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Abstract

While distributed object computing (DOC) middleware like CORBA and Java
RMI were a significant improvement over prior middleware for developing
distributed systems, there are significant limitations with DOC middleware.
These include the inability to provide multiple alternate views of services on
a per-client basis, inability to navigate between interfaces in a standardized
fashion, low-level mechanisms for specification and enforcement of policies,
complexity of middleware configuration and ad hoc deployment techniques.
Standards-based component middleware like CORBA Component Model (CCM),
Enterprise Java Bean (EJB) and Microsoft .NET improve upon the previous gen-
eration middleware by providing higher-level abstractions for expression and
realization of design intent and flexibility of configuration. However, lack of
system composition tools, complexity of the declarative platform notations and
API, and composition overhead in large-scale component systems are signifi-
cant limitations to the widespread adoption and usage of component technolo-
gies for enterprise distributed, real-time and embedded (DRE) systems.

This thesis proposal provides three contributions to the design and de-
ployment of component-based enterprise DRE systems. First, it describes a
domain-specific modeling language (DSML) toolchain that allows multi-level,
flexible and scalable composition of systems. Second, it describes how the
high-level abstraction provided by the DSML toolchain is used to automate
generation of metadata for multiple component middleware platforms like
CCM and .NET. Finally, it describes an optimization framework that is pro-
posed to be built using the high-level abstraction of models. This optimization
framework optimizes the performance and footprint of systems in an appli-
cation transparent fashion, by exploiting the application context information
available at the model level. To illustrate the platform-independence of the
optimization framework, the optimizations will be prototyped, measured and
validated in the context of more than one middleware platform, i.e., CCM as
well as .NET Web Services.



Chapter 1

Introduction

1.1 Emerging Trends and Technologies

During the past two decades, advances in languages and platforms have raised
the level of software abstractions available to developers. For example, devel-
opers today typically use expressive object-oriented languages such as C++ [1],
Java [2], or C# [3], rather than FORTRAN or C. Object-oriented (OO) program-
ming languages simplified software development by providing higher level
abstractions and patterns. For example, OO languages provide support for
associating data and related operations as well as decoupling interfaces from
the implementations. Thus well-written OO programs exhibit recurring struc-
tures that promote abstraction, flexibility, modularity and elegance. Resting on
the foundations of the OO languages, reusable class libraries and application
framework platforms [4] were developed. This also led to the development
of robust distributed object computing middleware (DOC) which applied de-
sign patterns [5] (like Broker) to abstract away low-level operating system and
protocol-specific details of network programming. This resulted in the devel-
opment of distributed systems since the DOC middleware hid a lot of the com-
plexity associated with building such systems using previous generation mid-
dleware technologies. DOC middleware standards like CORBA [6] and Java
RMI [7] coupled with mature implementations like TAO [8] led to develop-
ment of more robust software and more powerful distributed systems. While
DOC middleware provided a number of advantages over previous generation
middleware, a number of significant limitations remain. Some of the limita-
tions with DOC middleware include:

• Inability to provide multiple alternate views per client. An object in
DOC middleware like CORBA typically implements a single class inter-
face, which may be related by inheritance with other classes. In contrast,
a component can implement many interfaces, which need not be related
by inheritance. A single component can therefore appear to provide vary-
ing levels of functionality to its clients.
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• Inability of clients to navigate between interfaces of a server in a stan-
dardized fashion. Components provide transparent “navigation” oper-
ations, i.e., moving between the different functional views of a compo-
nent’s supported interfaces. Conversely, navigation in objects is limited
to moving up or down an inheritance tree of objects via downcasting or
“narrow” operations. It is also not possible to provide different views of
the same object since all clients are granted the same level of access to the
object’s interfaces and state.

• Extensibility of the middleware limited to language (Java, C++) and/or
platform (COM, CORBA). Objects are units of instantiation, and encap-
sulate types, contracts, and behavior [9] that model the physical entities
of the problem domain in which they are used. They are typically imple-
mented in a particular language and have some requirements on the lay-
out that each inter-operating object must satisfy. In contrast, a component
need not be represented as a class, be implemented in a particular lan-
guage, or share binary compatibility with other components (though it
may do so in practice). Components can therefore be viewed as providers
of functionality that can replaced with equivalents components written in
another language. This extensibility is facilitated via the Extension Inter-
face design pattern [10], which defines a standard protocol for creating,
composing, and evolving groups of interacting components.

• Accidental complexities in configuation of middleware, specification
and enforcement of policy. Traditional DOC middleware provided very
primitive mechanisms i.e., low-level mechanisms for configuration of the
middleware as well as specification of various policies. Since configu-
ration and specification of policy was done using imperative techniques,
it was typically done in the same language as that of the implementa-
tion. This led to the configuration of the middleware becoming complex,
tedious and error-prone.

• Ad hoc deployment mechanisms. Deployment of systems using tradi-
tional DOC middleware is also done in an ad hoc fashion using custom
scripts. The scripts were usually targetted at deploying a single system,
and hence had to be rewritten for every new system, or in some cases for
even different versions of the same system. The development and main-
tenance of this ad hoc infrastructure for deployment was an unnecessary
burden on DRE system developers.

Thus it is clear that system developers have to face significant challenges
when building complex enterprise DRE systems using DOC middleware. One
promising solution to alleviate the complexities of traditional DOC middle-
ware is component middleware technologies.

2



1.2 Component Middleware

Component middleware technologies like EJB [11], Microsoft .NET [12], and
the CORBA Component Model (CCM) [13] raised the level of abstraction by
providing higher-level entities like components and containers. Components
encapsulate “business” logic, and interact with other components via ports.
The different kinds of ports include:

• Provided interfaces, which are distinct named interfaces provided by the
component. Provided interfaces enable a component to export a set of dif-
ferent functional roles to its clients.

• Required interfaces, which are interfaces used to specify relationships be-
tween components. Required interfaces allow a component to accept refer-
ences to other components and invoke operations upon these references.
They therefore enable a component to use the functionality provided by
other components.

• Event Sources and Sinks,, which define a standard interface for the Pub-
lisher/Subscriber architectural pattern [14]. Event sources/sinks are named
connection points that send/receive specified types of events to/from
one or more interested consumers/suppliers. These types of ports also
hide the details of establishing and configuring event channels [15] needed
to support The Publisher/Subscriber architecture.

• Attributes, which are named values exposed via accessor and mutator op-
erations. Attributes can be used to expose the properties of a component
that are exposed to tools, such as application deployment wizards that
interact with the component to extract these properties and guide deci-
sions made during installation of these components, based on the values
of these properties. Attributes typically maintain state about the compo-
nent and can be modified by these external agents to trigger an action
based on the value of the attributes.

Today’s reusable class libraries and application framework platforms min-
imize the need to reinvent common and domain-specific middleware services,
such as transactions, discovery, fault tolerance, event notification, security, and
distributed resource management. For example, enterprise systems in many
domains are increasingly developed using applications composed of distributed
components running on feature-rich middleware frameworks. In component
middleware, components are designed to provide reusable capabilities to a
range of application domains, which are then composed into domain-specific
assemblies for application (re)use. The transition to component middleware
is gaining momentum in the realm of enterprise DRE systems because it helps
address problems of inflexibility and reinvention of core capabilities associated
with prior generations of monolithic, functionally-designed, and stove-piped
legacy applications. Legacy applications were developed with the precise ca-
pabilities required for a specific set of requirements and operating conditions,
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Figure 1.1: Key Elements in the CORBA Component Model

whereas components are designed to have a range of capabilities that enable
their reuse in other contexts. As shown in Figure 1.1, some key characteristics
of component middleware that help the development of complex enterprise
distributed systems include:

• Support for transparent remote method invocations,

• Exposing multiple views of a single component,

• Language-independent component extensibility,

• High-level execution environments that provide layer(s) of reusable in-
frastructure middleware services (such as naming and discovery, event
and notification, security and fault tolerance),

• Tools that enable application components to use the reusable middleware
services in different compositions.

