
Component-based System Integration via (Meta)Model Composition∗

Krishnakumar Balasubramanian, Douglas C. Schmidt, Zoltán Molnár, Ákos Lédeczi
Institute for Software Integrated Systems

Vanderbilt University, Nashville
{kitty,schmidt,zolmol,akos}@isis.vanderbilt.edu

Abstract

This paper provides three contributions to the study
of functional integration of distributed enterprise systems.
First, we describe the challenges associated with function-
ally integrating the software of these systems. Second, we
describe how the composition of domain-specific modeling
languages (DSMLs) can simplify the functional integration
of enterprise distributed systems by enabling the combina-
tion of diverse middleware technologies. Third, we demon-
strate how composing DSMLs can solve functional integra-
tion problems by reverse engineering an existing CORBA
Component Model (CCM) system and exposing it as Web
Service(s) to web clients who use these services. This paper
shows that functional integration done using (meta)model
composition provides significant benefits with respect to au-
tomation, reusability, and scalability compared to conven-
tional integration processes and methods.

1. Introduction

1.1. Challenges of Functional Integration

With the emergence of commercial-off-the-shelf
(COTS) component middleware technologies, such as En-
terprise Java Beans (EJB), CORBA Component Model
(CCM), and Microsoft .NET Framework, software de-
velopers are increasingly faced with the task of integrat-
ing heterogeneous enterprise distributed systems built
using different COTS technologies, rather than just in-
tegrating proprietary software developed in-house. Al-
though there are well-documented patterns [8] and tech-
niques [4] for system integration using various compo-
nent middleware technologies, system integration is still
largely a tedious and error-prone manual process. To im-
prove this process, component developers and system in-
tegrators must therefore understand key properties of the

∗ This work was sponsored in part by grants from Raytheon and Lock-
heed Martin Advanced Technology Laboratories.

systems (“system” refers to an enterprise distributed sys-
tem built using component middleware like EJB, Microsoft
.NET, or CCM in the remainder of this paper) they are in-
tegrating, as well as the integration technologies they are
applying.
This paper describes technologies that help sim-

plify the functional integration of systems built using
component middleware. This type of integration oper-
ates at the logical business layer, typically using distributed
objects/components, exposing existing functionality as ser-
vices, or using messaging middleware. Functional integra-
tion of systems is hard due to the variety of available com-
ponent middleware technologies. These technologies differ
in many ways, including the protocol level, the data for-
mat level, the implementation language level, and/or the
deployment environment level. In general, however, com-
ponent middleware technologies are a more effective
technology base than the brittle proprietary infrastruc-
ture used in legacy systems, which have historically been
built in a vertical, stove-piped fashion.
Despite the benefits of component middleware, key chal-

lenges in functional integration remain unresolved when
integrating large-scale systems developed using heteroge-
neous COTS middleware. These challenges include (1) in-
tegration design, which involves choosing the right abstrac-
tion for integration, (2) interface mapping, which recon-
ciles different datatypes, (3) technology mapping, which
reconciles various low-level issues, (4) deployment map-
ping, which involves planning the deployment of heteroge-
neous COTS middleware, and (5) portability incompatibili-
ties between different implementations of the same middle-
ware technology. The lack of simplification and automation
in resolving these challenges significantly hinders effective
system integration.

1.2. Solution Approach→Functional Integra-
tion using (Meta)Model Composition

A promising approach to address the integration chal-
lenges outlined above is Model-Driven Engineering
(MDE), which involves the systematic use of models as es-
sential artifacts throughout the software lifecycle [20]. At

the core of MDE is the concept of domain-specific model-
ing languages (DSMLs) [12], whose type systems formal-
ize the application structure, behavior, and requirements
within particular domains, such as software defined ra-
dios, avionics mission computing, online financial services,
warehouse management, or even the domain of middle-
ware platforms.
While DSMLs have been used to help software devel-

opers create homogeneous systems [11, 21], enterprise dis-
tributed systems are rarely homogeneous. A single DSML
developed for a particular component middleware technol-
ogy, such as EJB or CCM, may therefore not be applica-
ble to model, analyze, and synthesize key concepts of Web
Services. To integrate heterogeneous systems successfully,
therefore, system integrators need tools that can provide
them with a unified view of the entire enterprise system,
while also allowing them fine-grained control over specific
subsystems and components.
Our approach to integrating heterogeneous systems is

(meta)model composition1 [1], which (1) creates a new
DSML from multiple existing DSMLs by adding new el-
ements or extending elements of existing DSMLs, (2) spec-
ifies new relationships between existing elements, and (3)
defines relationships between new and existing elements.
This paper describes System Integration Modeling Lan-
guage (SIML), which is our open-source DSML that en-
ables functional integration of component-based systems
via (meta)model composition. We developed SIML using
the Generic Modeling Environment (GME) [13], which
is an open-source meta-programmable modeling environ-
ment.

2. Functional Integration of Component-
based Systems

To motivate the need for model-driven functional inte-
gration capabilities, this section describes the challenges in
functional integration of component-based systems.

