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Abstract

This paper provides four contributions to the study of op-

timization techniques for component-based distributed real-

time and embedded (DRE) systems. First, we describe key

challenges of designing component-based DRE systems and

identify key sources of overhead in a typical component-

based DRE system from the domain of shipboard comput-

ing. Second, we describe a class of optimization techniques

applicable to the deployment of component-based DRE sys-

tems. Third, we describe the Physical Assembly Mapper

(PAM), which is a model-driven optimization tool that im-

plements these techniques to reduce footprint. Fourth, we

evaluate the benefits of these optimization techniques em-

pirically and analyze the results. Our results indicate that

the deployment-time optimization techniques in PAM pro-

vides significant benefits, such as 45% improvement in foot-

print, when compared to conventional component middle-

ware technologies.

1. Introduction
1.1. Overview and Challenges of Component Mid-

dleware for DRE Systems
Component middleware technologies have raised the

level of abstraction used to develop DRE systems, such
as avionics mission computing [1] and shipboard comput-
ing systems [2]. Example component middleware tech-
nologies include the Lightweight CORBA Component
Model (CCM), Boeing’s PRiSM, OpenCOM, nesC’s com-
ponent model, and Timing Definition Language extension
to Giotto. Component middleware also promotes the de-
composition of monolithic systems into collections of
inter-connected components (called a component assem-

bly) that is composed of individual components (called
monolithic components).

Although component middleware provides many bene-
fits, certain challenges have restricted its use for a large class
of DRE systems. For example, while functional decom-
position of DRE systems into component assemblies and
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monolithic components helps promote reuse across prod-
uct lines [3], it can also increase the number of components
in the system, thereby significantly increasing the mem-
ory footprint of component-based DRE systems. Although
many enterprise systems can offset the increase in footprint
via hardware upgrades, DRE systems often have stringent
footprint limitations due to size, weight, and power con-
straints.

Optimizing components manually in a large-scale DRE
system is hard due to the sheer number of components; the
usage of any single component also tends to span multiple
compositional hierarchies, e.g., a single component could
be connected to different sets of components in different as-
semblies. Since components are often reused across a prod-
uct line, an optimization applicable in one context may not
be applicable in another. Optimizations should therefore be
performed based on the requirements of every unique de-
ployment.

1.2. Solution Approach → Physical Assembly Op-

timizer
To address the challenges of large-scale component-

based DRE systems described above, we have developed
model-driven optimization techniques that help reduce the
space overhead in DRE systems. The optimization tech-
niques described in this paper focus on reducing the foot-
print overhead in component middleware by optimizing the
assembly of components at deployment-time, as opposed to
design-time and/-or run-time. Our optimizations reduce the
number of components required to deploy a DRE system
using a technique known as fusion, which combines multi-
ple components to create physical assemblies, as described
below.

Assemblies of components defined by standard compo-
nent middleware, such as Lightweight CCM, are typically
virtual, i.e., the individual components that form the assem-
bly can be spread across multiple machines of the target do-
main. Figure 1a shows an example of a component assem-
bly. In contrast to a virtual assembly, a physical assembly
is defined as the set of components created from the mono-
lithic components that are deployed onto a single process (a
single address space) within a physical node. As shown in
Figure 1b, a physical assembly is itself a full-fledged com-
ponent, i.e., it has a component interface and an implemen-
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Figure 1: Shipboard Computing Application

tation. The implementation of the physical assembly, how-
ever, simply delegates to the original implementations of
the monolithic components from which the physical assem-
bly is created.

To create physical assemblies we require information on
(1) application structure, i.e., connections between com-
ponents, (2) application QoS configuration, i.e. QoS con-
figuration associated with each component, and (3) appli-

cation deployment, i.e., the mapping of components onto
physical nodes(and processes within nodes). The optimiza-
tion techniques described and evaluated in this paper obtain
this information from models of the application built using
domain-specific modeling languages (DSML)s. A DSML
defines a type system that formalizes the application struc-
ture, behavior, and requirements within a particular domain,
such as software defined radios, avionics mission comput-
ing, online financial services, warehouse management, or as
in our case even the domain of component middleware it-
self.

We have applied these optimization techniques in a
model-driven tool called the Physical Assembly Map-

per (PAM) that optimizes component-based DRE systems
developed using Lightweight CCM. PAM is built us-
ing the Generic Modeling Environment (GME) [4], which
is a meta-programmable environment for creating DSMLs.
PAM creates physical assemblies using a model of the con-
nectivity information between components and the QoS
policies. By operating at the high-level abstraction of mod-
els, PAM optimizes component assemblies across two
dimensions—footprint and performance—and at multi-
ple levels—local (deployment plan-specific) and global

(application-wide). Since PAM’s optimizer operates at
deployment-time no changes are required to the mono-

lithic component implementations, functional decomposi-
tion, or structure of component-based DRE systems.

The novelty of PAM stems from identifying and apply-
ing component assembly optimizations automatically from
models of applications. This model-driven approach elim-
inates the difficulties associated with applying these opti-
mizations manually. Moreover, these optimizations cannot
be performed in a generalized manner at the middleware
level due to their context-dependent nature.