1.3 Overview of Research Challenges

While component middleware provide a number of advantages over previ-
ous technologies, several vexing problems remain. Some of the key challenges
in developing, deploying and configuring component-based large-scale enter-
prise DRE systems using component middleware include:

1. Lack of system composition tools. While component middleware pro-
vides a lot of tools for developing individual components using gen-
eral purpose programming languages, there are few tools that exist for
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composing systems from individual components. Thus developers are
still forced to deal with composition using previous generation tools like
IDEs. Such tools lack the ability to check architectural constraints of the
system and hence these problems don’t show up until the system is de-
ployed, or worse after the system has been deployed, i.e., at run-time.
Since it costs much more to fix problems later in the software develop-
ment cycle, lack of system composition tools is a big challenge to ensure
successful adoption of component middleware technologies. A key re-
search challenge is therefore the lack of system composition tools that
focus on strategic architectural issues, such as system-wide correctness
and performance, and provide an integrated view of the system.

2. Complexity of declarative platform API and notations. Over the years,
complexity of the platform API have evolved faster than the ability of
general-purpose languages to mask this complexity. For example, pop-
ular middleware platforms, such as EJB and .NET, contain thousands of
classes and methods with many intricate dependencies and subtle side
effects that require considerable effort to program and tune properly.
Though these platforms expose declarative techniques for performing var-
ious system development and deployment tasks, the technologies chosen
to express these declarative techniques are often not user-friendly. For ex-
ample, platforms like .NET, EJB and CCM use XML [16] technologies as
the notation for all metadata related to specification of policy, configu-
ration of middleware as well as deployment of applications. A key re-
search challenge is therefore the complexity of declarative platform API
and notations of the metadata prevalent in the component middleware
technologies.

3. Overhead due to high-level abstraction in large-scale systems. In any
complex system built using components, it is rare to find a single com-
ponent that realizes a complex functionality on its own, i.e., as a stan-
dalone component. We refer to indivisible, standalone components as
monolithic components. Each monolithic component normally performs
a single specific functionality to allow reuse of its implementation across
the whole system. Thus, a number of inter-connected components are of-
ten composed together to create an assembly which realizes the complex
functionality. Each such composition of components into an assembly
results in a small and often unnoticeable overhead compared to imple-
menting the functionality as a single component. By applying the same
principle to composing the entire system, it is easy to get into a situation
where a number of such small overheads add up to become a signifi-
cant portion of the total execution time, thereby causing reduced QoS to
clients. In worst cases, the application overhead can become so intolera-
ble that the system is no longer usable. Thus a key research challenge is
the composition overhead of the high-level component middleware tech-
nologies when applied to large-scale systems.
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1.4 Research Approach

To address the problems with the complexity of platforms and the inability
of third-generation languages to alleviate this complexity and express domain
concepts, we propose an approach that applies Model-Driven Engineering (MDE)
technologies to the design, development and deployment of component-based
enterprise DRE systems. As shown in Figure 1.2, our approach involves a com-
bination of:
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Figure 1.2: Research Approach

• System Composition Technologies, which includes a domain-specific mod-
eling language and associated tools to allow component interface defi-
nition, component interaction definition and multi-level composition of
systems from individual components. The proposed research provides
system level composition tools that allows composing systems from in-
dividual components. Section 2.3 describes the system composition tools
in detail.

• Generative Technologies, which includes a number of tools that utilize
the system composition technologies outlined above to capture and au-
tomate the generation of metadata automatically from the models. By
automating the generation of platform-specific metadata from models,
the proposed research alleviates the problems with the complexity of the
declarative notations. Section 3.3 describes the generative technologies
in detail.

• System Optimization Technologies, which includes an optimization frame-
work that uses the application context available in the models to optimize
the execution and footprint of applications built using components. By

6



performing optimizations that were previously infeasible to perform effi-
ciently by operating at the middleware level, the proposed research opti-
mizes away the composition overhead associated with component mid-
dleware technologies. Section 4.3 describes the optimization technologies
in detail.

1.5 Proposal Organization

The remainder of this proposal is organized as follows: each chapter describes
a single focus area, describes the related research, the unresolved challenges,
our research approach to solve these challenges, and evaluation criteria for this
research. Chapter 2 describes the issues related to composition of component
systems, Chapter 3 deals with expression of design intent and Chapter 4 deals
with application-specific optimizations. Finally, Chapter 5 provides a sum-
mary of the research contributions, publications and a time-line for the thesis
proposal.
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Chapter 2

Composition of Component
Systems

System composition refers to composing a system by inter-connecting differ-
ent individual components. Figure 2.1 shows the different dimensions across
which component composition is defined. These include:

• Structural Dimension. Structural dimensions are related to the struc-
tural properties of composition of a system. Systems can be sub-divided
into two categories structurally:

1. Flat, where connections between the components in the system are
at the same level; all the components are defined at the same level,
i.e., they are peers,

2. Hierarchical, where components are grouped together into assem-
blies which may further be composed of sub-assemblies, and con-
nections between components exist at both levels.

• Temporal Dimension. Temporal dimension is related to the time at which
the composition happens. Systems can be sub-divided into two cate-
gories in the temporal dimension:

1. Static, where the components are combined together at build time
statically,

2. Dynamic, where the connections between components are orches-
trated at deployment time using declarative metadata by a deploy-
ment engine.

Component middleware promotes the development of libraries of pre-built
and tested individual components, which offer different levels of capabilities
and performance to clients. While this paradigm increases the opportunities
for systematic reuse, it can also complicate software lifecycle processes. In
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particular, component middleware shifts responsibility from software devel-
opment engineers to other types of software engineers (such as software con-
figuration and deployment engineers) and systems engineers. Software de-
velopment engineers traditionally created entire applications in-house using
top-down design methods that could be evaluated throughout the lifecycle.
In contrast, software configuration and deployment engineers and system en-
gineers today must increasingly assemble enterprise, distributed systems by
customizing and composing reusable components from existing frameworks,
rather than building them from scratch. Thus it is clear that system composi-
tion is becoming a critical part of enterprise DRE system development.

2.1 Related Research

Composition of component-based systems has been studied extensively in the
research community. Research on composition of component-based systems
can be broadly categorized into three categories: (1) Component Development
Environments, which deal with graphical environments that allow definition
and composition of components, (2) Component Programming Techniques,
which deals with improvements to programming languages and new program-
ming methodologies and techniques to support component composition, (3)
Functional Verification of Components, which deals with verification of com-
ponents and compositions for various properties like QoS, deadlocks, real-time
behavior. These three areas are discussed below:

1. Component Development Environments. The Embedded Systems Model-
ing Language (ESML) [17] was developed at the Institute for Software In-
tegrated Systems (ISIS) to provide a visual metamodeling language based
on GME that captures multiple views of embedded systems, allowing a

9



diagrammatic specification of complex models. The modeling building
blocks include software components, component interactions, hardware
configurations, and scheduling policies. Using these analyses, design de-
cisions (such as component allocations to the target execution platform)
can be performed. ESML is platform-specific since it is heavily tailored
to the Boeing Boldstroke PRiSm QoS-enabled component model [18, 19].
ESML also does not support nested assemblies and the allocation of com-
ponents are tied to processor boards, which is a proprietary feature of the
Boldstroke component model.

