interfaces and connec-
tion points shown in Figure 4 and described below: 
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- Facets, which define a named interface and an implementation that synchro-
nously services operation invocations called from other components. 

- Receptacles, which provide named connection points to facets provided by 
other components. 

- Event sources and event sinks, which indicate a willingness to exchange 
event messages with other components asynchronously. 

A unique component home, which is a factory, creates and manages each com-
ponent instance. 

Figure 5 illustrates the layered architecture of CCM.  A container provides the 
run-time environment for one or more components that manages various pre-defined 
hooks and strategies, such as persistence, event notification, transaction, and secu-
rity, used by the component(s).  Developer-specified metadata expressed in XML 
instruct CCM deployment mechanisms on how to control the lifetime of these con-
tainers and the components they manage.  A component assembly is a virtual com-
ponent consisting of metadata that describes how components are grouped together 
to form higher-level units.  Each component’s metadata describes the features it 
provides (e.g., its interfaces and properties) or the features that it requires (e.g., its 
dependencies).  A component server is an abstraction that is responsible for aggre-
gating physical entities (i.e., implementations of component instances) into logical 
entities (i.e., distributed application services and subsystems).  

 
Figure 5. The Layered CCM Architecture 

In addition to the run-time building blocks outlined above, CCM also standard-
izes component implementation, packaging, and deployment mechanisms.  Packag-
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ing involves grouping the implementation of component functionality – typically 
stored in dynamic link libraries (DLL) – together with other metadata that describes 
salient properties of this particular implementation.  The CCM Component Imple-
mentation Framework (CIF) helps generate the component implementation skele-
tons and persistent state management automatically using the Component Im-
plementation Definition Language (CIDL), which associates component inter-
faces with their executor implementations. 

In conjunction with colleagues at Washington University [Schmidt:04d], we 
have developed  the Component-Integrated ACE ORB (CIAO) [Schmidt:03b], which 
is a real-time implementation of CCM.  CIAO extends our previous work on The 
ACE ORB (TAO) [Schmidt:97] by providing more powerful component-based ab-
stractions using the specification, validation, packaging, configuration, and deploy-
ment techniques defined by the OMG CCM and Deployment and Configuration 
(D&C) [DandC:03] specifications.  Moreover, CIAO integrates the CCM capabili-
ties outlined above with TAO’s Real-time CORBA [RTCorba:02] features, such as 
thread-pools and client-propagated and server-declared policies.  

1.1.3. RESOLVING KEY CHALLENGES OF COMPONENT-BASED DRE 
SYSTEMS WITH MODEL-DRIVEN DEVELOPMENT 
Despite advances in standards-based QoS-enabled component middleware, however, 
significant challenges remain that make it hard to support large-scale DRE systems 
in domains (such as shipboard combat systems and supervisory control and data 
acquisition (SCADA) systems) requiring stringent support for multiple QoS proper-
ties.  Key unresolved challenges include: 

- Lack of tools for effectively composing DRE systems from components.  
DRE component middleware enables application developers to develop indi-
vidual QoS-enabled components and package them into assemblies that form 
complete DRE systems.  Although this approach supports the use of “plug and 
play” components, DRE system integrators still face the challenge of compos-
ing the right set of compatible components that will deliver the desired se-
mantics and QoS to applications. 

- Lack of tools for configuring component middleware.  In QoS-enabled 
component middleware frameworks, many attributes and parameters of appli-
cation and middleware components are configured at various stages of the de-
velopment lifecycle.  Manual techniques for ensuring that these parameters are 
semantically consistent throughout a large-scale DRE system are tedious and 
error-prone, however.  Moreover, manual techniques often have no formal ba-
sis for validating and verifying that the configured middleware will deliver the 
end-to-end QoS requirements of applications throughout a DRE system. 

- Lack of tools for automating the deployment of DRE system components 
onto heterogeneous target platforms.  The component assemblies described 
above need to be deployed in a distributed target environment before applica-
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tions can run.  DRE system integrators must therefore perform the complex 
task of mapping individual component assemblies onto specific nodes of the 
target environment.  This mapping must ensure that a particular deployment 
meets the end-to-end QoS requirements given the capabilities of the nodes in 
the target environment. 