2.1. Functional Integration Challenges

Functional integration of systems is hard and involves
activities that map between various levels of abstraction in
the integration lifecycle, including design, implementation,
and use of tools. We now describe key challenges associated
with integrating older component middleware technologies,
such as CCM and EJB, with newer technologies, such as
Web Services.
Challenge 1. Choosing an appropriate level of integra-
tion. As shown in Step 1 of Figure 1, a key activity is to

1 The term “(meta)model” conveys the fact that this composition tech-
nique can be applied to both metamodels and models.

 System Integration

CORBA
Component

Model
Subsystem

Web Services
Subsystem

CCM Deployment
descriptors

Web Service
Deployment
descriptors

Java Web
Service Client

C# Web
Service Client

TypeSpecific
IIOP SOAP

SOAP
Server

CCM
Client

CCM Component

Required Interface

Provided Interface

Event Source

Event Sink

Component

Figure 1. Functional Integration Challenges

identify the right level of abstraction at which functional in-
tegration should occur, which involves selecting elements
from different technologies being integrated that can serve
as conduits for exchanging information. Among the differ-
ent possible levels at which integration can be performed,
criteria for determining the appropriate level of integration
include: (1) the number of normalizations, i.e., conversion
to/from the native types, required to ensure communica-
tion between the peer entities being integrated, (2) the num-
ber (and hence the overhead) of as well as the flexibility
of deployment, i.e., in-process/out-of-process etc. of run-
time entities required to support the functional integration,
(3) the number of changes to the integration architecture re-
quired corresponding to changes to the peers that are being
integrated, (4) available choices of platform-specific infras-
tructure, i.e., operating systems, programming languages
et al., associated with performing integration at a particu-
lar level. Attempting integration at the wrong level of ab-
straction can yield brittle integration architectures that break
when changes occur to either the source or target system be-
ing integrated.
Challenge 2. Reconciling differences in interface specifi-
cations. After the level of abstraction to perform functional
integration is determined, it is necessary to map the inter-
faces exposed by elements of the different technologies as
shown in Step 2 of Figure 1. Common COTS middleware
technologies usually have an interface definition mecha-
nism that is separate from the implementation details, e.g.
CCM uses the OMG Interface Definition Language (IDL),
whereas Web Services use W3C Web Services Definition
Language (WSDL). Irrespective of the mechanism used to
define interfaces, mapping of interfaces between any two

technologies involves at least three tasks: (1) datatype map-
ping, which involves mapping a datatype (both pre-defined
and complex types) from source to target technology, (2) ex-
ception mapping, which involves mapping exceptions from
source to target technology; exceptions are not clubbed to-
gether with datatypes since the source or target technolo-
gies might not have a notion of exceptions (e.g.Microsoft’s
COM uses aHRESULT to convey errors instead of using ex-
ceptions), and (3) language mapping, which involves map-
ping datatypes between two technologies while accounting
for differences in languages at the same time.2
Performing these mappings is non-trivial, requires exper-

tise in both the source and target technologies, and exposes
severe scalability problems due to their tedium and error-
proneness if they are not automated.
Challenge 3. Managing differences in implementation
technologies. The interface mapping described above ad-
dresses the high-level details of how information is ex-
changed between different technologies being integrated.
As shown in Step 3 of Figure 1, however, low-level tech-
nology details such as networking, authentication and au-
thorization et al. are responsible to actually delivering such
integration. This involves a technology mapping and in-
cludes the following activities: (1) protocol mapping, which
reconciles the differences between the protocols used for
communication between the two technologies, (2) discov-
ery mapping, which allows bootstrapping and discovery of
components/services between source and target technolo-
gies, and (3)Quality of Service (QoS) mapping, which maps
QoS mechanisms between source and target technologies
to ensure that service-level agreements (SLAs) are main-
tained.
Mapping of protocol, discovery, and QoS technology de-

tails requires not only expertise in the source/target tech-
nologies, but also intimate knowledge of the implementa-
tion details of these technologies.
Challenge 4. Managing deployment of subsystems. Com-
ponent middleware technologies use declarative notations
(such as XML descriptors, source-code attributes, and an-
notations) to capture various configuration options. Exam-
ple metadata include EJB deployment descriptors, .NET as-
sembly manifests, and CCM deployment descriptors. As
shown in Step 4 of Figure 1, system integrators must track
and configure metadata correctly during integration and de-
ployment. In many cases, the correct functionality of the
integrated system depends on correct configuration of the
metadata.
Challenge 5. Dealing with interoperability issues. Un-
less a middleware technology has only one version imple-
mented by one provider, there may be multiple implemen-

2 Functional integration is very limited when attempting the latter map-
ping, which is often done via inter-process communication.

tations from different providers. As shown in Step 5 of Fig-
ure 1, differences between these implementations will likely
arise due to non-conformant extension to standards, dif-
ferent interpretations of the same (often vague) specifica-
tion, or implementation bugs. Regardless of the reasons for
incompatibility, however, problems arise that often mani-
fest themselves only during system integration. Examples
of such differences are highlighted by the presence of ef-
forts like the Web Services-Interoperability Basic Profile
(WS-I) [3], which is a standard aimed at ensuring compati-
bility between the Web Services implementations from dif-
ferent vendors.
Due to the challenges described above, significant inte-

gration effort is spent on configuration activities, such as
modifying deployment descriptors, and interoperability ac-
tivities, such as handcrafting protocol adapters to link differ-
ent systems together, which does not scale up as the num-
ber of components in the system increases or the number
of adaptations required increases. Problems discovered at
integration stage often require changes to the implementa-
tion, and thus necessitate interactions between developers
and integrators. These interactions are often inconvenient,
and even infeasible (especially when using COTS prod-
ucts), and can significantly complicate integration efforts.
The remainder of this paper shows how our GME-based
(meta)model composition framework and associated tools
help address these challenges.