2. Challenges in Large-scale Component-

based DRE systems
This section describes the application of component mid-

dleware programming models to a representative applica-
tion from the shipboard computing domain. Using this ap-
plication as an exemplar, we describe the cost of these fea-
tures with respect to memory footprint for DRE systems.
To make our discussion concrete, we use the Lightweight
CCM as an example of component model for our discus-
sion. The sources of overhead, however, are generally appli-
cable to any layered component middleware, such as Enter-
prise Java Beans (EJB), Boeing’s PRiSM, and OpenCOM.

2.1. Overview of the Shipboard Application
To evaluate the overhead of applying component mid-

dleware to the development of large-scale DRE systems,
we use a shipboard computing application that runs in a
metropolitan area network of computational resources and
sensors to provide on-demand situational awareness and ac-
tuation capabilities for human operators and respond flex-
ibly to unanticipated run-time conditions. To meet such
demands in a robust and timely manner, the shipboard
computing environment uses component-based services to
bridge the gap between shipboard applications and the un-



derlying OS and middleware infrastructure to support mul-
tiple QoS requirements, such as survivability, predictability,
security, and efficient resource utilization.

The shipboard computing application we used for
our experiments was developed using the CIAO middle-
ware [2]. This application consists of a number of compo-
nents grouped together into multiple operational strings.
As shown in Figure 1a, an operational string is com-
posed of a sequence of components connected together
using the component’s named ports. The connection la-
bels (e.g., timeout, track et al) in Figure 1a denote
the name of the ports at the opposite ends of the connec-
tion. Component ed1_A thus has an event source port
called track that sends events to an event sink port
called track on component p3_A. Likewise, each com-
ponent has an associated interface that represents the
name of the component without the number, e.g., compo-
nent instance ed1_A implements the component interface
type ed_A. The operational string in Figure 1a con-
sists of four event detectors (sensors) (ed1_A, ed2_A,

ed3_A, ed4_A) that gather data from the physical de-
vices in a periodic fashion triggered by sensor-specific
timeouts. There are also three system monitors (sm1_A,
sm2_A, sm3_A) that monitor the overall system state
and are triggered similar to the sensors. Both sensors
and system monitors publish the data to a series of plan-
ners (p3_A, p2_A, p1_A). After analyzing the sensor
data and the inputs from system monitors, the planners per-
form control decisions using a co-ordinator (co_A), an ef-
fector controller (ec_A) and three effectors (e1_A,
e2_A, e3_A).

Each operational string contains up to 15 components,
and the application used in our experiments is made up
of 10 such operational strings, for a total of 150 compo-
nents. Operational strings run at different importance lev-
els, where the higher importance operational strings receive
priority when accessing a resource. The application itself
is deployed using 10 different deployment plans across 5
different physical nodes (bathleth, scimitar, rapier, cutlass,
and saber). The assignment of components to nodes was
determined a priori using high-level resource planning al-
gorithms [5], and was available as input to our algorithms.
Each node had a variable number of components, ranging
from 20 to as high as 80 components assigned to it. Al-
though the shipboard application is composed of 10 oper-
ational strings, to simplify the exposition we will explain
our techniques throughout the paper using the single oper-
ational string shown in Figure 1a, whose components were
all mapped onto a single node.

The contribution to the memory footprint of a component
DRE system can be classified into two categories: static and
dynamic. Static footprint increases result from code gener-
ated to integrate the implementation of a component with

the middleware’s run-time environment; such code genera-
tion is specific to each unique component type in the system.
Dynamic footprint increases are due to the creation of run-
time infrastructural elements, such as component homes
and component context on a per-component basis. We dis-
cuss both types of memory footprint overhead below.

2.2. Static Footprint Overhead
As shown in Figure 2, for every component type in a

DRE system, the Lightweight CCM platform mapping re-
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quires code generation for various infrastructure elements,
including the following:
• Component context. A component context class is gener-
ated for each component interface to allow component reuse
in multiple execution contexts. For example, generation of
the component context ed_A_Context enables reuse of
the event detector ed_A across different operational strings
of our shipboard application.
• Component base interfaces. Each component in-
terface derives from a number of base interfaces, e.g.

SessionComponent and EntityComponent in
Lightweight CCM, which classify the category of a partic-
ular component.
• Component home. A component home is generated cor-
responding to each component interface. Each component
home provides (1) factory operations that allow customiza-
tion of creating components and (2) finder operations that
clients use to locate a component managed by a compo-
nent home. In our shipboard example, distinct component



homes (ed_A_Home, sm_A_Home) are generated corre-
sponding to each type of component (ed_A, sm_A).
• Navigation operations. Each component also contains a
number of pre-defined navigation operations. The naviga-
tion operations of a component interface allow clients of
a component to query and obtain references to component
ports in a standardized fashion.

In addition to the interfaces and operations described
above, each component implementation is typically split
into multiple shared libraries. For example, component im-
plementations are often split into three shared libraries:
(1) stub library (e.g., ed_A_stub), which contains the
automatically generated client-side proxy code necessary
for each component type to connect to other component
types, (2) servant(e.g., ed_A_svnt, which contains auto-
matically generated code that registers a component with
an Object Request Broker (ORB), and (3) executor(e.g.,
ed_A_exec), which contains the business logic of a com-
ponent written by application developers.