This chapter describes how we are addressing the challenges described above us-
ing Model-Driven Development (MDD) techniques and tools.  MDD is an emerging 
paradigm [Greenfield:04] that helps resolve software development and validation 
challenges encountered in development of component middleware and DRE systems 
by combining (1) domain-specific modeling languages (DSMLs), which provide 
programming notations that formalize the process of specifying application logic 
and QoS-related requirements, (2) metamodeling, which helps to automate the defi-
nition of type systems that precisely express key characteristics and constraints asso-
ciated with DSMLs for particular application domains, such as software-defined 
radios, avionics mission computing, and total ship computing environments, and (3) 
model transformations and code generation that automate and ensure the consis-
tency of software implementations via analysis information associated with func-
tional and QoS requirements captured by models of domain-specific structure and 
behavior.  

We have developed an MDD tool-suite called Component Synthesis using Model 
Integrated Computing (CoSMIC) [Schmidt:04a], which is an integrated collection of 
open-source1 DSMLs that support the development, configuration, deployment, and 
evaluation of component-based DRE systems.  The CoSMIC MDD tools can be 
used to specify requirements, compose DRE applications and their supporting infra-
structure from the appropriate set of middleware components, synthesize the meta-
data, collect data from application runs, and analyze the collected data to re-synthe-
size the required metadata.  These activities can be performed via an iterative proc-
ess until the QoS constraints are satisfied end-to-end. 

1.1.4. CHAPTER ORGANIZATION 
The remainder of this chapter is organized as follows: Section 1.2 describes the 
structure and functionality of a component-based video distribution system we de-
veloped as a case study; Section 1.3 presents an overview of CoSMIC and describes 
how we have applied its MDD tools to address key challenges of applying compo-
nent-based middleware to our case study; Section 1.4 compares our work on CoS-
MIC with related work; and Section 1.5 presents concluding remarks. 

                                                           
1 CoSMIC's MDD tools are open-source and available for download at 
www.dre.vanderbilt.edu/cosmic. 
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1.2. OVERVIEW OF VIDEO DISTRIBUTION CASE STUDY 
To motivate and explain the features of CoSMIC we use a running example of a 
representative DRE system shown in Figure 6.  This system is designed for emer-
gency response situations (such as disaster recovery efforts stemming from floods, 
earthquakes, hurricanes) and consists of interacting subsystems with a variety of 
DRE QoS requirements.  Our focus in this chapter is on the unmanned aerial vehicle 
(UAV) video distribution portion of this system, which is used to monitor terrain for 
flood damage, spot survivors that need to be rescued, and assess the extent of dam-
age.  The UAVs transmit this imagery to various other emergency response units, in-
cluding the National Guard, law enforcement agencies, health care systems, fire-
fighting units, and utility companies. 

 
Figure 6. UAV Emergency Response System 

Developing and deploying emergency response systems is hard.  For example, 
there are multiple modes of operations for the UAVs, including aerial imaging, sur-
vivor tracking, and damage assessment.  Each mode is associated with a different set 
of QoS requirements.  For example, a key QoS criterion is the latency requirements 
in sending images from the UAVs to ground stations under varying bandwidth avail-
ability.  Similar QoS requirements occur in the traffic management, rescue missions, 
and fire-fighting operations.  
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In conjunction with colleagues at BBN Technologies [Schantz:04], we have de-
veloped a prototype of the video distribution system described above using the CCM 
and Real-time CORBA capabilities provided by CIAO and TAO, respectively.  The 
components in the video distribution application are shown in Figure 7.  Each UAV 
is associated with a stream of images.  Each image stream is composed of Sender, 
Qosket, and Receiver components.  Sender components are responsible for 
collecting the images from each image sensor on the UAV.  Each Sender compo-
nent passes the images it receives to a chain of Qosket [Schmidt:03b] components 
that perform operations on the images to ensure that the QoS requirements are satis-
fied.   

 
Figure 7. Emergency Response System Components 

Qosket components in our video distribution application include: 

- CompressQosket, which compresses images passed along each stream to 
reduce the bandwidth required to transmit the images. 

- ScaleQosket, which is scales images to reduce the bandwidth required to 
send images. 
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- CropQosket, which crops images so that only interesting portions of a large 
image is transmitted to receivers. 

- PaceQosket, which paces the transmission of images in an ordered fashion 
to avoid bursty network traffic. 