3. DSML Composition using GME

This section describes the (meta)model composi-
tion framework in the Generic Modeling Environment
(GME) [13]. GME is a meta-programmable modeling en-
vironment with a general-purpose editing engine, separate
view-controller GUI, and a configurable persistence en-
gine. Since GME is meta-programmable, it can be used
to design DSMLs, as well as build models that con-
form to a DSML.
DSMLs are defined by metamodels, hence, DSML com-

position is defined by (meta)model composition. The speci-
fication of how metamodels should be composed, i.e., what
concepts in the metamodels that are composed relate to
each other and how, can be specified via normal associa-
tion relationships and additional composition operators, as
described in GME [1].
A key property of a composite DSML is that it supports

the open-closed principle [15], which states that a class
should be open for extension but closed with respect to its
public interface. In GME, elements of the sub-DSMLs are
closed,i.e., their semantics cannot be altered in the com-
posite DSML. The composite DSML itself, however, is
open, i.e., it allows the definition of new interactions and
the creation of new derived elements. All tools that are

built for each sub-DSML work without any modifications
in the composite DSML and all the models built in the sub-
DSMLs are also usable in the composite DSML.

Composite DSML
(AB)

Component
DSML (B)

Component
DSML (A)

B::Foo

A::Foo

A::Foo

Figure 2. Domain-Specific Modeling Language
Composition in GME

We use the following GME (meta)model composition
features to support the SIML-based integration of systems
built using different middleware technologies, as described
in Section 4:

• Representation of independent concepts. To enable
complete reuse of models and tools of the sub-DSMLs, the
composition must be done in such a way that all concepts
defined in the sub-DSMLs are preserved. As shown in Step
1 of Figure 2, no elements from either sub-DSMLs should
be merged together in the composite DSML. GME’s com-
position operators [1] can be used to create new elements in
the composite DSML, but the sub-DSMLs as a whole must
remain untouched. As a consequence, any model in a sub-
DSML can be imported into the composite language, and
vice versa. All models in the composite language that are
using concepts from the sub-DSMLs can thus be imported
back into the sub-DSML. Existing tools for sub-DSMLs can
be reused as well in the composite environment. This tech-
nique of composing DSMLs is referred to as metamodel in-
terfacing [6] since we create new elements and relationships
that provide the interface between the sub-DSMLs.

• Supporting (meta)model evolution. DSML compo-
sition enables reuse of previously defined (sub-)DSMLs.
Just like code reuse in software development, (meta)model
reuse can also benefit from the concept of libraries. If an
existing (meta)model is simply copied into new composite
(meta)models, any changes or upgrades to the original will

not propagate to the places where they are used. As shown
in Step 2 of Figure 2, if the original (meta)model is im-
ported as a library, GME provides seamless support to up-
date it when new versions become available (libraries are
supported in any DSML with GME, not just the metamod-
eling language) Libraries are read-only projects imported
to a host project. Components in the host project can cre-
ate references to and derivations of library components.
The library import process creates a copy of the reused
project, so subsequent modifications to the original project
are not updated automatically. To update a library inside a
host project, a user-initiated refresh operation is required.
To achieve unambiguous synchronization, elements inside a
project have unique ids, which facilitates correct restoration
of all relationships that are established among host project
components and the library elements.

• Partitioning (meta)model namespaces.When two or
more (meta)models are composed, name clashes may occur.
To alleviate this problem, (meta)model libraries (and hence
the corresponding components DSMLs) can have their own
namespaces specified by (meta)modelers, as shown in Step
3 of Figure 2. External software components, such as code
generators or model analysis tools that were developed for
the composite DSML, must use the fully qualified names.
But tools that were developed for component DSMLs will
still work because GME sets the context correctly before in-
voking such a component.

• Handling constraints. The syntactic definitions of a
metamodel in GME can be augmented by static semantics
specifications in the form of Object Constraint Language
(OCL) constraint expressions. When metamodels are com-
posed together, the predefined OCL expressions coming
from a sub-DSML should not be altered. Therefore GME’s
Constraint Manager uses namespace specifications to avoid
any possible ambiguities, and these expressions are evalu-
ated by the Constraint Manager with the correct types and
priorities as defined by the sub-DSML as shown in Step
4 of Figure 2. The composite DSML can also define new
OCL expressions to specify the static semantics that aug-
ment the specifications originating in the metamodels of the
sub-DSMLs.

4. Integrating Systems with SIML

This section describes how we created and applied the
System Integration Modeling Language (SIML), which is
our open-source composite DSML that simplifies functional
integration of component-based systems built using hetero-
geneous middleware technologies.