The drawbacks of designing DRE systems using mul-
tiple shared libraries are well-known [6] and include in-
creased (1) code size, (2) dependencies between shared li-
braries, and (3) number of relocations at load time, which
result in increased dynamic memory footprint. The over-
head due to the static footprint increases with the increase
in the number of component types. This overhead can be
significant in complex applications and becomes apparent
in the presence of a large number of types or in resource-
constrained environments, which are common in DRE sys-
tems.

2.3. Dynamic Footprint Overhead
The code generated per component interface that allows

containers to host components creates a number of auxil-
iary middleware infrastructural elements corresponding to
each component instance at run-time, including:
• Component home. In Lightweight CCM, a component
home can manage only one type of component. The run-
time infrastructure, therefore, creates a separate component
home instance for every component type loaded into a sys-
tem, which is then used to create multiple component in-
stances. Naïve implementations could also create a compo-
nent home instance per component instance. Lightweight
CCM also allows clients to create components dynamically
by obtaining a reference to its component home. In many
DRE systems, these sophisticated features of component
homes are rarely used and impose additional time/space
overhead corresponding to each component instance cre-
ated at run-time. For example, creation of a separate com-
ponent home for the components in Figure 1a is redundant
and wasteful since they share the same address space and
have no interactions with other components.
• Component context. The Lightweight CCM run-time in-
frastructure creates a component context corresponding to

each component instance that is deployed. Such component
contexts increase the dynamic footprint in proportion to the
number of component instances.
• Component servant. Each component instance must also
be registered with the underlying middleware infrastructure
to communicate with other components. Corresponding to
each component instance, a component servant is created at
run-time to register it with the Lightweight CCM middle-
ware. Although component servants are critical to the func-
tioning of a component, each component servant thus cre-
ated increases the dynamic footprint of the system.

As described above, each component instance consumes
a certain amount of memory in the run-time environment.
For DRE systems with many components, it is imperative
to reduce the number of component instances/types to re-
duce the memory consumption of the whole system. Al-
though static footprint overhead of a component increases
the minimum memory required by the component, it does
not increase with the increase in the number of component
instances on a single node. Dynamic footprint overhead, in
contrast, increases linearly with the increase in the num-
ber of component instances. In a large-scale DRE system
with thousands of components, reducing the dynamic over-
head is essential to reduce the memory footprint require-
ment of the integrated system. Section 3.1 describes how
our model-driven optimization techniques help to automat-
ically reduce the total number of components in the system.

3. Deployment-time Optimization Techniques
As described in Section 2, a key source of footprint

overhead is the number of peripheral infrastructure ele-
ments, such as component home and component context,
created for each monolithic component. An approach that
reduces the number of components deployed should reduce
the number of peripheral infrastructure elements, thereby
reducing the static and dynamic footprint of the component-
based DRE systems. The approach presented in this paper
uses deployment-time optimization techniques.

This section first describes the model-driven optimiza-
tion techniques that help reduce the space overhead in large-
scale component-based DRE systems using our shipboard
application as the motivating example. It then presents the
structure and functionality of the Physical Assembly Map-

per (PAM), which is our model-driven tool that automates
deployment-time optimization techniques in the context of
Lightweight CCM.

3.1. Deployment-time Optimization Algorithms
As shown in Figure 1b, the central theme of our com-

ponent assembly optimizations is the notion of “fusion.”
Fusion involves merging multiple elements into a seman-
tically equivalent element. Key differences between the op-
timization techniques described in this section include (1)
the scope at which the fusion is performed, and (2) the



rules governing which elements are fused. The optimization
technique described in Section 3.1.4 fuses multiple compo-
nents into a single physical assembly at the level of a single
deployment plan (usually corresponding to a single opera-
tional string). The technique described in Section 3.1.5 also
fuses components into a single physical assembly, but the
scope of such fusion spans an entire application.

3.1.1. Terminology. We now define the key terms used
in our physical assembly fusion algorithms. A node is the
physical machine on which one or more components are
deployed. A domain is the target environment composed of
independent nodes and their inter-connections. A colloca-

tion group is defined as the set of components that are de-
ployed in a single process of a target node. Each collocation
group corresponds to a single OS process and is always as-
sociated with one target node. A deployment plan is a map-
ping of a configured system into a target domain. It serves
as the blueprint used by the middleware to deploy an appli-
cation; an application could be composed of one or more
deployment plans. A facet is a distinct named interface ex-
ported by a component. A receptacle is an interface required
for the proper functioning of a component; receptacles en-
able a component to use the functionality provided by facets
of other components. A publisher is an event source defined
by a component, and a consumer is an event sink defined by
a component which subscribes to events published by other
components.

Our fusion algorithms perform a series of checks to
evaluate “fusion,” i.e., whether multiple elements (such as
components) can be merged into a single element. The set
of checks performed to evaluate if two components can
be fused is domain-dependent, i.e., each component pro-
gramming model—along with the application semantics—
defines the exact set of criteria used to determine “fusion.”
As applied to CCM, two components can be fused if there
are no clashes in the names of each component’s facet, re-

ceptacle, publisher and consumer ports. Our fusion algo-
rithms are explained in detail in [7].