- DiffServQosket, which sets DiffServ codepoints on routers in the path 
between each Sender-Receiver pair. 

The final Qosket component in the chain then passes the images to a Receiver 
component, which collects the images and renders them on a display in the control 
room of the emergency response team. 

Each Sender, Receiver, and the various Qosket components pass images 
via CCM event source and sink ports.  There are also manager components that de-
fine policies, such as the relative importance of the different mission modes of each 
UAV.  These policies in turn modify existing resource allocations by the Qosket 
components.  For example, the global SystemResourceManager component 
monitors resource allocation across all the UAVs that are operational at any mo-
ment.  It is responsible for communicating policy decisions from the control center 
to each UAV by triggering mode changes.  The per-stream LocalResourceMan-
ager component uses the facets exposed by the Qosket components to instruct 
the Qosket components to adapt their internal QoS requirements according to the 
mode in which a UAV is currently operating. 

The component-based implementation of the video distribution application has 
~18 component types, which results in ~18 C++ classes.  Each Qosket component 
has ~4 ports that must be implemented by application developers.  A typical de-
ployment of the video distribution application employs ~6 UAVs contributing to 6 
image streams with ~5 different components per stream.  Since each component in a 
stream receives images and pushes them along the pipeline, each component partici-
pates in at least two connections2 to send/receive the images and in one connection 
for controlling QoS properties.  As a result, there are ~15 connections per stream, 
resulting in ~90 such connections related to the image distribution.  Each Local-
ResourceManager also receives policy and resource allocation events from the 
SystemResourceManager component, resulting in about ~100 connections in a 
typical deployment scenario.  Using CIAO and standard CCM and D&C capabili-
ties, each connection must be hand-written in the XML deployment descriptor files, 
while also being careful to ensure that the ~30 component instances are each as-
signed unique identifiers. 

                                                           
2 These connections are not network connections, but rather represent logical interconnec-
tions between component ports. 
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1.3. APPLYING COSMIC TO ADDRESS VIDEO DISTRIBUTION 
NEEDS 

As discussed in [Schmidt:04d], the use of CIAO-based QoS-enabled component 
middleware to develop the video distribution system described in Section 1.2 signifi-
cantly improved the software quality and flexibility of an earlier prototype 
[Schmidt:03a] of this application that was developed using the previous generation 
of distributed object computing (DOC) middleware based on TAO.  In the absence 
of support from MDD tools, however, the following challenges remain unresolved 
when using component middleware [Schmidt:04f]: 

- The need to define consistent component interfaces, 
- The need to specify valid interactions and connections between components, 
- The need to generate valid component deployment descriptors, 
- The need to configure the component and the underlying middleware and plat-

form, 
- The need to evaluate the chosen configuration to ensure QoS satisfaction, 
- The need to ensure that requirements of components are met by target nodes 

where components are deployed, and 
- The need to validate that changing system structure and/or behavior does not 

leave it in an inconsistent state. 
The lack of simplification and automation in resolving the challenges outlined 

above can significantly hinder the effective transition to – and adoption of – compo-
nent middleware technology to develop DRE systems.  

This section presents an overview of CoSMIC and describes how we have ap-
plied its MDD tools to address the challenges of applying component-based mid-
dleware to our case study described in Section 1.2. 

1.3.1. OVERVIEW OF COSMIC AND GME 
CoSMIC is an integrated set of MDD tools that support the development, con-

figuration, and deployment of component-based DRE systems.  The MDD tools pro-
vided by CoSMIC address key lifecycle phases involved in developing component-
based DRE systems, as shown in Figure 8 and described below: 

- Specification and implementation, which involves defining, partitioning, and 
implementation of application functionality as standalone components. 

- Packaging, which involves, bundling a suite of software binary modules and 
metadata representing application components. 

- Installation, which involves populating a repository with the packages re-
quired by the application. 
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- Configuration, which involves configuring the middleware with the appropri-
ate parameters to satisfy the functional and systemic requirements of ap-
plication. 

- Planning, which involves making appropriate deployment decisions, including 
identifying the entities (such as CPUs) of the target environment where the 
packages will be deployed. 

- Preparation, which involves moving the implementation artifacts to the iden-
tified entities of the target environment. 

- Launching, which involves triggering the installed binaries and the application 
to a ready state. 