4.1. The Design and Functionality of SIML

Applying GME’s (meta)model composition features
to SIML. To support integration of systems built us-
ing different middleware technologies, SIML uses the
GME (meta)model composition features described in Sec-
tion 3. SIML is thus a composite DSML that allows inte-
gration of systems by composing multiple DSMLs, each
representing a different middleware technology. Each
sub-DSML is responsible for managing the metadata (cre-
ation, as well as generation) of the middleware tech-
nology it represents. The composite DSML defines the
semantics of the integration, which might include rec-
onciling differences between the diverse technologies,
as well as representing characteristics of various imple-
mentations. System integrators therefore have a single
environment that allows the creation and specification of el-
ements in each sub-DSML, as well as interconnecting them
as if they were elements of a single domain.

Applying SIML to compose CCM and Web Services.
Our initial use of SIML was to help integrate CCM with
Web Services in the context of the shipboard computing
case study described in Section 2. The two sub-DSMLs
we needed to integrate to support the new requirements de-
scribed in Section 2 were:
• The Platform-Independent Component Model-
ing Language (PICML), which enables developers
of CCM-based systems to define application in-
terfaces, QoS parameters, and system software
building rules, as well as generate valid XML de-
scriptor files that enable automated system deploy-
ment.

• The Web Services Modeling Language (WSML),
which enables development of Web Services, and sup-
ports key activities in Web Service development, such
as creating a model of a Web Services from existing
WSDL files, specifying details of a Web Service in-
cluding defining new bindings, and auto-generating ar-
tifacts required for Web Service deployment.

Since SIML is a composite DSML, all valid elements
and interactions from both PICML and WSML are valid in
SIML. It is therefore possible to design both CCM com-
ponents (and assemblies of components), as well as Web
Services (and federations of Web Services) using SIML,
just as if either PICML or WSML were used independently.
The whole is greater than the sum of its parts, however, be-
cause SIML defines new interactions that allow connecting
a CCM component (or assembly) with a Web Service and
automates generation of necessary gateways, which are ca-
pabilities that exist in neither PICML nor WSML.

System Integration Modeling Language (SIML)

CORBA
Component

Model DSML

Web Services
DSML

CCM Deployment
descriptors

Web Service
Deployment
descriptors

CORBA Component
Application

IDL 2 WSDL
Generator

IDL 2 PICML
Generator

WSDL Importer

Web Service
Client

Web Service
Client

TypeSpecific
IIOP SOAP

SOAP
Server

CCM
Client

CCM Component

Invokes

Imports

Generates

Converts

Figure 3. Generating a Web Service Gateway Us-
ing SIML

4.2. Resolving Functional Integration Challenges
using SIML

We now show how we applied SIML to resolve the func-
tional integration challenges discussed in Section 2.1. Al-
though we focus on the initial version of SIML that supports
integration of CCM and Web Services, its design is suffi-
ciently general that it can be applied to integrate many other
middleware technologies without undue effort. Figure 3
shows how SIML resolves the following challenges to gen-
erate a gateway given an existing CCM application:
Resolving challenge 1. Choosing an appropriate level of
integration. As mentioned in Section 2.1, determining the
right level of integration requires expertise in all the dif-
ferent technologies being integrated. To allow interactions
between CCM components and Web Services, SIML de-
fines interactions between ports of CCM components and
ports exposed by the Web Services. Since SIML also auto-
mates the generation of the glue code, some choices with
respect to the level of integration, e.g., mapping of a CCM
port to a Web Service port, are pre-determined, while other
decisions, e.g., aggregation of more than one CCM com-
ponent into a single Web Service, are customizable. SIML
thus extends the list of valid interactions of both CCM com-

ponents and Web Services, which is an example of a com-
posite DSML defining interactions that does not exist in its
sub-DSMLs. SIML can also partition a large system into hi-
erarchies via the concept of “modules,” which can be either
CCM components (and assemblies of CCM components)
or Web Services. SIML’s architecture can be enhanced to
support integration of many middleware technologies, by
extending the list of interactions defined by SIML to inte-
grate new technologies. For example, SIML could be ex-
tended to support interactions between CCM and EJB, or
even between Web Services and EJB. Extending SIML to
support other technologies, e.g. EJB, requires specification
of a DSML that describes the elements and interactions of
EJB. Once the DSML for EJB is specified, it can be im-
ported into SIML as a library while also assigning a new
namespace to it; the creation of a new namespace prevents
any clash between the type systems e.g., between a CCM
component and EJB component. Interactions between ele-
ments of CCM and EJB can then be defined in the com-
posite DSML. From these new interactions, generative tech-
niques (as explained in resolution to Challenge 3 below) can
be applied to automate the task of integration.
Resolving challenge 2. Reconciling differences in inter-
face specifications. To map interfaces between CCM and
Web Services, SIML provides a tool called IDL2WSDL,
which automatically converts any valid CORBA IDL file to
a corresponding WSDL file. As part of this conversion pro-
cess, IDL2WSDL performs both datatype mapping, which
maps CORBA datatypes to WSDL datatypes, and exception
mapping, which maps both CORBA exceptions to WSDL
faults. System integrators are therefore relieved from the
intricacies of the mapping. As shown in Figure 3, both
IDL and WSDL can also be imported into the DSML en-
vironment corresponding to CCM (PICML) and Web Ser-
vices (WSML), allowing integrators to define interactions
between CCM components and Web Services. SIML also
supports language mapping between ISO/ANSI C++ and
Microsoft C++/CLI, which is the .NET framework exten-
sion to C++. SIML therefore automates much of the tedious
and error-prone details of the interface mapping, thereby al-
lowing system integrators to focus largely on the business
logic of the application being integrated.
Resolving challenge 3. Managing differences in imple-
mentation technologies. While the rules defined in SIML
allow definition of interaction at the modeling level, this
feature is not very useful if these definitions cannot be
translated into runtime entities that actually perform the
interactions. SIML therefore generates resource adapters,
which automatically convert SOAP requests into IIOP re-
quests, and vice-versa. A resource adapter in SIML is im-
plemented as a gateway. SIML allows system integrators
to define connections between ports of a CCM component
and a Web Service, as shown in Figure 3. These connec-