3.1.2. Assumptions and Challenges in Component Fu-

sion. A physical assembly is defined as the set of com-
ponents created from the monolithic components that are
deployed onto a single process of a physical node. As
shown in Figure 1b, our optimization techniques creates one
or more physical assemblies (e.g. e1_A_sm1_A) by fus-

ing monolithic components (e1_A and sm1_A) deployed
into the same process on each node of the target domain.
Our approach assumes that (1) physical assembly creation
should not require changes to the existing implementations
of monolithic components and (2) physical assembly cre-
ation should not impact existing clients of fused compo-
nents.

At the core of our component fusion technique is the ca-
pability to fuse multiple components into a single physical
assembly. Components interact with other components us-
ing ports. Fusing multiple components into a single compo-
nent requires merging the ports of all the individual compo-
nents. There are, however, the following challenges in fus-
ing multiple components into a single physical assembly in
a DRE system:
1. Ports of a component are identified using their

names. Each component interface defines a names-
pace; each port kind (e.g., facets, receptacles) defines its
own unique namespace within a component. Port names
are also used to locate the services provided by each com-
ponent and affect the middleware glue code generated
for each component. Since ports are the externally vis-
ible points of interaction, port names of a component
must be unique within each component’s correspond-
ing port kind namespace. Any merging of multiple com-
ponents into a single component must maintain this invari-
ant. Section 3.2.1 describes how we address this challenge
in PAM.
2. Each component exposes its externally visible state

through its component attributes. When fusing multiple
components together, it is necessary to ensure that the states
(e.g., attributes) of individual components are maintained
separately. It is also necessary to allow clients to modify
this state. Section 3.2.1 describes how we address this chal-
lenge in PAM.
3. Each component must be identified uniquely. To ob-
tain the services of a component through its ports, clients
must be able to locate the component via directory services,
such as the CORBA Naming Service, LDAP servers, and
Active Directories. If multiple components are fused into a
single component, the external clients should still be able
to look up the individual components using their original
names. Section 3.2.1 describes how we address this chal-
lenge in PAM.
4. Each component relies on being supplied a compo-

nent context. A component context is needed to connect
the component with the services of other components (e.g.,
to connect a receptacle of a component with the facet of an-
other component) that it depends upon. If multiple compo-
nents are fused together, each component in the fused phys-
ical assembly must be provided with a context that is com-
patible with each monolithic component’s context since we
do not want to change the original monolithic component’s
implementation. Section 3.2.2 describes how we address
this challenge in PAM.

3.1.3. Common Characteristics of Fusion Algorithms.

The property of fusion of two elements is non-transitive, i.e.

if component a can be fused with component b, and com-
ponent b can be fused with component c, component a can-
not always be fused with component c. For example, in Fig-



ure 1a, although component p2_A can be fused with p1_A
and p1_A can be fused with p3_A, p2_A cannot be fused
with p3_A since they both have a event sink port called
track. Every pair of components must therefore be exam-
ined to determine if they can be fused together.

If n is the number of candidate components for each al-
gorithm, e.g., set of components deployed in a single pro-
cess, k is the number of components that result from merg-
ing components together, then the number of components
will be reduced by n−k

n
. Of the components that can be fused

into a single element, our goal is to find the largest set of el-
ements since the larger the number of components that we
can fuse together, the greater the reduction in the number
of components. The best case is when k = 1, i.e., when we
can fuse all components into a single monolithic compo-
nents; the savings in this case will be n−1

n
.

Given an undirected graph G = (V,E), where V is the set
of candidate elements, and E is the set of edges such that if
two elements are connected then they can be fused together,
the problem of finding the largest set of elements that can be
fused together is equivalent to the problem of finding a max-
imum clique in the undirected graph G. A clique is a com-
plete subgraph of G. A maximum clique is the largest clique
in the graph. Figure 3 shows the different component types
(each shaded differently) from our example application. The
set of components {co_A, p1_A, p3_A,ec_A} in Figure 3
form a maximum clique. If a clique is not a proper subgraph
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e_A

Figure 3: Maximal vs. Maximum Clique

of another clique, it is called a maximal clique (as opposed
to maximum), i.e., a maximal clique cannot be extended to
create a larger clique by adding vertices to it. A maximum
clique is also a maximal clique but the converse is not al-
ways true. The set of components{ed_A,sm_A,e_A} form
a maximal clique in Figure 3. The maximum clique determi-
nation problem is NP-complete [8]. A maximum clique can
be found by enumerating all the maximal cliques and choos-
ing the largest. An efficient algorithm for enumerating the
maximal cliques is by Bron and Kerbosch [9]. The worst-
case time complexity for enumerating all maximal cliques
has recently been proven [10] to be O(3n/3), where n is the
number of vertices in the graph.

We chose to trade-off the time savings by calculat-

ing just maximal cliques, e.g., the set {ed_A,sm_A,e_A}
in Figure 3 and using these to create physical assem-
blies, over the benefits of the footprint savings from cre-
ating physical assemblies out of maximum cliques, e.g.,
the set {co_A, p1_A, p3_A,ec_A}. We calculate maxi-
mal cliques using a variation of the algorithm by Bron and
Kerbosch [11], which has the desirable property that it enu-
merates the larger maximal cliques first. As shown in
Section 4, our tests of this algorithm found that the max-
imal cliques it chose tend to also be maximum cliques.
This result, however, need not hold true for all sys-
tems.

