
ULS System Integration via Model Composition

Krishnakumar Balasubramanian∗, Douglas C. Schmidt
Vanderbilt University, Nashville

September 7, 2006

1 Some Integration Challenges of ULS Systems

Component middleware technologies are generally a more effective technology base to
build ULS systems than the brittle proprietary infrastructure used in legacy systems,
which have historically been built in a vertical, stove-piped fashion. With the emer-
gence of commercial-off-the-shelf (COTS) component middleware technologies, such
as Enterprise Java Beans (EJB), CORBA Component Model (CCM) and Microsoft’s
.NET Framework and Web Services, system integrators will increasingly need to in-
tegrate heterogeneous complex ULS systems built using different COTS technologies,
which increase with each new generation of technologies. These technologies differ
in many ways, including the protocol level, the data format level, the implementation
language level, and/or the deployment environment level.

Although there are well-documented patterns [4] and techniques [10] for system in-
tegration using various integration middleware technologies, system integration is still
largely a manual process. Such a tedious and error-prone process will will completely
break down in ULS system integration due to the scale of the systems being integrated
and the differences in the teams, goals, and technology bases when these systems were
designed. Despite the benefits of component middleware, therefore, some key unre-
solved challenges of integrating ULS systems developed using heterogeneous COTS
middleware remain, including:

• Complexity of declarative metadata. Component middleware technologies use
declarative notations (such as XML descriptors, source-code attributes, and annota-
tions) to capture metadata that describes configuration options on interfaces, intercon-
nections between these interfaces, and implementation entities. Examples metadata
include EJB deployment descriptors and .NET assembly manifests. System integrators
must track and configure these metadata correctly during integration and deployment
since the correct functionality of the integrated system depends on the correct configu-
ration of the metadata.

While manually configuring metadata is already a problem in today’s large-scale
systems [3], it will become completely infeasible in ULS system integration due to the
number of components, the differences in the metadata of different technologies, and
even the differences between versions of metadata of the same technology due to ULS
system longevity. New approaches to metadata management are therefore needed to
achieve integration of ULS systems.

• Incompatible differences between middleware technologies. Component mid-
dleware technologies generally support applications developed in multiple languages
and/or on multiple operating systems, which in-turn run on multiple hardware plat-
forms. This diversity in technology implementation and deployment poses significant
challenges during system integration, however, since integrators must reconcile differ-
ent ways to achieve the same goal in each technology base.

For example, simple activities, such as determining the functionality exposed by
a system, become hard due to different ways of describing system interfaces, such as
CORBA Interface Definition Language (CCM), Java interfaces (EJB), and Web Services
Definition Language (Web Services). Similarly, the on-the-wire protocol format for

∗Contact Author

1



CCM and EJB is Internet Inter-ORB Protocol (IIOP), which is a binary protocol, whereas
Web Services uses SOAP/HTTP, which is a text-based protocol. The sheer number of
incompatibilities between middleware technologies therefore necessitate automated re-
source adaptation techniques in the ULS system integration space.

• Incompatibilities between different middleware implementations. The success
of COTS middleware technologies have started a trend where multiple implementa-
tions of a single middleware technology are available from different providers. Differ-
ences between these implementations will likely arise due to non-conformant exten-
sions to standards, different interpretations of the same (often vague) specification, or
implementation bugs.

Regardless of the reasons for incompatibility, however, problems arise that often
manifest themselves during system integration. Examples of such differences are high-
lighted by the presence of efforts like the Web Services-Interoperability Basic Profile
(WS-I) [2], which is a standard aimed at ensuring compatibility between the Web Ser-
vices implementations of different providers. It is therefore critical to externalize and
document the implicit design assumptions of implementations of various component
middleware technologies, to ensure smooth integration and dynamic replacement of
one implementation with another.

1.1 Solution Approach→System Integration using Model Composi-
tion

A promising approach to address key challenges with integration of component mid-
dleware is to develop Model-Driven Engineering (MDE) technologies [8]. At the core of
MDE is the concept of domain-specific modeling languages (DSMLs) [6], whose type sys-
tems formalize the application structure, behavior, and requirements within particular
domains. A DSML is often accompanied by a generators, which analyze the models
and synthesize various types of artifacts, such as source code, deployment descriptors,
or input to simulators.