tions are then used by a model interpreter, which automati-
cally determines the operation/method signatures of opera-
tions/methods of the ports on either end of a connection, and
uses this information to automatically generate a gateway.
The generated gateway contains all the “glue code” neces-
sary to perform datatype mapping, exception mapping, and
language mapping between CCM and Web Services. The
gateway generator is configurable and can currently gener-
ate Web Service gateways for two different implementation
of Web Services: GSOAP [24] and Microsoft ASP.NET.
The generated gateway also performs the necessary proto-
col mapping (i.e., between IIOP and SOAP) and discovery
mapping (i.e. automatically connecting to a Naming Ser-
vice to obtain object references to CCM components). Our
initial implementation does not yet support QoS mapping,
which is the focus of future work, as described in Section 6.
Resolving challenge 4. Managing deployment of subsys-
tems. After the necessary integration gateways have been
generated, system integrators also need to deploy and con-
figure the application and the middleware using a variety
of metadata in the form of XML descriptors. Since SIML
is built using (meta)model composition it can automatically
use the tools developed for the sub-DSMLs (i.e., PICML
to handle deployment of CCM applications and WSML to
handle deployment of Web Services) directly from within
SIML.
By encapsulating the required resource adapters inside

a a Web Service or CCM component, SIML allows reuse
of deployment techniques available for any given middle-
ware system. System integrators therefore do not need to
deploy resource adapters separately. While this approach
works for in-process resource adapters (such as those gener-
ated by SIML), out-of-process resource adapters need sup-
port from a deployment descriptor generator. Since SIML
is a DSML itself, this support could be added to SIML so
it can generate deployment support for out-of-process re-
source adapters.
Resolving challenge 5. Dealing with interoperability is-
sues. Since knowledge of the underlying middleware tech-
nologies is built into SIML, it can automatically compen-
sate for incompatibilities during design time. For exam-
ple, IDL2WSDL allows generation of WSDL that supports
SOAP RPC encoding or an interoperable subset defined in
theWS-I Basic Profile. System integrators therefore are bet-
ter prepared to handle incompatibilities that only show up
during integration testing. SIML can also define constraints
on WSDL definition as prescribed by the WS-I Basic Pro-
file, so that violations can also be checked at modeling time.
Similarly, gateway generation can add workarounds for
quirks of particular implementations automatically, thereby
relieving system integrators from finding these problems
during final integration testing. The automation of gateway
generation also scales the integration activity since develop-

Level of Automation (# of distinct steps)
Using SIML Using Native Tools

Integration Activity Supported? Automated? Design Implementation Tool Use Design Implementation Tool Use
Integration Design Yes No 0 0 1 1 1 0
Interface Mapping

DataType Mapping Yes Yes 0 0 1 1 1 0
Exception Mapping Yes Yes 0 0 1 1 1 0
Language Mapping Yes Yes 0 0 1 1 1 0

Technology Mapping
Protocol Mapping Yes Yes 0 0 1 1 1 0
Discovery Mapping Yes Yes 0 0 1 1 1 0
QoS Mapping No No 1 1 0 1 1 0

Deployment Mapping
Descriptor Generation Yes Yes 0 0 1 0 0 1
Gateway Placement No No 1 1 0 1 1 0

Interoperability Mapping Yes Yes 0 0 1 0 1 0

Table 1. Evaluating Functional Integration using SIML

ers need not write system specific integration code. In addi-
tion, SIML allows evolution of the integrated system by in-
crementally adding more components, or targeting different
middleware implementations as future needs dictate.

4.3. Evaluating SIML

To evaluate the benefits of SIML, we first define a tax-
onomy for evaluating technologies that assist the functional
integration of CCM andWeb Services. We then use this tax-
onomy to compare SIML with tools that are supplied by
vendors for either technology, referred to in Table 1 as Na-
tive tools. Examples of native tools include the Microsoft
Visual Studio and the IBM Eclipse suite, which develop-
ers using middleware technologies like .NET and EJB are
likely to use. This table depicts the different mapping activ-
ities described in Section 4.2 that are typical in functional
integration of middleware systems. For each activity the ta-
ble describes the level of support in SIML and whether the
activity is automated. It also describes the level of automa-
tion measured as the number of distinct steps performed by
a system integrator. Table 1 further decomposes the level
of automation into three broad categories: (1) design, which
denotes that system integrators need to perform a design ac-
tivity that might include domain analysis, requirement anal-
ysis, etc., (2) implementation, which denotes that system in-
tegrators need to implement some functionality usually by
writing code, and (3) tool use, which denotes that a tool
needs to be used by the system integrators to perform that
activity. This categorization assigns a weight commensurate
to the skills of the individual responsible for carrying out the
task in a particular organization.
Our taxonomy also assumes that design and implementa-