We developed two versions of the component fusion
algorithm—Local Component Fusion and Global Compo-

nent Fusion—that differ in the scope at which they are ap-
plied. As described below, the “local” version of the algo-
rithm operates at the level of a single deployment plan (typ-
ically a single operational string), whereas the “global” ver-
sion of the algorithm operates at the level of an entire appli-
cation. Both algorithms assume that all high-level deploy-
ment planning (e.g., resource allocation) is complete and
the set of associations of components to nodes is finalized.

3.1.4. Local Component Fusion Algorithm. Small-scale
DRE systems often use a single deployment plan to deploy
an entire application, whereas large-scale DRE systems are
usually deployed using multiple deployment plans. The lo-
cal fusion algorithm initially collects the list of components
that are deployed onto the different collocation groups (pos-
sibly on multiple nodes) and creates physical assemblies
from the set of components that are local to that deploy-
ment plan.

Construction of physical assemblies by calculating max-
imal cliques directly on the graph of component instances
will lead to significantly worse footprint compared to the
original footprint. Since each clique results in a physical as-
sembly, i.e., a new component type, if component instances
were used to calculate cliques, it will result in the creation
of a number of new component types far exceeding that of
the original set of types. For example, let us assume that
we have three component types A, B and C with three in-
stances each of A (a1, a2, a3), B(b1, b2, b3), and two in-
stances of C(c1,c2). Now suppose A and B can be fused to-
gether, and A and C can be fused together as well. If we ap-
ply the clique algorithm directly on the instances, we might
end up with four types (AB, AC, B, C) corresponding to
instances, say a1b1, a2c1, a3b2, b3, c2. Thus, we have in-
creased the footprint by adding two new types (AB and AC)
which have code common to A, B and C, but which can-
not be shared since AB and AC are different types than
A, B or C. We might also end up a different assignment,
e.g., three types (AC, AB, B) corresponding to instances
a1c1, a2c2, a3b1, b2, b3. Both of these alternatives, how-
ever, are worse since they introduce more types than the



original three types (static footprint) though they reduce the
number of instances (dynamic footprint). Irrespective of the
heuristic chosen to start the clique formation (e.g., vertices
with maximum degree), it is not deterministic, i.e., we are
not guaranteed to end up with an optimal assignment.

To prevent increase in the footprint due to a compo-
nent type being present both as a stand-alone as well as
part of a physical assembly, the local fusion algorithm uses
a domain-specific heuristic: instead of calculating maxi-
mal cliques directly out of the all component instances be-
longing to a collocation group, it creates a set of component
instances that occur the same number of times. By group-
ing components based on occurrence count, the heuris-
tic results in either all instances of a single component type
to be fused into one or more physical assemblies, or none
at all. In the previous example, if we were to group com-
ponents based on occurrence count, it would result in two
component types: one new physical assembly (a new com-
ponent type) AB with three instances a1b1, a2b2 and a3b3

all sharing a single implementation and the type C with in-
stances c1, c2. We, thus, have one fewer type (a single
AB rather than both A and B) than the original and three
fewer instances than the original. Moreover all the AB in-
stances will end up sharing code and data segments in a
Copy-On-Write (COW) fashion. Figure 4 shows the re-
sult of applying this heuristic followed by the “fusion”
checks on the operational string from Figure 1a. Com-
ponent instances of the same type are shaded using the
same color in Figure 1a. Figure 1b shows the result of ap-
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plying the local fusion algorithm on the components of
Figure 1a. The algorithm creates five physical assem-
blies, e1_A_sm1_A, e2_A_sm2_A, e3_A_sm3_A,

ec_A_p2_A, co_A_p3_A, merging all instances of
e_A with sm_A, as well as merging ec_A with p2_A

and co_A with p3_A. Further, none of the ed_A in-
stances are fused with other component instances (e.g.,
p1_A or the physical assembly co_A_p3_A) since not all
ed_A instances can be fused.

3.1.5. Global Component Fusion Algorithm. The
global component fusion algorithm is similar to the lo-
cal algorithm, except that it operates across a set of deploy-
ment plans. The global algorithm can thus find more op-
portunities for creating physical assemblies. Section 4
measures and analyzes the benefits of the global compo-
nent fusion algorithm versus the local algorithm.

3.2. Design and Functionality of the Physical As-

sembly Mapper

The algorithms described in Section 3.1 are sufficiently
complicated that performing them manually is infeasible for
large-scale DRE systems. Likewise, automating these algo-
rithms by writing ad hoc scripts results in a brittle tool-
chain due to the complexity of the information, such as
the interface definition files of the components and deploy-
ment metadata (e.g., deployment plans and QoS configura-
tion files), needed to perform these optimizations. We there-
fore used a more powerful technique—Model-Driven Engi-
neering (MDE) [12]—to handle and optimize this informa-
tion in a unified fashion.