Ptolemy II [20] is a tool-suite that supports heterogeneous modeling, sim-
ulation, and design of concurrent systems using an actor-oriented design.
Actors are similar to components, but their interactions are controlled by
the semantics of models of computation, such as discrete systems. The
set of available actors is limited to the domains that are natively defined
in Ptolemy. Using an actor specialization framework, code is generated
for embedded systems. Ptolemy II supports components based on Java,
with preliminary support for C.

WREN [21] is a component-based environment that emphasizes building
systems composed of components retrieved from common software dis-
tribution sites as opposed to being completely developed in-house. The
work also identifies some key requirements of component-based devel-
opment environments including support for modular design, self-description,
presence of global namespaces, support for application composition in
addition to component development, support for component configura-
tion, support for multiple views and reuse through reference to alleviate
the maintenance problems.

2. Component Programming Techniques. A comprehensive collection of
work related to Component-Based Software Engineering (CBSE) includ-
ing definition of components, component-models and services, business
case for components, product-line architectures, software architectures,
standard-based component models as well as legal implications of component-
based software is [22]. Research on composition techniques at the pro-
gramming language level include the work on Scala [23], extensions to
languages to support collaboration-based designs using mixin-layers in
a static fashion [24] as well as in a dynamic fashion [25]. The topic of
generating product-line architectures has been addressed in [26] with an
extension of this work to non-code artifacts in [27]. A seminal work on
defining generative programming methodologies, tools and applications
is [28]. Other work on composition techniques include the work on vari-
ability management in the context of product-line architectures in [29],
which compares Feature-Oriented Programming(FOP) [30] with Aspect-
Oriented Programming(AOP) [31]. Recent efforts [32] have also been
focused on optimal strategies for composition of Web Services, where a
number of publically available Web Services are composed together to
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satisfy a high-level requirement. A good summary of the existing tech-
niques and requirements for composition of Web Services is [33].

3. Functional Verification of Components. Cadena [34] an integrated en-
vironment for building and modeling CCM systems. Cadena provides
facilities for defining component types using CCM IDL, specifying de-
pendency information and transition system semantics for these types,
assembling systems from CCM components, visualizing various depen-
dence relationships between components, specifying and verifying cor-
rectness properties of models of CCM systems derived from CCM IDL,
component assembly information, and Cadena specifications, and pro-
ducing CORBA stubs and skeletons implemented in Java.

The Virginia Embedded Systems Toolkit (VEST) [35] and the Automatic Inte-
gration of Reusable Embedded Systems (AIRES) [36] are analysis tools that
evaluate whether certain timing, memory, power, and cost constraints of
real-time and embedded applications are satisfied. Components are se-
lected from pre-defined libraries, annotations for desired real-time prop-
erties are added, the resulting code is mapped to a hardware platform,
and real-time and schedulability analysis is done.

Much emphasis of the related research has been on component program-
ming models and languages to allow construction of components, i.e., how to
write better components, and functional verification of individual components.
Another issue with related research is that a lot of tool-specific component tech-
nologies have been proposed, whereas there is a need for component technology
agnostic tools. However, with the standardization of component programming
models, and the availability of commercial-off-the-shelf (COTS) components,
focus needs to shift away from “programming-in-the-small” to “composing-
systems-in-the-large”, and away from proprietary component models to stan-
dards based component models. Another area which has not been given enough
attention is the deployment of component-based systems and support for man-
aging deployment artifacts. Section 2.2 describes the key unresolved challeges
in composition of component-based systems, that forms the basis for our re-
search.

2.2 System Composition: Unresolved Challenges

As shown in Figure 2.2, the challenges in building distributed systems are thus
shifting from focusing on the construction of individual components to, com-
position of systems from a large number of individual subcomponents, and
ensuring correct configuration of the subcomponents. Composition of systems
from individual components needs to ensure that the connections between
components are compatible, as well as ensure that the deployment descriptors
for the composed systems are valid.
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Unfortunately, problems associated with composing systems from compo-
nents often become manifest only during the integration phase. Problems dis-
covered during integration are much more costly to fix than those discovered
earlier in the lifecycle. A key research challenge is thus exposing these types
of issues (which often have dependencies on components that are not avail-
able until late in development) earlier in the lifecycle, e.g., prior to the system
integration phase. The following is a list of the unresolved challenges with
composition of systems from standards based components:

1. Lack of tool support for defining consistent component interactions.
Existing inteface definition tools are primitive in the sense that the inter-
faces for different components are specified separately, and getting the
inteface definitions right involves tedious edit, compile, fix cycle. Also
while the individual interfaces themselves may be strongly typed, the
lack of component interconnection information in interface definitions
languages like CORBA Interface Definition Language (IDL) [13] and Web
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Services Definition Language (WSDL) [37] makes the task of composing
systems more difficult. This is because inconsistencies in the component
interactions are not detected until either deployment-time, or in some
cases until run-time.

2. Lack of integrated system view. Traditional environments for compo-
nent development provide a split view of the system where there is a
design view, e.g., Unified Modeling Language (UML) [38] models of the
system, and there is a development centric view, e.g., Microsoft Visual
Studio, Eclipse [39]. Thus there is a lack of an integrated system view to
help the system developers reason about systems at the system level.

3. Lack of tool support for multi-level composition. System developers
also need tools that allow viewing the system at multiple levels of gran-
ularity (complexity). Also when one portion of a system changes, the
change propagation is done in an ad hoc fashion which is tedious and
error-prone when done manually.

4. Lack of context-aware policy specification mechnanisms. Components
of a system might need to be configured with different parameters based
on the usage context of a component. However, existing integrated de-
velopment environments (IDEs) lack support for context-aware policy
specifications which results in maintenance issues when the number of
components and the number of contexts in which a component is used in
a system grows.

5. Lack of scalable composition techniques. Most graphical environments
and composition techniques are effective when the number of compo-
nents in a system number in the tens or hundreds. However, when the
number of components in a system is in thousands, it is extremely unpro-
ductive to perform composition activities manually. Even if a tool envi-
ronment provides such a capability, it may not be customizable. Existing
mechanisms to customizing an environment involve writing plugins, or
addons [40], which assumes familiarity with the tool environment itself
and is an extra burden on system developers.