tion are orders of magnitude more difficult/time-consuming
than tool use. In Table 1, therefore, multiple activities of
the same category are considered equal, since the magni-
tude difference will likely dwarf any small number of steps

of any particular category. Thus the table uses 1 to indi-
cate one or more, i.e., 1 . . .n steps, and 0 to indicate that
the effort is automated. To estimate the amount of effort re-
quired, we sum up each of the three columns (i.e., design,
implementation, and tool) and then multiply the result by
the weight assigned to each category. For example, a rea-
sonable assignment of weight for these activities might be
10, 5 and 1, for each of design, implementation and tool
use. With this assignment, we can see that using SIML re-
quires 2×10+2×5+8×1 = 38 distinct steps to achieve
functional integration. In comparison, using just the native
tools would result in 8× 10+ 9× 5+ 1× 1 = 126 distinct
steps to achieve the same. It should be noted that the num-
ber of steps will get reduced drastically as (and when) na-
tive tools add support for integration activities.
The numbers in Table 1 are for each unique unit of work

per unique pair of source and target technologies, i.e., for a
single datatype mapping, a single exception mapping, a sin-
gle protocol mapping. To calculate the total cost of integra-
tion, we must take into account both the number of distinct
types/exceptions/languages, and the number of unique pairs
of technologies being integrated.
Since SIML allows hierarchical composition of the in-

tegration infrastructure, the integration architecture scales
along with the increase in the number of components. While
the generative techniques applied to generate the gateways
scale with the number of components in the system, when
the number of components increases to thousands of com-
ponents, the limitations of visual design tools tend to show
up. To overcome the issues with scalability of modeling
techniques, we have applied techniques like aspect-oriented
weaving of domain-specific models [2] in prior efforts.
Such techniques can be applied to automate the modeling
activities in SIML in the presence of large number of com-
ponents, since SIML itself is a domain-specific language for
integration.
Table 1 shows that SIML helps reduce the effort by re-

ducing the design and/or implementation activities associ-
ated with integration to ordinary tool usage activities. For
example, SIML effectively reduces the design and imple-
mentation effort required to perform the datatype, excep-
tion and language mapping, to a single step of tool use.
This table also shows that similar gains can be achieved
for complex tasks, such as protocol mapping (conversion
between IIOP and SOAP in this case) and discovery map-
ping (conversion between CORBA Object References and
Web Service URIs). Finally, the table reveals current gaps
in our toolchain, i.e., SIML does not perform QoS mapping
or help with placement of resource adapters (or gateways),
which remains as future work.

5. Related Work

This section surveys the technologies that provide the
context of our work on system integration in the domain of
large-scale distributed enterprise systems. We classify tech-
niques and tools in the integration space according to the
role played by the technique/tool in system integration.
Integration evaluation tools enable system integrators to
specify the systems/technologies being integrated and eval-
uate the integration strategy and tools used to achieve inte-
gration. For example, IBM’s WebSphere [9] supports mod-
eling of integration activities and runs simulations of the
data that is exchanged between the different participants to
help predict the effects of the integration. While these tools
help identify potential integration problems and evaluate the
overall integration strategy, they do not replace the actual
task of integration itself since these tools use simulation-
/emulation-based abstractions of the actual systems. SIML’s
role is complementary to these tools: once the integration
evaluation has been done using these tools, SIML can be
used to design the integration, as well as generating the var-
ious artifacts required for integration.
Integration design tools. OMG’s UML profile for Enter-
prise Application Integration (EAI) [18] defines a Meta Ob-
ject Facility (MOF) [17] based metamodel for collaboration
modeling, as well as activity modeling. MOF provides fa-
cilities for modeling the integration architecture focusing on
connectivity, composition and behavior. The EAI UML pro-
file also defines a MOF-based standardized data format to
be used by the different systems to exchange data during in-
tegration, which is achieved by defining an EAI application
metamodel that handles interfaces and metamodels for pro-
gramming languages such as C, C++, PL/I and COBOL,
to aid the automation of transformation. While standard-
izing on MOF is a step in the right direction, the lack of
widespread support for MOF by various tools, and the dif-
ferences between versions of XML Metadata Interchange
(XMI) support in tools lead to problems in practice. Exist-
ing integration design tools provide limited support for in-