To demonstrate our MDE optimization techniques, we
developed a prototype optimizer called the Physical Assem-

bly Mapper (PAM). PAM builds upon our previous work
on the Platform-Independent Component Modeling Lan-

guage (PICML) and Component QoS Modeling Language

(CQML) [13] to implement the fusion algorithms described
in Section 3.1. We implemented PAM as a model inter-

preter, which is a DSML-specific tool written in C++ for
use with GME. Figure 5 presents an overview of the opti-
mization process performed by PAM.
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Figure 5: Workflow of the Physical Assembly Mapper



Component assembly optimization using PAM consists
of three phases: (1) a model transformation phase described
in Section 3.2.1, (2) a glue-code generation phase described
in Section 3.2.2, and (3) a configuration files generation
phase described in Section 3.2.3. Below we describe how
each phase solves the challenges described in Section 3.1.2.

3.2.1. Model Transformation in PAM. The input to
PAM is a model that captures the application struc-
ture and the QoS configuration options. This input model
contains information about the individual component in-
terface definitions, their corresponding monolithic imple-
mentations, collections of components connected together
in a system-specific fashion to form virtual assemblies, as-
sociations of components with QoS configuration options.
PAM implements both the local and global component fu-
sion algorithms, which rewrite the input model into a func-
tionally equivalent deployment model as shown in step 1 of
Figure 5. As part of this model transformation, PAM cre-
ates physical assemblies, including interface definitions
for the physical assemblies. Since the algorithms per-
form a series of checks before merging components
together, PAM solves Challenge 1 of Section 3.1.2 (ensur-
ing unique port names).

For each physical assembly PAM creates, it replaces the
original set of component instances with an instance of the
newly created physical assembly. This rewriting replaces all
the connections to/from the original components with con-
nections to/from the physical assembly. PAM also creates
new attributes corresponding to each attribute of all the in-
dividual components, thereby ensuring no clashes with at-
tribute names occur in the physical assembly namespace.
PAM therefore solves Challenge 2 of Section 3.1.2 (main-
taining the state of the individual components separately).

PAM creates configuration properties in the model asso-
ciated with each physical assembly to enable clients to lo-
cate the original components via lookup services, such as
the CORBA Naming Service, LDAP, and Active Directory.
These configuration properties create multiple entries, one
corresponding to each unique name used by the original
components in lookup services, and ensures that all these
names point to the physical assembly. PAM therefore solves
Challenge 3 of Section 3.1.2 (uniquely identifying the com-
ponents that comprise a physical assembly).

3.2.2. Generation of Glue-code in PAM. Once the model
has been rewritten into a functionally equivalent optimized
model, PAM utilizes a number of model interpreters to gen-
erate various artifacts related to the middleware glue-code
as shown in step 2 of Figure 5. This middleware glue-code
is necessary to use the physical assemblies created in the
model with the existing monolithic implementations of the
components. The glue-code generated by PAM creates a
composite context by inheriting from the individual con-

texts of the components that make up the physical assem-
bly. This derived context is compatible (due to inheritance)
with each monolithic component’s context and can be sup-
plied to the individual component implementations at run-
time by the container.

The glue-code generated for the physical assemblies
can be compiled and deployed with the implementations
of the other components in the system. PAM therefore
solves Challenge 4 of Section 3.1.2 (providing a compatible
context to the original component implementations). Since
PAM performs the generation without requiring modifica-
tions to individual component implementations, PAM also
achieves our goal of not imposing a burden on component
developers by requiring changes to the original implemen-
tation.

3.2.3. Generation of Configuration Files in PAM. In ad-
dition to the middleware glue-code, PAM also generates
modified metadata, such as deployment plans and QoS pol-
icy configuration files as shown in step 3 of Figure 5. When
the local fusion algorithm is applied, PAM generates de-
ployment plans in which the components that have been
fused to form physical assemblies are replaced with the
physical assemblies. All references to the original compo-
nents are also replaced with references to the physical as-
semblies. The replacement of components (and their refer-
ences) is done at the scope of a single deployment plan by
the implementation of the local fusion algorithm in PAM.

When the global fusion algorithm is applied, PAM gen-
erates a single deployment plan. Since the optimizations are
applied at the scope of the entire application, PAM merges
the different deployment plans to create a single aggregate
deployment plan. PAM then replaces the original compo-
nents fused together to form physical assemblies, including
the replacement of references as was done for the local fu-
sion.

4. Empirical Evaluation and Analysis
To evaluate the benefits of our fusion algorithms de-

scribed in Section 3.1, we applied PAM to the shipboard
computing application described in Section 2.1. This sec-
tion describes the characteristics of the application, explains
our testbed setup, and presents the results of experiments
that evaluate the footprint improvement from using PAM.
Our experiments compare the space properties of applica-
tions developed using standard Lightweight CCM configu-
rations against the execution of these applications after ap-
plying PAM to optimize the application.