Hypotheses This thesis proposes to build a system composition tool infras-
tructure which will explore and validate the following hypotheses with respect
to system composition:

1. Disallow inconsistent component interactions

2. Provide integrated view of system

3. Support system composition across multiple levels

4. Support context-dependent policy specifications

5. Support scalable composition techniques

13



6. Support integration with component build tools and component reposi-
tories

2.3 Solution Approach→ System Composition Tools

To address the unresolved challenges with system composition outlined in Sec-
tion 2.2, we have developed the Platform-Independent Component Modeling Lan-
guage (PICML) [41]. PICML is an open-source domain-specific modeling lan-
guage (DSML) available for download at http://www.dre.vanderbilt.
edu/cosmic/ that enables developers of component-based DRE systems to
define application interfaces, QoS parameters, and system software building
rules, as well as generate valid XML descriptor files that enable automated
system deployment as shown in Figure 2.3. PICML is developed using the
Generic Modeling Environment (GME) [42], a meta-programmable domain-
specific modeling environment. GME is a meta-programmable modeling envi-
ronment with a general-purpose editing engine, separate view-controller GUI,
and a configurable persistence engine. Since GME is meta-programmable, the
same environment used to define PICML is also used to build models, which
are instances of the PICML metamodel. PICML is the core of the CoSMIC [43]
toolchain.
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Figure 2.3: System Composition using PICML

At the core of PICML is a DSML (defined as a metamodel using GME) for de-
scribing components, types of allowed interconnections between components,
and types of component metadata for deployment. The PICML metamodel
defines ∼115 different types of basic elements, with 57 different types of asso-
ciations between these elements, grouped under 14 different folders. PICML
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allows system developers to capture the components and the dependencies
in a visual fashion. PICML defines static semantics using OMG’s Object Con-
straint Language [44]. Dynamic semantics are defined via model interpreters,
a DLL that is loaded at run-time into GME and executed to perform various
generative actions.

We now show how our research in building PICML, a system composition
tool, validates the hypotheses presented in Section 2.2 as follows:

1. Since PICML [45] defines a metamodel that captures the abstract syn-
tax of the CCM programming model, it is able to syntactically validate
the component interaction definitions. PICML also ensures that the plat-
form semantics, i.e., CCM semantics are captured using OCL constraints.
Thus, it is not possible to construct models using PICML that are either
syntactically invalid or violate platform semantics.

2. PICML exploits the multi-aspect visualization capabilities of GME to al-
low the system developer to visualize the system according to differ-
ent concerns including Interface Definition, Packaging, NodeMapping,
QoS and ComponentMetrics, from within the same environment. Thus,
PICML provides an integrated view of the system to the system devel-
oper.
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Figure 2.4: Hierarchical Composition Techniques

3. As shown in Figure 2.4, PICML allows composition across multiple lev-
els of hierarchy. Using PICML a system developer can model compo-
nents, compose component into component assemblies by interconnect-
ing them, and reuse component assemblies into higher-level assemblies
in an unrestricted fashion. Assemblies are defined as types in PICML.
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This allows instantiation of assemblies multiple times, which is a major
benefit since the changes to the composition of an assembly type auto-
matically gets propagated to all the instances.

4. PICML also allows both components and assemblies to be associated
with properties. Property elements can be specified at multiple levels in
the hierarchy which allows a flexible mechanism for overriding values at
any level. Policy specification can also be done at the assembly type level
and overridden in the assembly instances. Thus, PICML allows context-
dependent policy specifications.
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Figure 2.5: Scalable Composition Techniques

5. As shown in Figure 2.5, PICML also integrates support for scalable com-
position techniques [46]. This work was done in colloboration with the
team from Software Composition and Modeling Laboratory (SOFTCOM).
PICML uses Constraint-Specification Aspect Weaver (C-SAW) [47], an
aspect-oriented model weaver to weave in crosscutting concerns [48], i.e.,
composition, into model elements. Specification of constraint to be used
in weaving is given as an input to the C-SAW tool. By automating the
weaving of crosscutting concerns using C-SAW, PICML is able to provide
an environment that is both customizable (what elements to weave and
according to what constraints) as well as scalable (how many elements to
create, where and how many times to repeat).

2.4 Proposed Enhancements

To validate the last hypothesis (support integration with component build tools
and component repositories), we propose to enhance PICML to automatically
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generate software build rules from models. To be able to build components in
an operating system independent fashion, we propose to utilize a tool called
MakeFile, Project and Workspace Creator (MPC) [49], which generates soft-
ware build artifacts like Makefiles, Microsoft Visual Studio solution files neces-
sary to build a component system. In addition to generating plain build files,
we also propose to exploit the application context available at the modeling
level to optimize the building of components. For example, with knowledge
about the interfaces of a component that actually take part in inter-connections,
it is possible to achieve footprint reductions by restricting the visibility of sym-
bols exposed from a component, to the ones that are actually used. This tech-
nique take advantage of the native platform build tool capabilities to perform
this optimization.

In order to ensure that the system developers deal with implementation
artifacts associated with a component at a higher-level of abstraction, it is nec-
essary to provide support for managing components in terms of packages. We
propose to build an infrastructure that automates the packaging of components
and also pushes the packages to a component repository. This enables run-time
infrastructure to get access to the metadata thereby opening up new avenues
for run-time reflection.

2.5 Evaluation Criteria

To validate the hypothesis we propose that the enhancements be compared
against the following baseline:

Compared with the deployment of a system with existing tools, the pro-
posed enhancements should:

1. Eliminate the need to manually write build scripts.

2. Reduce static footprint per component type by 20%. Preliminary testing
already give a 10% reduction per component type. The total savings in
a large system with a number of unique component types will be much
higher.

3. Automate the creation of component packages.

4. Automatically deploy a package into a component repository.
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Chapter 3

Expression Of Design Intent

Prior generations of middleware, such as Remote Procedure Calls (RPC) and
Distributed Object Computing (DOC), used tightly coupled imperative tech-
niques throughout the development, deployment, and configuration of system
artifacts. As a result, most application and platform code is still written and
maintained manually using third-generation languages, which incurs exces-
sive time and effort particularly for key integration-related activities, such as
system deployment, configuration, and quality assurance. For example, it is
hard to write Java or C# code that correctly and optimally deploys large-scale
distributed systems with hundreds or thousands of interconnected software
components. A key culprit is the significant semantic gap between design in-
tent (such as deploy components 1-50 onto nodes A-G and components 51-100
onto nodes H-N in accordance with system resource requirements and avail-
ability) and the expression of this intent in thousands of lines of handcrafted
third-generation languages. To address the deficiencies with imperative so-
lutions expressed in third-generation languages, component middleware pro-
vides a significantly richer declarative notation for codifying various develop-
ment, deployment, and configuration activities. Common examples of such
declarative notations include:

• Usage of XML descriptors to configure application component properties
(such as initial values for component attributes) at deployment time.

• Usage of XML descriptors to configure critical pieces of the middleware
infrastructure, such as event-de-multiplexing mechanisms, level of con-
currency.

• Contents of component packages (as opposed to platform-specific shared
libraries or dynamically linked libraries) along with meta-information to
represent component implementations.

• Usage of XML descriptors to orchestrate the deployment of systems, e.g.,
the number of instances of each component type and the connections be-
tween component instances.
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3.1 Related Research

Declarative notations to express design intent is a hot-topic in the research com-
munity. Manifestations of the declarative approach to configuration of the sys-
tem starts from operating system level and goes all the way up to component-
based system packaging. We explore the related research in utilizing declara-
tive notations under four categories:

1. Operating System. Research on administration of personal computer
systems [50] has focused on replacing the imperative updates to con-
figuring and updating the operating system with declarative techniques,
which rely on a system model as a function that can be applied to a collec-
tion of system parameters to produce a statically typed, fully configured
system instance. This research has been prototyped on Singularity OS.

On the other end of the spectrum is Pan [51], a high-level configuration
language for system administration of a large number of machines, rang-
ing from large clusters to desktops in large organizations. The approach
taken to configuration is to store configuration information in a database
in two alternate forms: a high-level declarative description (Pan) and a
low-level XML based notation. Automated tools are provided which con-
vert Pan to XML based format.