terface mapping by generating stubs and skeletons for facil-
itating interface mapping, and perform protocol mapping.
However, key activities like discovery mapping, and de-
ployment mapping still needs to programmed by the sys-
tem integrator. Thus the primary difference between SIML
and these tools is that SIML not only allows such integra-
tion design, but also automates the generation of key inte-
gration artifacts, such as gateways, reducing the amount of
effort required to develop and deploy the systems.
Integration patterns [23] provides guidance to system in-
tegrators in the form of best patterns and practices with ex-
amples of using a particular vendor’s products. [8] catalogs
common integration patterns with an emphasis on system
integration via Message-Oriented Middleware (MOM) us-
ing different commercial products. These efforts do not di-
rectly provide tools for integration, but instead provide crit-
ical guidance to using existing tools to achieve integration.
We are enhancing SIML to support modeling integration
patterns and using them to enhance the generative capabil-
ities of SIML to enable widely-accepted solutions to com-
mon integration problems.
Resource adapters are used during integration to trans-
form data and services exposed by service producers to a
form that is amenable to service consumers. While existing
standards (such as the Java Messaging Specification [22]
and J2EE Connector Architecture Specification [16]) and
tools (such as IBM’s MQSeries [10]) provide the architec-
tural framework for performing the required adaptations,
these tools approach the integration from a middleware
and programming perspective, i.e., system integrators are
still required to handcraft the “glue” code that invokes the
resource adapter frameworks to connect system compo-
nents together. In contrast, SIML uses syntactic informa-
tion present in the DSMLs to automatically perform the
required mapping/adaptation by generating the necessary
“glue” code, and relies on user input only for tool use.
Integration frameworks. Composition in the con-
text of the semantic web and the Web Ontology Lan-
guage (OWL) [5] has focused on composition of services
from unambiguous, formal descriptions of capabili-
ties as exposed by services on the web. Research on
service composition has focused on automation and dy-
namism [19], optimizing the composition such that it
is QoS-aware [26], as well as integration on large-scale
“system-of-systems” like the GRID [7]. Since these au-
tomated composition techniques rely on unambiguous,
formal representations of capabilities, system integra-
tors need to make their legacy systems available as Web
Services or provide alternate formal mappings of capa-
bilities of the system to be integrated, which may not
always be feasible. Our approach to (meta)model composi-
tion, however, is not restricted to a single domain, though
the semantics are bound at design time. While both ap-

proaches rely on metadata, SIML’s use of metadata focuses
on the generative capabilities possible rather than on the se-
mantic knowledge extracted from metadata.
Integration quality analysis. As the integration pro-
cess evolves, it is necessary to validate whether the
results are satisfactory from functional and QoS per-
spectives. Research on QoS issues associated with in-
tegration has yielded languages and infrastructure for
evaluating Service-Level Agreements (SLAs). Exam-
ples include the Web Service Level Agreement language
(WSLA) [14] framework, which defines an architec-
ture to define service-level agreements using an XML
Schema, and provides associated infrastructure to mon-
itor the conformance of the running system to the de-
sired SLA. Other efforts have focused on defining pro-
cesses for distributed continuous quality assurance [25]
of integrated systems to identify the impact on perfor-
mance during system evolution. Information from these
analysis tools should be incorporated into future integra-
tion activities. While these tools can be used to provide
input to design-time integration activities, they them-
selves do not support automated feedback loops. We are
adding support for modeling SLAs in SIML to allow evalu-
ation of SLAs before/after integration.

6. Concluding Remarks

The development of enterprise distributed systems in-
creasingly involves more integration of existing COTS soft-
ware and less in-house development from scratch. With
the increase in capabilities of COTS component middle-
ware technologies, the complexity of integration of systems
built upon such frameworks is also increasing. This pa-
per shows how a model-driven approach to functional
integration of component middleware technologies en-
hances conventional approaches to system integration,
which are tedious, error-prone, and non-scalable for enter-
prise distributed systems. We then show how DSMLs and
(meta)model composition can help to address these limita-
tions.
To demonstrate the viability of our approach, we en-

hanced support for composition of DSMLs in GME. Us-
ing this new capability, we developed the System Integra-
tion Modeling Language (SIML), which is a DSML com-
posed from two other DSMLs, the CCM profile of Platform-
Independent Component Modeling Language (PICML) and
theWeb Services Modeling Language (WSML). Finally, we
evaluated the benefits of our approach by generating a gate-
way from the model, which automates key steps needed
to functionally integrate CCM components with Web Ser-
vices.
The following is a summary of lessons learned thus far

from our work applying (meta)model composition to inte-

grate heterogeneous middleware technologies:

• Integration tools are becoming as essential as design
tools. SIML is designed to bridge the gap between existing
component technologies (in which the majority of software
systems are built) and integration middleware (which fa-
cilitate the integration of such systems). SIML elevates the
activity of integration to the same level as system design
by providing tools which allow integration design of sys-
tems built using heterogeneous middleware technologies.
Since SIML is a DSML, it can potentially be used as the
infrastructure to define constraints on the actual integration
process itself, thereby allowing evaluation of service-level
agreements prior to the actual integration itself.

• Automating key portions of the integration process
is critical to building large-scale distributed systems.
Compared with conventional approaches, our model-driven
approach to system integration automates key aspects of
system integration, including gateway “glue code” gener-
ation, metadata management, and design-time support for
expressing unique domain and/or implementation assump-
tions. It supports seamless migration of existing invest-
ment in models and allows incremental integration of new
systems. Moreover, our model-driven approach is general-
purpose and can be applied to tool-chains other than GME,
as well as help integrate systems other than CCM or Web
Services.