4.1. Experimental Setup
We used 5 blades running Windows XP SP2 from the

ISISlab (www.dre.vanderbilt.edu/ISISlab)
open testbed for experimentation on DRE systems. Our ex-
periments used version 0.5.10 of CIAO running on Win-
dows XP SP2 and Linux with Ingo Molnar’s real-time



Original

Local

Global

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

  3,500

  4,000

  4,500

N
o

. 
o

f 
P

ri
v

at
e 

p
ag

es

(a) Total Static Footprint

Original

Local

Global

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

  7,000

  8,000

  9,000

N
o

. 
o

f 
P

ri
v

at
e 

p
ag

es

(b) Total Dynamic Footprint

Original

Local

Global

  0

  500

  1,000

  1,500

  2,000

  2,500

sabercutlassscimitarrapierbathleth

N
o

. 
o

f 
P

ri
v

at
e 

p
ag

es

(c) Node Specific Static Footprint

Original

Local

Global

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

  3,500

  4,000

sabercutlassscimitarrapierbathleth

N
o

. 
o

f 
P

ri
v

at
e 

p
ag

es

(d) Node Specific Dynamic Footprint

Figure 6: Static and Dynamic Footprint

pre-emption patches [14]. All machines were on the same
local area network and were connected to each other us-
ing Gigabit ethernet. We measured the footprint of the
components in the deployed shipboard computing applica-
tion using Virtual Address Dump (VaDump) [15] to mea-
sure static (code and static data) and dynamic (heap mem-
ory) footprint of the components by taking a snapshot of
the process that creates the container hosting the compo-
nents on each machine.

4.2. Analysis of Empirical Footprint Results
Experiment design. To measure the footprint of the ship-
board computing application, we deployed the 10 opera-
tional strings across the 5 nodes using 10 deployment plans.
We allowed the application to execute for 5 minutes and
measured the footprint of the components by running VaD-
ump on the process hosting the components on each node.
We refer to this run of the experiment as Original in all the
graphs.

We used PAM (off-line) on the input model by invok-
ing it to use the local component fusion algorithm described

in Section 3.1.4 and repeated the experiment using the 10
locally optimized deployment plans generated. We refer to
this run of the experiment as Local in the graphs. We then
used PAM (also off-line) on the input model by invoking
it to use the global component fusion algorithm described
in Section 3.1.5 and repeated the experiment using the sin-
gle global deployment plan generated. We refer to this run
of the experiment as Global in the graphs.

Analysis of results – Static Footprint. Figure 6a compares
the static footprint, which includes the footprint contribu-
tion from code and the static data of the whole applica-
tion deployed across all the 5 nodes. We measure the foot-
print of the application as the sum of the number of private
and shareable (as opposed to shared) pages of the processes
hosting the components using VaDump. The three runs of
the experiment did not include the contributions from the
OS and middleware shared libraries since they were unaf-
fected by our optimizations.

As shown in Figure 6a, the original static footprint of the
application was 4,478 pages and the application of the local



component fusion algorithm reduced it to 3,110 (a 31% im-
provement). Applying the global fusion algorithm reduced
the static footprint further to 2,324 pages (a 49% improve-
ment). The creation of physical assemblies by the compo-
nent fusion algorithms therefore significantly reduced the
static footprint of the application.
Analysis of results – Dynamic Footprint. Figure 6b com-
pares the dynamic footprint of the application. The contri-
butions here are primarily from the dynamic allocation of
memory by the application in the three runs. VaDump does
not provide the heap usage of individual shared libraries,
so measuring the dynamic footprint of the application cap-
tures the heap usage of the whole process. Since we could
not precisely pinpoint the heap usage of individual shared li-
braries, our dynamic footprint results are not as fine-grained
as the static footprint results.

As shown in Figure 6b, the original dynamic footprint of
the application was 8,231 pages. Applying the local fusion
algorithm reduced it to 7,393 pages (an 11% improvement),
whereas applying the global fusion algorithm reduced it to
4,713 pages (a 43% improvement). The reduction in dy-
namic memory stems primarily from reducing the number
of homes and component contexts created in the physical
assemblies. The increased reduction in the global compared
to local is due to increased opportunities for creating physi-
cal assemblies (i.e., the scope spans the entire application),
as well as the merging of multiple deployment plans into a
single deployment plan, which reduces the number of pro-
cesses required to deploy the application.
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Figure 7: Total Footprint

Figure 6c and Figure 6d breakdown the total footprint
across the different nodes. The increased footprint in the
case of node saber in the three runs is due to the large num-
ber of components deployed on that node, i.e., ∼80 compo-
nents compared to the average of 15-20 components on the
other nodes. Figure 7 shows the combined (static+dynamic)
footprint of the original application, which was 12,709

pages. The application of local fusion algorithm reduced the
footprint to 10,503 pages (an 18% improvement), where as
the application of the global fusion algorithm reduced it to
7037 pages (a 45% improvement).

5. Related Work
Optimizing middleware to increase the performance

of applications has long been a goal of system re-
searchers [16, 17]. This section compares our deployment-
time optimizations to other component middleware opti-
mization techniques. Optimization techniques to improve
application performance can be categorized along the di-
mension of the time at which such optimization tech-
niques are applied, i.e. design/development-time, run-time,
or deployment-time. Our research in PAM is done at
deployment-time.

Design/development-time approaches. Design-time ap-
proaches to component middleware optimization include
eliminating the dynamic loading of component implemen-
tation shared libraries and establishing connections between
components done at run-time, as described in static config-
uration of CIAO [18]. Our PAM approach is different since
it uses models of applications to modify the structure of the
assembly by creating physical assemblies, i.e., new com-
ponents, at deployment time. Our approach is therefore not
restricted to optimizing just the inter-connections between
components. Moreover, the static configuration approach
can be applied in combination to our deployment-time op-
timizations.