- QoS assurance and adaptation, which involves runtime reconfiguration and 
resource management to maintain end-to-end QoS. 

A comprehensive discussion of CoSMIC appears in [Schmidt:04a].  Below we 
discuss the portions of CoSMIC necessary to understand how we applied it to the 
component-based video distribution system described in Section 1.2. 
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Figure 8. MDD Capabilities Supported by CoSMIC 

All MDD tools in CoSMIC are developed using the Generic Modeling Environ-
ment [GME:01], which is an open-source3 MDD environment that provides a visual 
                                                           
3 GME is available in binary and open-source from www.isis.vanderbilt.edu/Projects/gme/. 

http://www.isis.vanderbilt.edu/Projects/gme/
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interface to simplify the development of DSMLs. GME contains a metamodeling 
environment that supports the definition of paradigms, which are type systems that 
describe the roles and relationships between elements in a particular domain.  GME 
has a flexible object-oriented type system that supports inheritance and instantiation 
of elements of DSMLs.  It also provides an integrated constraint definition and en-
forcement module based on OMG’s Object Constraint Language (OCL) [OCL:03], 
which enables the definition of rules that must be adhered to by elements of models 
built using a particular DSML. 

Figure 9 illustrates the GME metamodel for CCM used in CoSMIC.  This meta-
model uses UML structure diagrams and OCL constraints to define the abstract syn-
tax, static semantics, and visualization of CCM elements such as components, ports, 
homes, and containers.  The dynamic semantics of CCM are implemented via GME 
interpreters, which traverse the graphical hierarchy of elements programmed by 
application modelers to generate various types of output from model elements, in-
cluding C++ code, XML package and assembly descriptors, and component property 
configurations. 

 
Figure 9. A GME-based Metamodel for CCM 

The elements in a GME-based DSML represent the elements of the domain in a 
more intuitive manner than is possible via third-generation programming languages.  
Application developers use GME to create models that are instances of these mod-
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eling language paradigms within the same environment.  GME supports facilities to 
plug-in analysis and synthesis tools that operate on the models.  

Figure 10 illustrates how CoSMIC’s modeling environment created by GME can 
be used to model the connections between components in a CCM assembly.  Appli-
cation modelers use the CoSMIC environment to address key lifecycle phases in-
volved in developing component-based DRE systems, as shown in Figure 8.  CoS-
MIC’s interpreters then generate various types of output associated with the pack-
aging, configuration, and planning MDD tools described in the remainder of this 
section. 

 
Figure 10. A CoSMIC Model of a CCM Assembly 

1.3.2. APPLYING COSMIC TO THE PACKAGING PHASE 
In component-based systems, application components and their associated meta-

data, which specify the connections between component ports, are packaged to-
gether into assemblies.  Different assemblies in a package can be tailored to deliver 
different end-to-end QoS behaviors and/or algorithms.  Large-scale DRE systems 
may require creation of assemblies containing hundreds or thousands of compo-
nents, which leads to the following complexities: 

- Inherent complexities, which involve ensuring syntactic and semantic com-
patibility.  For example, it is essential to ensure that ports of the components 
connected in an assembly have matching types. 
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-  Accidental complexities, which stem from handcrafting XML files that de-
scribe the component metadata such as the hundreds of connections between 
components in the assemblies.  For example, XML files that describe as-
semblies are often very large, even for relatively simple groups of connected 
components. 

To address these challenges we developed the Platform-Independent Component 
Modeling Language (PICML) [Schmidt:04f].  PICML is a GME-based DSML that 
provides capabilities to handle complex component engineering tasks, such as multi-
aspect visualization and manipulation of components and the interactions of their 
subsystems, component deployment planning, and hierarchical modeling and gen-
eration of component assemblies.  Figure 11 illustrates how PICML assists compo-
nent developers with the packaging phase in the context of our video distribution 
application. 

 
Figure 11. Activities in the Packaging phase 

During component development, application developers use CORBA IDL 3.x to 
specify the interfaces of the different components, such as Sender and Re-
ceiver.  The information stored in these IDL interfaces is imported into PICML in 



16     Book Title 

one of two ways, i.e., IDL files can be directly imported into PICML using the IDL 
importer interpreter of PICML or PICML graphical input interface can be used to 
model the elements that are present in the IDL files manually. 