Declarative notations have also been applied to the task of instrument-
ing a live system as implemented in DTrace [52]. DTrace is an online
instrumentation facility which uses a declarative high-level language to
describe predicates and actions at a given point of instrumentation. The
DTrace mechanism has been integrated into the Solaris Operating sys-
tem.

2. Software Architecture Description. Emerging standards like Web Ser-
vices are based on Web Services Description Language [37] to describe
Web services starting with the messages that are exchanged between the
service provider and requestor. The messages themselves are described
abstractly and then bound to a concrete network protocol and message
format. A message consists of a collection of typed data items. An ex-
change of messages between the service provider and requestor are de-
scribed as an operation. WSDL uses XML Schema [53,54] as the language
for describing the service descriptions.

xADL [55] is an infrastructure for development of software architecture
description languages (ADLs), which relies on using XML for description
of the language itself. It provides a base set of reusable and customizable
architectural modeling constructs and an XML-based modular extension
mechanism. Primary goal of xADL is to unify the plethora of ADL nota-
tions in prevalence, and to reduce the effort expended in building tools
to support ADLs.
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3. Middleware Communication. Recent research on network protocol de-
sign [56] has resulted in a generic application protocol kernel for connection-
oriented, asynchronous interactions called BEEP. Messages are usually
textual (structured using XML). BEEP is itself not a protocol for send-
ing and receiving data directly. Rather, it allows definition of application
protocol in a declarative fashion on top of it, reusing several mechanisms
such as: asynchronous communications, transport layer security, peer
authentication, channel multiplexing on the same connection, message
framing, and channel bandwidth management.

Another declarative RPC protocol that is becoming popular is the Sim-
ple Object Access Protocol (SOAP) [57]. SOAP provides a simple and
lighteweight mechanism for exchanging structured and typed informa-
tion between peers in a decentralized, distributed environment using
XML. SOAP does not itself define any application semantics such as a
programming model or implementation specific semantics; rather it de-
fines a simple mechanism for expressing application semantics by pro-
viding a modular packaging model and encoding mechanisms for en-
coding data within modules. This allows SOAP to be used in a large
variety of systems ranging from messaging systems to RPC.

4. Middleware Packaging. The .NET framework employs a number of
declarative mechanisms to build, configure and deploy [58] systems. The
use of declarative notations (built on top of XML) is pervasive in the .NET
architecture. XML is used to configure the run-time behavior of not just
shared libraries (assembly in .NET parlance) but also entire applications.
XML is also used to describe the configuration of security policies at var-
ious levels of abstraction including application, machine or even enter-
prise. the next generation

Other standards-based component middleware including CCM [13] and
EJB [11] also define declarative mechanisms using XML for compostion
and assembly of components and component packages, as well as for
orchestrating deployment of component systems [59].

While the move towards declarative notations is an advance over previous
generation imperative techniques, the declarative techniques have chosen to
use tool-friendly technologies like XML as the medium for expression of de-
sign intent. XML is non-intuitive and error-prone to write manually (with or
without tool support). Any changes to a system requires modification to XML
which is a cumbersome process. Thus by choosing XML as the underlying
notation for declarative techniques, the problems associated with imperative
system configuration have just been shifted into a different space, i.e., config-
uring using XML.
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3.2 Expression of Design Intent: Unresolved Chal-
lenges

The use of declarative notations in component middleware automates hard-
coded configuration and deployment activities and increases the reuse of com-
ponents by eliminating tedious and error-prone manual configuration.
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Figure 3.1: Declarative Notations in Component Middleware

However, as shown in Figure 3.1, expression of these declarative notations
in textual languages like XML merely shift the burden of the component de-
velopers from writing code to writing the configuration and deployment de-
scriptors. For example, there is still a significant semantic gap between the
design intent (e.g., deploy components 1-50 onto nodes A-G and components
51-100 onto nodes H-N in accordance with system resource requirements and
availability) and the expression of this intent in thousands of lines of hand-
crafted XML, whose visually dense syntax conveys neither domain semantics
nor design intent. As a result, the use of text-based declarative notations has
the potential to overwhelm component developers without adequate tool sup-
port. The following is a list of unresolved challenges with respect to expression
of design intent when using standards-based component middleware:

1. Complexity of Declarative Notations. A key research challenge is the
accidental complexities of the declarative notations required to config-
ure the component middleware. There are several examples which illus-
trate the problems with accidental complexities. For example, IDL for
CCM (i.e., CORBA 3.x IDL) defines extensions to the syntax and seman-
tics of CORBA 2.x IDL. Every developer of CCM-based applications must
therefore master the differences between CORBA 2.x IDL and CORBA
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3.x IDL. For example, while CORBA 2.x interfaces can have multiple in-
heritance, CCM components can have only a single parent, so equiva-
lent units of composition (i.e., interfaces in CORBA 2.x and components
in CCM) can have subtle semantic differences. Moreover, any compo-
nent interface that needs to be accessed by component-unaware CORBA
clients should be defined as a supported interface as opposed to a provided
interface. In any system that transitions from an object-based architecture
to a component-based architecture, there is likelihood of simultaneous
existence of simple CORBA objects and more sophisticated CCM compo-
nents. Design of component interfaces must therefore be done with extra
care.
Another example from .NET related to naming is with the manifest files
associated with an assembly. Each assembly in .NET (equivalent to a
component in CCM) is associated with a manifest file. A manifest file
is an XML file that can be used to configure the behavior of the assem-
bly. Before the .NET run-time loads an assembly, it searches for any
manifest files associated with the assembly. This search is designed to
look for manifest files that follow a specific naming convention, and only
in specific directories: For each assembly implemented as a shared li-
brary, say Foo.dll, the .NET run-time searches for a manifest file named
Foo.dll.manifest; for each assembly implemented as an executable, say
Foo.exe, the .NET run-time searches for a manifest file named Foo.exe.manifest.
If the manifest files are given different names, the .NET run-time does not
load the manifest, which might result in a different behavior for the as-
sembly Foo.

2. Lack of support for system evolution. Another research challenge is
maintaining and evolving the declarative metadata associated with a sys-
tem. Any complex system will undergo a number of changes (minor and
major) as part of it’s evolution, and hence it is critical that the declara-
tive metadata also evolve with the system. Ad hoc and naive approaches
to management of metadata will result in problems during deployment
time, or even at run-time, both of which are costly to fix.