• QoS integration is a complex problem, and re-
quires additional R&D advances. Though SIML helped
map functional aspects of a system from a source technol-
ogy to a target technology, our work is not complete un-
til the non-functional QoS-related aspects of a system also
map seamlessly. For example, technologies like the Real-
time CORBA Component Model (RT-CCM) [25] support
many QoS-related features (such as thread pools, lanes,
priority banded connections, and standard static/dynamic
scheduling services) that allow system developers to config-
ure the middleware to build systems with desired QoS fea-
tures. When systems based on RT-CCM are integrated with
other technologies, it is critical to automatically map the
QoS-related features used by an application in the source
technology to the set of QoS features available in the target
technology. For example, a number of specifications have
been released for Web Services that target QoS features,
such as reliable messaging, security, and notification. The
focus of our future efforts in integration involves extending
SIML to automatically map QoS features from one technol-
ogy to another using DSMLs, such that the integration is au-
tomated in all aspects – both functional and non-functional.

Instructions for downloading SIML and GME are avail-
able at www.dre.vanderbilt.edu/cosmic.

References

[1] Ákos Lédeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and
M. Maroti. On Metamodel Composition. In Proceedings of
the 2001 IEEE International Conference on Control Appli-
cations (CCA), pages 756–760, Mexico City, Mexico, 2001.
IEEE.

[2] K. Balasubramanian, A. Gokhale, Y. Lin, J. Zhang, and
J. Gray. Weaving Deployment Aspects into Domain-Specific
Models. International Journal on Software Engineering and
Knowledge Engineering (IJSEKE), 16(3), June 2006.

[3] K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C. K.
Liu, M. Nottingham, and P. Yendluri. WS-I Basic Pro-
file. www.ws-i.org/Profiles/BasicProfile-1.
1.html, April 2006.

[4] C. Britton and P. Bye. IT Architectures and Middleware:
Strategies for Building Large, Integrated Systems. Addison-
Wesley Professional, May 2004.

[5] W. W. W. Consortium. Web Ontology Language. www.w3.
org/2004/OWL/, Feb 2004.

[6] M. Emerson and J. Sztipanovits. Techniques for metamodel
composition. In The 6th OOPSLA Workshop on Domain-
Specific Modeling, OOPSLA 2006, Portland, OR, Oct 2006.
ACM.

[7] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid
Services for Distributed System Integration. Computer,
35(6):37–46, 2002.

[8] G. Hohpe and B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Professional, October 2003.

[9] IBM. WebSphere. www.ibm.com/software/info1/
websphere/index.jsp.

[10] IBM. MQSeries Family. www-4.ibm.com/software/
ts/mqseries/, 1999.

[11] G. Karsai, S. Neema, B. Abbott, and D. Sharp. A Model-
ing Language and Its Supporting Tools for Avionics Systems.
In Proceedings of 21st Digital Avionics Systems Conf., Aug.
2002.

[12] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
Integrated Development of Embedded Software. Proceed-
ings of the IEEE, 91(1):145–164, Jan. 2003.

[13] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific De-
sign Environments. IEEE Computer, pages 44–51, Novem-
ber 2001.

[14] H. Ludwig, A. Keller, A. Dan, R. P. King, and
R. Franck. Web Service Level Agreement Language Spec-
ification. researchweb.watson.ibm.com/wsla/
documents.html, January 2003.

[15] B. Meyer. Applying Design By Contract. Computer (IEEE),
25(10):40–51, Oct. 1992.

[16] S. Microsystems. J2EE Connector Architecture Specifica-
tion. java.sun.com/j2ee/connector/, November
2003.

[17] Object Management Group. MetaObject Facility (MOF) 2.0
Core Specification, OMG Document ptc/03-10-04 edition,
Oct. 2003.

[18] Object Management Group. UML Profile for Enterprise Ap-
plication Integration (EAI), omg document formal/04-03-26
edition, March 2004.

[19] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit
for Web Service Composition. Jan. 01 2002.

[20] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):41–47, 2006.

[21] J. A. Stankovic, H. Wang, M. Humphrey, R. Zhu, R. Poor-
nalingam, and C. Lu. VEST: Virginia Embedded Systems
Toolkit. In Proceedings of the IEEE Real-time Embedded
Systems Workshop, London, UK, Dec. 2001. IEEE.

[22] SUN. Java Messaging Service Specification. java.sun.
com/products/jms/, 2002.

[23] D. TrowBridge, U. Roxburgh, G. Hohpe, D. Manolescu, and
E. G. Nadhan. Integration Patterns. msdn.microsoft.
com/library/default.asp?url=/library/
en-us/dnpag/html/intpatt.asp, June 2004.

[24] R. van Engelen and K. Gallivan. The gSOAP Toolkit for
Web Services and Peer-to-Peer Computing Networks. InCC-
GRID, pages 128–135. IEEE Computer Society, 2002.

[25] N. Wang and C. Gill. Improving Real-time System Con-
figuration via a QoS-aware CORBA Component Model. In
Hawaii International Conference on System Sciences, Soft-
ware Technology Track, Distributed Object and Component-
based Software Systems Minitrack, HICSS 2004, Kona, HW,
Jan. 2004. HICSS.

[26] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware Middle-
ware for Web Services Composition. IEEE Trans. Softw.
Eng., 30(5):311–327, 2004.