Another approach to optimizing the middleware at
design/development-time employs context-specific mid-
dleware specializations for product-line architectures [19],
which exploits “invariant properties”—application-,
middleware- and platform-level properties that remain
fixed during system execution—to reduce the over-
head caused by excessive generality in middleware frame-
works. Researchers have also employed Aspect-Oriented
Programming (AOP) techniques to automatically de-
rive subsets of middleware based on use-case require-
ments [20], modify applications to bypass middleware
layers using aspect-oriented extensions to CORBA Inter-
face Definition Language (IDL) [21], synthesize middle-
ware in a “just-in-time” fashion by integrating source code
analysis, and inferring features and generating implemen-
tations [22].

The key difference between our approach in PAM and
the various context-specific specializations and AOP-based
techniques is that the optimizations performed by PAM do
not require any input from the application developer, i.e.,
the application developer need not design his application
tuned for a specific deployment scenario. Our approach
in PAM is, however, complementary to these approaches,
since not all optimizations done via modification of appli-



cation advocated by these approaches are possible to per-
form at deployment-time using PAM.
Run-time approaches. Research on approaches to optimiz-
ing middleware at run-time has focused on choosing opti-
mal component implementations from a set of available al-
ternatives based on the current execution context. QuO [23]
is a dynamic QoS framework that allows dynamic adapta-
tion of desired behavior specified in contracts, selected us-
ing proxy objects called delegates with inputs from run-time
monitoring of resources by system condition objects.

Other aspects of run-time optimization of middleware
include using feedback control theory to affect server re-
source allocation in internet servers [24] as well as to per-
form real-time scheduling in Real-time CORBA middle-
ware [25]. Our work in PAM is targeted at optimizing the
middleware resources required to host composition of com-
ponents in the presence of a large number of components,
whereas, the main focus of these efforts is to either build the
middleware to satisfy certain performance guarantees, or ef-
fect adaptations via the middleware depending upon chang-
ing conditions at run-time. Our work in PAM is thus com-
plementary to these approaches to application optimization.
Deployment-time approaches. Deployment-time opti-
mizations research includes BluePencil [26], which is a
framework for deployment-time optimization of web ser-
vices. BluePencil focuses on optimizing the client-server
binding selection using a set of rules stored in a pol-
icy repository and rewriting the application code to
use the optimized binding. While conceptually simi-
lar, our work in PAM differs from BluePencil because it
uses models of application structure and application de-
ployment to serve as the basis for the optimization in-
frastructure. In contrast, BluePencil uses approaches like
configuration discovery that extract deployment informa-
tion from configuration files present in individual compo-
nent packages. Since BluePencil operates at the level of in-
dividual client-server combinations, the kind of global
optimizations performed by PAM are non-trivial to per-
form in BluePencil. BluePencil also relies on modification
of the application source code to rewrite the applica-
tion code, while PAM is non-intrusive and does not require
application source code modifications.

6. Concluding Remarks
This paper described a model-driven approach to per-

forming deployment-time optimizations. Our approach in-
cludes a family of optimization techniques that use fusion

(i.e., combining multiple elements into a single element) to
reduce the number of elements without affecting the origi-
nal semantics. We described two algorithms—Local Com-
ponent Fusion, Global Component Fusion—that differ in
the scope at which they operate.

We implemented the two algorithms in a proto-
type model-driven tool called Physical Assembly Map-

per (PAM), which is a DSML that supports development
and optimization of component-based DRE systems us-
ing the Lightweight CCM. We conducted experiments
on applying the techniques implemented in PAM on sev-
eral representative DRE systems. Our results indicate that
the PAM’s deployment-time optimization techniques pro-
vide 45% improvement in footprint compared with conven-
tional component middleware technologies. The following
is a summary of lessons learned thus far from our work de-
veloping and applying PAM to optimize component-based
DRE systems at deployment-time:

• Deployment phase should be treated with equal im-

portance. The presence of a separate, well-defined deploy-
ment phase in DRE system development helps defer key
system decisions to an intermediate stage between the tra-
ditional design/development-time vs. run-time. By using in-
formation available at deployment-time (but not available at
design/development-time and that is too late for use at run-
time), the deployment phase opens up new possibilities for
system optimizations. In addition to system optimizations,
deferring key system decisions until deployment-time helps
increase reuse by decoupling deployment-time variability
from component functionality.

• Application-specific optimizations are critical to

building large-scale systems. While general-purpose op-
timizations can improve the performance of all sys-
tems, application- or context-specific optimizations
have even more potential. By performing the optimiza-
tions in an application-specific fashion, we can obtain the
benefits of these optimization techniques without the over-
head of maintaining state or run-time evaluation in the
middleware. Large-scale DRE systems thus start exhibit-
ing an interesting inversion of the traditional process:
instead of the application conforming to middleware char-
acteristics, the middleware needs to conform to application
characteristics.

• Optimizations should be performed across layers in

any layered architecture. Our results show that any opti-
mizations performed on a system with a layered architec-
ture can significantly benefit from propagation of context
information freely across the different layers. In addition to
the propagation of deployment information to the middle-
ware, we need to be able to propagate information from lev-
els above the application deployment (i.e., application func-
tionality) and below the middleware (i.e., operating system
and system hardware).

PAM, PICML, and CQML are open-source and avail-
able for download at www.dre.vanderbilt.edu/

cosmic.
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