 After the information about component interfaces is captured in a PICML 
model, application modelers can connection various components visually.  In our 
video distribution application, for example, PICML is used to model the connection 
between the event source and event sink ports of Sender and Receiver compo-
nents to form a component assembly.  The semantic rules that determine the valid 
connections between components are enforced during component assembly by con-
straints defined in PICML’s metamodel.  In our video distribution application, as-
semblies that represent a single stream of image data between every Sender-Re-
ceiver pair are obtained at the end of this composition process.   

PICML supports hierarchical composition of component assemblies into higher-
level assemblies and grouping of multiple these assemblies into component pack-
ages.  In our video distribution application, for example, multiple instances of image 
stream assemblies can be composed to form a complete video distribution applica-
tion assembly.  Hierarchical assemblies allow multiple instantiation of the same as-
sembly type, which reduces the complexity of changes that would occur if each as-
sembly were defined separately.  A hierarchical assembly is a logical assembly, i.e., 
the ports of a component present in one assembly are connected directly to the ports 
of the component at the other end of each connection in a hierarchical component 
assembly.  The logical hierarchy feature in PICML therefore does not impose any 
extra run-time overhead on component applications. 
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Figure 12. XML Descriptors generated by PICML 

After PICML has created component assemblies for our video distribution appli-
cation, its packaging interpreter is executed to generate the metadata needed to de-
ploy CCM applications, such as our video distribution application.  As shown in 
Figure 12, this metadata includes the list of implementation artifacts associated with 
each component instance, the list of connections between the different component 
instances, the organization of the application into different levels of hierarchy, and 
the default properties with which each component instance is initialized.  PICML’s 
packaging interpreter generates the different types of metadata in the form of XML 
descriptors that are tedious and error-prone to write manually.  This metadata is used 
by the CIAO component middleware uses to drive the deployment of the complete 
applications.  

By automatically generating the artifacts needed to deploy applications, there-
fore, PICML enforces the correct-by-construction paradigm in component-based ap-
plication development. 

1.3.3. APPLYING COSMIC TO THE CONFIGURATION PHASE 
Component middleware is often characterized by a large configuration space 

[Schmidt:04c], which includes various alternatives for (de)marshaling, event/request 
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de-multiplexing, connection management, concurrency, synchronization, and trans-
port protocols, as shown in Figure 13. 

These alternatives can be selected at one or more configuration points. Common 
configuration points include during (1) component development, where default val-
ues for these mechanisms can be specified, (2) application integration, where com-
ponent defaults can be overridden with domain-specific defaults, and (3) application 
deployment, where domain-specific defaults can be overridden based on the actual 
capabilities of the target system.  The configuration process is thus the phase during 
component-based software development that maps known variations in the applica-
tion requirements space to known variations in the middleware solution space. 
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Figure 13. Middleware Configuration Space 

To address the configuration-related challenges described above, we developed 
the Options Configuration Modeling Language (OCML) [Schmidt:04e].  OCML is a 
GME-based DSML that simplifies the specification and validation of complex DRE 
middleware and application configurations.  Figure 14 illustrates the process of con-
figuring middleware and applications using OCML and PICML.  This three-layered 
process of configuring middleware and applications is explained below. 

The metamodeling layer is where the middleware configuration space is defined 
with the options, values for the options, and interdependencies of the options Mid-
dleware developers use OCML to design the CIAO options model.  The constraints 
defined in CIAO’s options model can have a dependency hierarchy, such as a spe-
cific value for an option that may depend on other options having specific values.  
OCML then uses the CIAO option model to generate a CIAO-specific configurator, 
which embodies the rules and dependencies among the various CIAO options. 
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Figure 14. OCML Process View 

The CIAO options model is related with PICML and OCML metamodels as 
shown in Figure 14 and described below: 

- The CIAO Options Model is built using the OCML metamodel, which is inten-
tionally designed to be general-purpose, i.e., the data types used to define the 
options are the fundamental data types (such as string and integer) so that they 
can define configurations for most applications.  Although OCML is a generic 
modeling tool for configuring many types of applications and infrastructure, it 
is particular useful for highly configurable middleware frameworks, such as 
CIAO [Schmidt:04c].  