Hypotheses This thesis proposes to build a generative tool tool infrastruc-
ture which will explore and validate the following hypotheses with respect to
metadata management:

1. Provide high-level abstractions for specification of design intent

2. Automate generation of platform-specific metadata from these abstrac-
tions

3. Provide automated support system interface and metadata evolution

4. Provide support for developing heterogeneous systems, i.e., systems which
are built using combinations of multiple middleware platforms like CCM
and .NET Web Services.
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3.3 Solution Approach→Model-driven Generation

Models are effective vehicles for representing the declarative notations per-
vasive among the current generation of component middleware technologies.
Models provide a high-level abstraction, which shields the component devel-
opers from the accidental complexities of the declarative notations. For exam-
ple, models allow the developers to use model elements to specify the con-
nections between components, but translate them into the different declara-
tive notations required by different component middleware. It also allows the
developer to focus on the problems one item at a time. Thus, the developer
can specify the system resource requirements or availability requirements sep-
arately from the deployment requirements such as deploy components 1-50
onto nodes A-G and components 51-100 onto nodes H-N. From these require-
ments, the modeling infrastructure can automatically determine if the deploy-
ment is valid by evaluating the constraints.
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Figure 3.2: Automated Generation of Declarative Notations

Using GME tools, the PICML metamodel can be compiled into a modeling
paradigm, which defines a domain-specific modeling environment. From this
metamodel, ∼20,000 lines of C++ code (which represents the modeling lan-
guage elements as equivalent C++ types) is generated. This generated code
allows manipulation of modeling elements, i.e., instances of the language types
using C++, and forms the basis for writing model interpreters, which traverse
the model hierarchy to perform various kinds of generative actions, such as
generating XML-based deployment plan descriptors. PICML currently has
∼8 interpreters using ∼222 generated C++ classes and ∼8,000 lines of hand-
written C++ code that traverse models to generate the XML deployment de-
scriptors needed to support the OMG Deployment and Configuration speci-
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fication [59]. Each interpreter is written as a DLL that is loaded at run-time
into GME and executed to generate the XML descriptors based on models de-
veloped by the component developers using PICML. Examples of the type of
descriptors generated by PICML which aid in deployment of a system built
using OMG’s Deployment and Configuration Specification include:

• Component Interface Descriptor (.ccd), which describes the interfaces
ports, attributes of a single component.

• Implementation Artifact Descriptor (.iad), which describes the imple-
mentation artifacts (e.g., DLLs, executables etc.) of a single component.

• Component Implementation Descriptor (.cid), which describes a spe-
cific implementation of a component interface; also contains component
inter-connection information.

• Component Package Descriptor (.cpd), which describes multiple alter-
native implementations (e.g., for different OSs) of a single component.

• Package Configuration Descriptor (.pcd), which describes a component
package configured for a particular requirement.

• Component Deployment Plan (.cdp), which guides the run-time deploy-
ment.

• Component Domain Descriptor (.cdd), which describes the deployment
target, i.e., nodes, networks on which the components are to be deployed.

As shown in Figure 3.2, our research in automating the generation of meta-
data [60] in the context of PICML resulted in capabilities, which enable de-
velopers of component-based systems to define application interface, optional
parameters, system software build rules, and generates valid XML descriptor
files that enable automated system deployment. In essence, PICML defines a
type system that includes the entities of CCM metadata as first-class objects.
This type system can be used to validate deployment and configuration mod-
els and automatically generate descriptors necessary to configure and deploy
a system.

Our research also resulted in a set of component, interface, and other datatype
definitions to be created using either of the following approaches:

• Adding to existing definitions imported from IDL. In this approach,
existing CORBA software systems can be easily migrated to take advan-
tage of the composition and generative technologies provided by PICML
using its IDL Importer, which takes any number of CORBA IDL files as in-
put, maps their contents to the appropriate PICML model elements, and
generates a single XML file that can be imported into GME as a PICML
model. This model can then be used as a starting point for modeling
assemblies and generating deployment descriptors.
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• Creating IDL definitions from scratch. In this approach, PICML’s graph-
ical modeling environment provides support for designing the interfaces
using an intuitive “drag and drop” technique, making this process largely
self-explanatory and independent of platform-specific technical knowl-
edge. Most of the grammatical details are implicit in the visual language,
e.g., when the model editor screen is showing the “scope” of a definition,
only icons representing legal members of that scope will be available for
dragging and dropping.

CORBA IDL can be generated from PICML, enabling generation of soft-
ware artifacts in languages having a CORBA IDL mapping. For each logically
separate definition in PICML, the generated IDL is also split into logical file-
type units. PICML’s interpreter will translate these units into actual IDL files
with #include statements based on the inter-dependencies of the units detected
by the interpreter. PICML’s interpreter will also detect requirements for the in-
clusion of canonical CORBA IDL files and generate them as necessary. In addi-
tion to the above mentioned capabilities, we have also built infrastructure such
that changes to system interface definitions (outside the model; in IDL files)
after an initial model has been created can be automatically imported into the
application model. Thus both (re-)import as well as (re-)export of interfaces
are supported, which is critical to ensure smooth evolution of a system during
development.

We now show how our research in managing metadata using PICML, vali-
dates the hypotheses presented in Section 3.2 as follows:

1. PICML provides a visual medium, i.e., visual models to express the de-
sign intent of the developer, which is a higher level of abstraction than
the declarative notations of the component middleware. Thus, it is easy
to see that the level of abstraction provided, i.e., user-friendly drag and
drop operations driven using a GUI, is at a sufficiently higher level of
abstration than writing XML descriptors manually.

2. From the visual models of the component applications, PICML also gen-
erates the descriptors using the abstract syntax tree of the model, thereby
relieving the developer from both learning the declarative notations used
in the descriptors as well as ensuring that the descriptors are valid. Thus,
PICML validates the hypothesis for automated generation of metadata.

3. Since PICML allow seamless (re-)import and (re-)export of system inter-
faces, and captures metadata as first-class objects in the model, it is easy
to see that it support both system interface and metadata evolution in a
systematic fashion.

3.4 Proposed Enhancements

To validate the last hypothesis (Provide support for developing heterogeneous
systems, i.e., systems which are built using combinations of multiple middle-
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ware platforms like CCM and .NET Web Services), we propose to extend the
generative capabilities of PICML to support the declarative notations used in
the deployment of systems built using Microsoft .NET Web Services. This
involves identifying the key elements of the .NET Web Services framework
needed for deployment of systems. As shown in Figure 3.3, the enhanced
PICML will generate the following types of .NET metadata elements:

• Assembly manifests (.dll.manifest), which describe the contents of a sin-
gle .NET component, version information, information about referenced
assemblies, and dependencies on runtime environment.

• Application manifests (.exe.manifest), which describes the metadata as-
sociated with an application (system) and is quite similar to the assembly
manifests, except that it defines metadata for an entire application.

• Application Configuration Files (app.config), which describes the var-
ious configuration elements needed for configuring an application’s be-
havior.

• Web Service Configuration File (web.config), which describes the vari-
ous configuration elements needed for configuring externally facing sub-
systems of a complex, distributed web Service.

• Policy configuration files (enterprisesec, machine, security.config), which
describes the application specific policy elements including security that
need to replace/be merged with the existing policies at multiple levels of
control, i.e., enterprise level, machine level.

All these different configuration files use XML format and each configura-
tion file type above is different from the other file types in subtle ways. As a
result, component developers must master multiple different formats to ensure
successful deployment of a system built using .NET, which is tedious and er-
rorprone since the complexity and number of files increases with the complex-
ity of the system. By capturing the elements of .NET Web Service framework at
the modeling level, and automating the generation of the different descriptors,
our proposed approach therefore resolves numerous accidental complexities
associated with manually authoring the declarative notation embodied in the
different descriptors. In order to support development of heterogeneous sys-
tems, it is also necessary to provide wrappers which automatically transform
calls from one middleware platform to another transparently by acting as a
bridge. As part of the proposed enhancement, we also plan to automatically
generate an instantiation of such a prototype framework to enable systems that
support calls between CCM and .NET Web Services.