By capturing the semantics of a domain, DSMLs can not only be used as effective
“metadata management” frameworks but also be used to generate “resource adapters”.
DSMLs are an effective means to capture implicit assumptions associated with compo-
nent middleware technologies. Representing elements of a component middleware
technology as first-class entities of a DSML makes hidden implicit assumptions ex-
plicit at the modeling level. DSMLs can thus be used to highlight–and ultimately help
resolve–the complexities associated with incompatible implementations to earlier in a
system’s lifecycle.

While DSMLs have been used to help software developers create homogeneous sys-
tems [5, 9], large-scale enterprise software systems are rarely homogeneous. A single
DSML developed for a particular middleware technology, such as EJB or CCM, may
therefore not be applicable to model, analyze, and synthesize key concepts of Web Ser-
vices. To integrate heterogeneous systems successfully, therefore, system integrators
need tools that can provide them (1) unified view of the entire enterprise system and
(2) fine-grained control over specific subsystems and components.

A promising approach to achieve these capabilities is model composition [1], which
involves creating a new DSML from multiple existing DSMLs by adding new elements
or extending elements of existing DSMLs, defining new relationships between exist-
ing elements, and defining relationships between new and existing elements. A key
characteristic of the model composition is that it supports the open-closed principle [7],
which states that a class should be open for extension but closed with respect to its
public interface, but at a higher level of abstraction, i.e., at the level of DSMLs. Other

2



benefits of model composition include its ability to leverage prior investments in exist-
ing tool-chains, including domain constraints, generators of the existing DSMLs, while
simultaneously adding new capabilities.

We posit that a combination of DSMLs and model composition technologies can
help to address the challenges associated with integrating component middleware tech-
nologies in ULS system environments, without incurring the drawbacks of conven-
tional approaches. This talk will describe the challenges associated with integration of
ULS systems, outline our approach to addressing these challenges in today’s large-scale
systems context, identify the drawbacks with direct application of these techniques to
integrating ULS systems, and suggest possible approaches to rectifying these problems
to scale integration capabilities more smoothly to ULS systems.

Krishnakumar Balasubramanian is a graduate student in the Department of Elec-
trical Engineering and Computer Science at Vanderbilt University. His research inter-
ests include model-driven development, deployment and configuration of component
middleware, and patterns and frameworks for distributed, real-time, and embedded
systems development. He received an MS in computer science from Washington Uni-
versity in St. Louis.

Douglas C. Schmidt is a Professor of Computer Science at Vanderbilt University.
His research focuses on patterns, optimization techniques, and empirical analyses of
software frameworks and domain-specific modeling environments that facilitate the
development of distributed real-time and embedded middleware and applications run-
ning over high-speed networks and embedded system interconnects. In addition to his
academic research, Dr. Schmidt has over fifteen years of experience leading the devel-
opment of ACE, TAO, CIAO, and CoSMIC, which are widely used, open-source DRE
middleware frameworks and model-driven tools that implement patterns and product-
line architectures for high-performance DRE systems.

References

[1] Ákos Lédeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M. Maroti. On Metamodel Compo-
sition. In Proceedings of the 2001 IEEE International Conference on Control Applications (CCA),
pages 756–760, Mexico City, Mexico, 2001. IEEE.

[2] K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C. K. Liu, M. Nottingham, and P. Yendluri.
WS-I Basic Profile. www.ws-i.org/Profiles/BasicProfile-1.1.html, April 2006.

[3] L. DeMichiel and M. Keith. Enterprise Java Beans 3.0 Specification: Simplified API. jcp.
org/aboutJava/communityprocess/final/jsr220/index.html, May 2006.

[4] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Professional, October 2003.

[5] G. Karsai, S. Neema, B. Abbott, and D. Sharp. A Modeling Language and Its Supporting
Tools for Avionics Systems. In Proceedings of 21st Digital Avionics Systems Conf., Aug. 2002.

[6] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated development of em-
bedded software. Proceedings of the IEEE, 91(1):145–164, Jan. 2003.

[7] B. Meyer. Applying Design By Contract. Computer (IEEE), 25(10):40–51, Oct. 1992.

[8] D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2), 2006.

[9] J. A. Stankovic, H. Wang, M. Humphrey, R. Zhu, R. Poornalingam, and C. Lu. VEST: Virginia
Embedded Systems Toolkit. In Proceedings of the IEEE Real-time Embedded Systems Workshop,
London, UK, Dec. 2001. IEEE.

[10] D. TrowBridge, U. Roxburgh, G. Hohpe, D. Manolescu, and E. G. Nadhan. Integration
Patterns. msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnpag/html/intpatt.asp, June 2004.

3