- We have integrated the CIAO Options Model with the PICML metamodel.  
Users can therefore configure the underlying CIAO middleware by executing 
OCML on model instances with specific PICML elements.  
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Figure 15. OCML-generated Configurator for CIAO 

The modeling layer is where application developers use the CIAO-specific con-
figurator generated by OCML to customize the middleware according to specific 
application needs.  As shown in Figure 15, the CIAO-specific configurator provides 
a wizard-like user interface that enables application developers to specify a set of 
values for different option configurations. These configurations are validated against 
the constraints defined in CIAO’s options model using OCML’s constraint engine.  
Application developers therefore cannot define inconsistent configurations that 
would be semantically meaningless or would yield indeterminate behavior for the 
CIAO middleware. 

Whenever application developers modify an option parameter, the OCML con-
straint engine manipulates related options so that the constraint validation will suc-
ceed.  If a value change request is invalidated by a previous value assignment by the 
user, the constraint validation will fail and the value change request will not suc-
ceed.  This capability allows middleware developers to define higher-level options 
that control the values of many other options and broaden the middleware’s con-
figuration space, while also enabling application developers to fine-tune option to 
meet their needs. 
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The application layer illustrates how the OCML configuration process affects 
the CIAO middleware at run-time.  For our video distribution example, application 
developers can use the generated CIAO-specific configurator to tailor the middle-
ware for each group of components that will be collocated on a particular node. This 
configurator generates a CIAO-specific service configuration file, which is read by 
CIAO at the initialization time to configure its behavior, such as strategies for con-
currency, communication protocols, debugging, and logging. 

1.3.4. APPLYING COSMIC TO THE PLANNING PHASE 

The planning phase is where component integrators must make appropriate de-
ployment decisions, including identifying the nodes (e.g., computing devices) of the 
target environment where assembly packages will be deployed.  Figure 16 illustrates 
the key activities and decisions during the planning stage, including selection of the 
appropriate (1) package to deploy on selected target, (2) target platform to deploy 
the packages, and (3) allocation of resources on target platforms.  These decisions 
are encoded within a deployment plan, which is an XML-based descriptor file that 
describes a mapping of a configured application into a domain, including mapping 
monolithic implementations to nodes, connections to interconnects and bridges, and 
requirements to resources. 

 
Figure 16. Planning Phase Activities 

A key challenge of the planning phase is to ensure that the chosen configuration 
– together with the packages configured using OCML – deliver the appropriate QoS, 
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e.g., end-to-end latency, minimal throughput and bounded jitter, required by the ap-
plication.  This challenge involves validating the deployment plan against the re-
quired QoS.  To address the planning-related challenges described above, we have 
developed the Benchmark Generation Modeling Language (BGML) [Schmidt:04b]. 

BGML is a GME-based DSML that synthesizes benchmarking test suites to ana-
lyze the QoS performance of OCML-configured DRE systems.  Figure 17 shows 
how BGML can be used in the planning phase to evaluate deployment plans (which 
map components to nodes) to provide feedback to developers as to whether a par-
ticular plan meets end-to-end QoS requirements or not.  The following four steps 
shown in the figure characterize the BGML planning process: 

1. In the first step, an experimenter uses PICML to represent the application sce-
nario visually. This step also involves a visual representation of the deployment 
plan. 

2. An experimenter uses BGML to associate QoS properties, such as latency, jitter, 
or throughput, with the application scenario. 

3. BGML model interpreters then synthesize the appropriate test code to run the 
experiment and measure the resulting QoS. 

4. Metrics are then fed back into models to verify whether the evaluated 
scenario meets the specified QoS. 

 
Figure 17. BGML Process View 
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BGML captures key QoS validation concerns of QoS-enabled middleware, such 
as modeling how distributed system components interact with each other and repre-
senting metrics that can be applied to specific configuration options and platforms.  
In particular, BGML provides test elements (such as operations, return-types, la-
tency, throughput and timer elements) that can be used to represent a generic opera-
tion or a sequence or operation steps and associate non-functional QoS properties 
with them.  BGML also provides workload elements, such as tasks and task-sets, 
that can be used to model and simulate background load present during the experi-
mentation process.  These workload elements are mapped to individual platform-
specific code in the interpretation process.  Finally, BGML synthesizes project build 
files (such as makefiles) needed to generate the executable code. 