3.5 Evaluation Criteria

As shown in Figure 3.4, to validate the hypothesis we propose that the en-
hancements be compared against the following baseline:

26



Policy

`

Group

Application Assembly Manifest

User

Component

Resource
Requirements

Implementation

Properties

ImplementationImplementation

Component Assembly 
Configuration

Component Assembly Manifest

Application Assembly 
Configuration

Figure 3.3: Generation of metadata for .NET Web Services

Compared with the deployment of a system with existing tools (vanilla Mi-
crosoft Visual Studio), the proposed enhancements should:

1. Automate a three-staged deployment — Development, Testing, & Pro-
duction — of typical .NET Web services, i.e., generate syntactically valid
manifests for the three stages of deployment

2. Eliminate errors in deployment due to inconsistent Code-Access Security
Policies

3. Eliminate need for user to write glue code to integrate a CCM component
with a .NET Web Service.
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Chapter 4

Application Specific
Optimizations

Over the past five decades, software researchers and developers have been
creating abstractions that (1) help them to program in terms of their design
intent rather than in terms of the underlying computing en- vironments (e.g.,
CPU, memory, and network devices) and (2) shield them from the complexities
of these environments. From the early days of computing, these abstractions
included both language and platform technologies. For example, early pro-
gramming languages, such as assembly and FORTRAN, shielded developers
from complexities of programming with machine code. Likewise, early oper-
ating system platforms, such as OS/360 and UNIX, shielded developers from
complexities of programming directly to hardware. More recently, higher-level
languages (such as C++, Java, and C#) and platforms (such as component mid-
dleware) have further shielded application developers from the complexities
of the hardware. Although existing languages and platforms raised the level
of abstraction, they can also incur additional overhead. For example, com-
mon sources of overhead in component middleware include marshaling/de-
marshaling costs, data copying and memory management, static footprint over-
head due to presence of code paths to deal with every possible use cases, dy-
namic footprint overhead due to redundant run-time infrastructure helper ob-
jects, the endpoint and request de-multiplexing, and context switching and
synchronization overhead. While some implementations of component mid-
dleware try to minimize this overhead, there is a limit to the optimizations
done by the middleware developers. In particular, middleware developers
can only apply optimizations that are applicable across all applications in a
particular domain, which effectively limits the number of valid optimizations
performed by default.
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4.1 Related Research

Optimizing the middleware to increase the performance of applications has
long been a goal of middleware system researchers. In this section we will
explore a representative sample of the research that has been applied to opti-
mizing middleware for component-based systems under two categories:

1. Component Middleware Research on optimizing component middle-
ware techniques have relied on reflection techniques [61] to optimize
away the overhead of invocations. Approaches to optimizations have fo-
cused on selecting optimal communication mechnanisms, managing QoS
properties of component using the containers and dynamically (re)configuring
selected portions of the component implementations. Other research has
also focused on specialization of middleware for particular product-line
architecture scenarios [62], utilize micro-ORB architectures [63–65].
Other research [66] on optimizing component middleware have focused
on effectively reusing legacy code along with component middleware
technologies. The approach taken here is to separate the implementation
of the business logic from the glue code necessary to implement CORBA
object semantics. By taking advantage of an adapter layer and config-
uring the adapter to be local or remote, collocated invocations can be
optimized to ordinary C++ function calls.
Research on alternate component middleware like EJB have focused on
automating the performance management [67] of applications by em-
ploying a performance monitoring framework which works in collabo-
ration performance anomaly detection framework. By relying on redun-
dant implementation of components, i.e., component with same func-
tionality but optimized for different run-time environments, implemen-
tations can be swapped for more optimal ones depending on the anoma-
lies detected. The management framework also exhibits learning capa-
bilities so that deployment time definition of good vs. bad performance
is unnecessary.
While most research on optimizing component middleware has focused
on performing optimizations at the middleware layer, others [68] have
focused on improving algorithms for event ordering within component
middleware by making use of application context information available
in models.

2. Web Services Research on optimizing Web Services in application spe-
cific fashion has focused on application specific data replication for edge
services, i.e., replicating servers at geographically distributed sites. By re-
laxing the consistency of data that is replicated in at the edge servers us-
ing application specific semantics [69] significant performance improve-
ments in the latency and availability has been achieved.
Other research on optimizing web services has focused on utilizing re-
flective techniques encapsulated in the request metadata [70] for dynamic
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negotiation of best communication mechanisms between any requestor
and provider of a service.

One common theme with the research on middleware optimizations has
been the use of run-time reflection to adapt the behaviour of the middleware
such that application performance is optimized. While this may be suitable for
some system, not all enterprise DRE systems can afford the luxury of run-time
reflection in the critical path. Another theme with the research on optimiza-
tions is the requirement for multiple implementations to be provided to the
middleware to choose from. This strategy is not entirely application transpar-
ent, and imposes extra burden on the system developers. Finally, one of the
important missing piece in the optimization research is the lack of a high-level
notation to guide the optimization frameworks, i.e., there is no intermediate ab-
stract syntax tree (AST) of the application that is available to the middleware
to use as a basis for performing optimizations.

4.2 Application Specific Optimizations: Unresolved
Challenges

One of the biggest factors in affecting system performance is not a single signif-
icant decrease (which are usually easy to identify quickly) but a slew of small
decreases. It is hard to notice this overhead creep into the system without a so-
phisticated Distributed Continuous Quality Assurance [71] infrastructure, and
a considerable diligence on part of the developers, which does not scale up
well to large-scale systems. Component middleware standards do not advo-
cate any standard optimizations since it is not possible to perform them in the
middleware without the knowledge of application context, i.e., such optimiza-
tions are not domain invariants. Tools that automatically optimize component
assemblies (compositions) are not prevalent. It is hard to both identify and op-
timize component implementations manually, since the usage of components
tends to span multiple hierarchies in any complex system. Further, an opti-
mization that is applicable in one context may not be applicable in another
context. Thus, it is not possible to perform these optimizations in isolation, but
rather one should perform them based on every unique use-case. Finally, per-
forming these optimizations manually by hand becomes infeasible with system
evolution.

The following is a list of unresolved challenges with respect to application
specific optimizations when using standards-based component middleware:

1. Lack of application context. A significant problem with component mid-
dleware is the number of missed optimization opportunities in the mid-
dleware due to lack of application context information. For example,
when component middleware generates glue code to facilitate remote
method invocations, it generates code with the assumptions that every
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Figure 4.1: Composition Overhead in Component Assemblies

component is remote as shown in Figure 4.1. Often, however, all com-
ponents that make up a subsystem are deployed onto the same node or
even in the same process. Since the application composition information
is not available during glue code generation, the middleware generated
glue code is often inefficient because the glue code for local communi-
cation is much faster and smaller than glue code for remote communi-
cation. Although some implementations try to optimize the collocated
invocations by generating two versions of the glue code, i.e., remote as
well as local, it is still suboptimal since it increases memory footprint and
decreased performance due to the check for collocation performed every
time. Thus, it is impossible to solve this problem efficiently by operat-
ing at the middleware level only. A key research challenge is therefore
to eliminate the overhead of applying high-level abstractions like com-
ponent middleware automatically to ensure that the system still meets the
desired performance requirements.

2. Overhead of platform mappings. Platform mappings for component
middleware are typically defined with the assumption that every com-
ponent is (or can be) remote. However, in certain cases, blind adherence
to the platform mapping can result in significant overhead for applica-
tions built using component middleware. For example, in Figure 4.1 it is
clear that the components that are internal to the assembly do not have
any connection with other components outside. However, a default im-
plementation of the internal components will generate a single factory
object per component instance which is responsible for creation of com-
ponents. This is wasteful in terms of both static (for each component
type) and dynamic (for each component instance) footprint. A key re-
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search challenge is to recognize such anomalies and optimize away the
overhead.

3. Lack of physical assembly mapping. Standard mappings for popular
component middleware lack the concept of a physical assembly mapping,
and define only virtual assembly mappings. This imposes extra overhead
at both deployment time (making all the necessary inter-component con-
nections) and run-time (checked collocated method invocations) which
is unnecessary when all the components are deployed onto a single node
(and process). A key research challenge is to devise a physical mapping
for an assembly.

Hypotheses This thesis proposes to build a system optimizer framework which
will explore and validate the following hypotheses with respect to system com-
position optimization:

1. Supply application context available in system models to component mid-
dleware to perform optimizations

2. Optimize platform mappings using application context

3. Devise a mapping for physical component assembly and perform opti-
mizations using this mapping

4.3 Proposed Approach→ System Composition Op-
timizer

We propose to build an automatic system composition optimizer that relies on
the availability of the application structure as a PICML model, and operates
at a higher level of abstraction than traditional component middleware. The
optimizer is able to derive the same application context(s) as can be derived by
parsing the implementation source code of all components, which make up an
assembly.

By maintaining a list of applicable optimizations, and checking each usage
of each component within an assembly, as well as inter-assembly interactions,
the optimizer can come up with a list of valid optimizations for every instance
of an assembly. The optimizer feeds this information to the middleware by
a combination of glue-code generation that utilizes the application context, as
well as automating the generation of smart build rules to force such code gener-
ation. For example, the generated client-side proxy code for a CCM component
has checks in the middleware to determine if the component that is the target
of a method invocation is remote/local. However, if it can be determined from
a model, that all components of an assembly are local, then the code that is gen-
erated for remote case in the component implementations can be eliminated as
shown in Figure 4.2.
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We propose to identify a list of such optimizations that are applicable to
both CCM as well as .NET web services, and equip the optimizer to perform
these optimizations upon user direction. Examples of sources of overhead
eliminated include combining multiple component homes (factory component
generated for every component) into a single component, transformation of a
dynamic composition into a static composition, and reducing the context infor-
mation maintained by the middleware corresponding to every component in-
stance. Some optimizations like physical assembly mapping can be performed
at multiple levels in the hierarchy as shown in Figure 4.3. In such cases, the
optimizer will empirically evaluate the best depth in hierarchy to limit the op-
timization. The optimizer will perform all the optimizations possible without
requiring modifications to the individual component implementations. Thus,
these optimizations are completely transparent to the component developer,
and there is no need to develop multiple alternate implementations of the same
component(s).

4.4 Evaluation Criteria

To validate the hypothesis we propose that the enhancements be compared
against the following baseline:

Compared with the performance and footprint of multiple applications such
as, the Emergency Response System, ARMS GateTest scenarios, scenarios that
exhibit inherent hierarchy as well as ones that don’t have inherent hierarchy,
the proposed enhancements should:

1. Reduce static and dynamic footprint. Given n components that are inter-
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Figure 4.3: Component Assembly Fusion at Multiple Levels

nal to an assembly with x components in total, the no. of homes shold be
reduced by (n-1)/x, the no. of components registered with the POA by
(n-1)/x.

2. Increase the performance. Given t as the no. of interactions between
components within an assembly, transform t collocation checked calls to
t local calls

3. Eliminate mis-optimizations. All optimizations performed shouldn’t vi-
olate platform and application semantics like incompatible policy, real-
time QoS requirements.

4. Do not require changes to the component implementation

5. Optimization infrastructure is customizable and application transparent.

6. Investigate the feasibility of applying optimizations to .NET Web Services
(in addition to CCM).
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Chapter 5

Concluding Remarks

Component middleware is an emerging paradigm. Success of component mid-
dleware is crucial to realizing the vision of Software Factories [72]. However,
there are significant gaps in the component middleware development and inte-
gration toolchain, which if left unresolved has the potential to negate benefits
of using component middleware. Also, standards-based component middle-
ware may not be suitable for direct application to build DRE systems. Our re-
search which applied MDE technologies has resulted in improved tool-support
for component middleware as shown in Table 5.1 and Table 5.2. As shown in
Figure 5.1, this thesis proposes to further the benefits of applying MDE tech-
nologies by performing optimizations which exploit application context that
were previously infeasible to perform in the middleware, or manually.

Table 5.1: Summary Of Research Contributions
Category Benefits
System
Composition
Technologies

Support static composition of systems by ensuring that the components get built
correctly; support dynamic composition of systems by ensuring that the
connections between components are correct

Generative
Technologies

Expressing domain constraints in the form of a DSML and automating the
generation of syntactically valid metadata; reduces requirements of domain experts
to also be implementation platform experts

System
Optimization
Technologies

Automatic discovery and realization of optimizations from models using
application context; such optimizations are impossible to perform if operating at the
middleware layer alone. Propose a novel mechanism for mapping an assembly as a
component without any extra overhead
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Table 5.2: Summary of Publications
Category Publications
System
Composition
Technologies

1. Towards Composable Distributed Real-time and Embedded Software,
Proceedings of the 8th IEEE Workshop on Object-oriented Real-time Dependable
Systems (WORDS), Guadalajara, Mexico, January 2003.
2. Applying Model-Driven Development to Distributed Real-time and Embedded
Avionics Systems, the International Journal of Embedded Systems, special issue on
Design and Verification of Real-Time Embedded Software, April 2005.
3. A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems, Elsevier Journal of Computer and System
Sciences, 2006.
4. Weaving Deployment Aspects into Domain-Specific Models, International Journal
on Software Engineering and Knowledge Engineering, Summer 2006 (accepted).

Generative System
Technologies

1. A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems, 11th IEEE Real-Time and Embedded Technology
and Applications Symposium, San Francisco, CA, March 2005.
2. Developing Applications Using Model-Driven Design Environments, Computer,
vol. 39, no. 2, pp. 33-40, Feb., 2006.
3. Model-driven Development of Component-based Distributed Real-time and
Embedded Systems, Model Driven Engineering for Distributed Real-time and
Embedded Systems, Hermes, 2005.
4. Model Driven Middleware: A New Paradigm for Deploying and Provisioning
Distributed Real-time and Embedded Applications, Elsevier Journal of Science of
Computer Programming: Special Issue on Model Driven Architecture, 2006.

Non-generated artifact

To be implemented

Implementation complete

Collaboration with Jeff Parsons

9 Jan, 2003 15 Dec, 2006

3/03 6/03 9/03 12/03 3/04 6/04 9/04 12/04 3/05 6/05 9/05 12/05 3/06 6/06 9/06

1/03
WORDS 03 Paper

7/03
Work on PICML started

4/04
Inital version of PICML

10/03
Elsevier Journal 06 Paper

6/04
Support for generation of metadata

8/04
Support for hierarchical composition

9/04
RTAS 05 Paper

5/05
Elsevier Journal 06 Paper

12/04
IJES 05 Paper 3/05

IJSEKE 06 Paper

1/05
MDE Book Chapter 05

10/05
IEEE Computer 06

2/05
Support for scalable composition

10/04
OOPSLA 04 Poster

10/06
Support for .NET Web Services

4/06 - 9/06
Submissions to MoDELS, Middleware, 

OOPSLA/GPCE,
 DOA, RTSS, ICSE

3/06
Qualifying Exam

7/06
Support for assembly optimization

Figure 5.1: Doctoral Research and Dissertation Timeline
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