In our video distribution application, for example, an experimenter may want to 
conduct several performance studies.  First, he/she may want to determine the best 
configuration for the individual LocalResourceManagement and the Qosket 
components that minimizes end-to-end latency.  Figure 18 depicts how BGML can 
be used to associate the latency metric with the generate_image() operation 
provided by the Qosket components.  For each stream, the LocalResource-
Management component first uses the CropQosket to crop the image, then uses the 
ScaleQosket for image scaling based on the DiffServe priorities set at the 
DiffServQosket, and finally uses the CompressQosket to compress the im-
age. The overall latency along the critical path thus equals the individual latencies at 
each component. 

 
Figure 18. Applying BGML to the Video Distribution Application 
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An experimenter may also want to conduct a different experiment, such as meas-
uring the end-to-end latency between LocalResourceManagement component 
and LocalReceiver component.  Figure 18 thus also shows a timer element as-
sociated with the ImageGenerationEvt event.  For this experiment, the end-
to-end latency between LocalResourceManagement component and Local-
Receiver component is measured by observing the time interval between the 
push_ImageGenerationEvt() at the LocalResourceManagement com-
ponent and the corresponding event at the LocalReceiver Component. 

For the first latency experiment, BGML model interpreters synthesize the code 
by generating files, such as header and source benchmark files, header and source 
files to generate background load and a build file to create a benchmark library.  The 
experimenter builds the benchmark as a library, specializes the benchmark with the 
type of the remote reference, operation signature and the parameter values.  The 
CIAO run-time deployment infrastructure deploys the video distribution system 
along with the benchmark to generate results.  

For the second end-to-end latency experiment, BGML interpreters can synthe-
size files, including a ImageGeneration_Event.h, header file that provides 
two operations, start_time_probe() and stop_ time_probe(), that 
measure the time at the local machines.  If the components are at the same node, the 
different between the start and stop operations provide a good estimation of latency.  
The scenario also shows a restriction with the benchmark process, i.e., the bench-
marks should run on a single host.  When run on different hosts, an external entity 
needs to compute the difference between the time values to calculate latency. More-
over, the values may suffer from clock skew at individual nodes.  These limitations 
are inherent to any benchmark process and are not specific to BGML. 

1.4. RELATED WORK 
This section summarizes related efforts associated with developing DRE systems 

using an MDD approach and compares these efforts with our work on CoSMIC. 

Cadena [Hatcliff:03] is an integrated environment developed at Kansas State 
University (KSU) for building and modeling component-based DRE systems, with 
the goal of applying static analysis, model-checking, and lightweight formal meth-
ods to enhance these systems.  Cadena also provides a component assembly frame-
work for visualizing and developing components and their connections.  Unlike 
PICML, however, Cadena does not support activities such as component packaging, 
generating deployment descriptors, component deployment planning, and hierarchi-
cal modeling of component assemblies.  To develop a complete MDD environment 
that seamlessly integrates component development and model checking capabilities, 
we are collaborating [Schmidt:04g] with KSU to integrate PICML with Cadena’s 
model checking tools, so we can accelerate the development and verification of DRE 
systems. 
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The Virginia Embedded Systems Toolkit (VEST) [VEST:03] and the Automatic 
Integration of Reusable Embedded Systems (ARES) [AIRES:03] are MDD analysis 
tools that evaluate whether certain timing, memory, power, and cost constraints of 
real-time and embedded applications are satisfied.  Components are selected from 
pre-defined libraries, annotations for desired real-time properties are added, the re-
sulting code is mapped to a hardware platform, and real-time and schedulability 
analysis is done.  In contrast, PICML allows component modelers to model the 
complete functionality of components and intra-component interactions, and does 
not rely on predefined libraries.  PICML also allows DRE system developers the 
flexibility in defining the target platform, and is not restricted to just processors. 

The Embedded Systems Modeling Language (ESML) [Karsai:02] was developed 
by ISIS at Vanderbilt University to provide a visual metamodeling language based 
on GME that captures multiple views of embedded systems, allowing a diagram-
matic specification of complex models.  The modeling building blocks include soft-
ware components, component interactions, hardware configurations, and scheduling 
policies.  The user-created models can be fed to analysis tools (such as AIRES, 
VEST, and Cadena) to perform schedulability and event analysis.  These analyses 
are used to perform design decisions (such as component allocations to the target 
execution platform).  Unlike PICML, ESML is platform-specific since it is custom-
ized for the Boeing Boldstroke PRiSm QoS-enabled component model [Sharp:03, 
Roll:03].  ESML also does not support nested assemblies and the allocation of com-
ponents are tied to processor boards, which is a proprietary feature of the Boldstroke 
component model.  We are working with the ESML team at ISIS to integrate the 
ESML and PICML metamodels to produce a unified DSML suitable for modeling a 
broad range of QoS-enabled component models. 

Corona [Greenfield:04] is a framework for developing MDD tools that can sig-
nificantly increase the level of automation in application development by applying 
domain-specific visual languages to enable rapid assembly and configuration of 
framework-based components.  The Corona MDD framework is similar to GME, 
i.e., it provides visual metamodeling tools, as well as interpreters that translate mod-
eling elements to platform-specific code.  We are collaborating with Microsoft to 
integrate our CoSMIC DSMLs for DRE systems to Corona. 

1.5. CONCLUDING REMARKS 
Although QoS-enabled component middleware represents an advance over pre-

vious generations of software infrastructure technologies, its additional complexities 
can also negate its key benefits when applied to complex distributed real-time and 
embedded (DRE) systems.  A promising technology for resolving these complexities 
is Model-Driven Development (MDD) [Greenfield:04].  MDD tools provide correct-
by-construction support for designing and validating DRE systems by integrating (1) 
analysis techniques that reason about DRE systems and (2) platform-independent 
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generation capabilities that can target multiple component middleware technologies, 
such as CCM, J2EE, .NET, and ICE. 

This chapter describes how the CoSMIC MDD toolsuite developed at Vanderbilt 
University help resolve key complexities of QoS-enabled component middleware.  
We applied several of CoSMIC’s domain-specific modeling languages (DSMLs) to 
a video distribution application.  Using this application as a representative example 
of common DRE systems, we showed how CoSMIC can support: 

- Design-time activities, such as specification of the functionality of compo-
nents, their interactions with other components, the assembly and packaging of 
components, and the configuration of the QoS-enabled component middleware 
on which the components run. 

- Deployment-time activities, such as specification of target environment, and 
automatic deployment plan generation. 

- Quality Assurance (QA)-time activities, such as validation of the configura-
tion and deployment platform and their impact on QoS. 

The CoSMIC MDD tools help bridge the gap between design-time verification 
and model-checking tools (such as Cadena [Hatcliff:03], VEST [VEST:03], and 
AIRES [AIRES:03]) and the actual deployed and validated component implementa-
tions [Schmidt:04g]. 

The lessons learned by applying our integrated CoSMIC MDD tools to the video 
distribution application case study described in Sections 1.2 and 1.3 illustrate that: 

- Component and platform modeling improves DRE systems  reasoning, and en-
ables the comprehension of the system at a higher level of abstraction relative 
to conventional distributed object computing and component middleware ap-
proaches. 

- Early detection of errors improves productivity significantly, which in turn 
helps increase the effectiveness of applying QoS-enabled component middle-
ware technologies to the DRE systems domain. 

- End-to-end tool-chains for DRE systems need to bridge analysis and empirical 
results. 

- An MDD approach provides a lighter-weight technique for quickly evaluating 
QoS on different configurations and platforms.  The generative capabilities of 
OCML and BGML ensure that most changes needed to conduct the evaluations 
are generated from higher-level models. 

- MDD tools and process alleviate key complexities involved in understanding 
the impact of middleware configurations on application QoS and bring rigor to 
otherwise ad hoc processes used by developers to configure and deploy mid-
dleware for DRE systems. 
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- Current MDD approach of QoS evaluation requires human effort, for example 
to change the node component association in the models and re-running the in-
terpreter to generate the XML metadata.  Process automation is necessary to 
run the benchmarks independently without any intervention. 

Our future work will focus on extending CoSMIC with support for dynamic 
component allocation, automated performance analysis of component systems by 
empirically evaluating component interactions with respect to various performance 
metrics, and flexible performance modeling of components to satisfy real-time QoS 
properties.  We are developing MDD solutions for these problems and integrating 
the resulting tools as part of the broader CoSMIC end-to-end modeling tool-suite. 
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