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Domain-specific models increase the level of abstraction used to develop large-scale
component-based systems. Model-driven development (MDD) approaches (e.g., Model-
Integrated Computing and Model-Driven Architecture) emphasize the use of models at
all stages of system development. Decomposing problems using MDD approaches may
result in a separation of the artifacts in a way that impedes comprehension. For exam-
ple, a single concern (such as deployment of a distributed system) may crosscut different
orthogonal activities (such as component specification, interaction, packaging and plan-
ning). To keep track of all entities associated with a component, and to ensure that the
constraints for the system as a whole are not violated, a purely model-driven approach
imposes extra effort, thereby negating some of the benefits of MDD.

This paper provides three contributions to the study of applying aspect-oriented
techniques to address the crosscutting challenges of model-driven component-based dis-
tributed systems development. First, we identify the sources of crosscutting concerns
that typically arise in model-driven development of component-based systems. Second,
we describe how aspect-oriented model weaving helps modularize these crosscutting
concerns using model transformations. Third, we describe how we have applied model

weaving using a tool called the Constraint-Specification Aspect Weaver (C-SAW) in the
context of the Platform-Independent Component Modeling Language (PICML), which
is a domain-specific modeling language for developing component-based systems. A case
study of a joint-emergency response system is presented to express the challenges in
modeling a typical distributed system. Our experience shows that model weaving is an
effective and scalable technique for dealing with crosscutting aspects of component-based
systems development.
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ing; domain-specific modeling.
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1. Introduction

Model-driven development (MDD) is emerging as a new paradigm to develop com-

plex component-based distributed systems. By promoting models to the status of a

first-class entity in the design and implementation of such systems, developers can

reason about systems at a much higher level of abstraction than by using purely

programmatic techniques. Reusable approaches to distributed systems development

based on component middleware technologies, such as CORBA Component Model

(CCM) [1], .NET [2] and J2EE [3], have yielded a paradigm shift from focusing on

building individual components to composition and integration of systems from a

set of pre-built, reusable components. MDD-based approaches lend themselves well

to composition and integration-related tasks since they emphasize a visual approach

to system development, which is crucial to composition and integration activities.

MDD also permits the description of a system using constraint languages [4], which

can be enforced during design-time to prevent common errors that may otherwise

occur late in the integration stage. A further benefit of MDD is that it makes

the task of system analysis easier by providing better abstractions and notations

that are closer to the domain of the system. As such, MDD helps to shield system

developers from changes in the underlying middleware platform.

1.1. MDD challenges

Although MDD approaches are desirable in large-scale component-based distributed

system development, the promotion of models to the status of first-class entities

incurs other challenges, wherein system developers are exposed to a number of

crosscutting concerns at the modeling level [5]. The crosscutting concerns include

activities like composition of sub-systems from individual components, configura-

tion of the different components, integration of systems using components from

different vendors, and deployment of such composed systems. In Sec. 2, we show-

case the details of these concerns as applied to component-based distributed system

development.

An example of such a concern is that of keeping track of the dependencies

on the run-time environment for every component in a system. Prior to MDD,

this dependency was captured at the implementation level using scripts, but often

the implications of the dependency were ignored in the implementation. If any

modification was made at the system level (e.g., if a component was removed, or

a new component was added), the scripts that manage the run-time dependencies

must be updated manually. This is a tedious and error-prone task. In an MDD-based

approach, such dependencies are captured at the modeling level using elements of

the language. Although MDD makes the task of keeping track of the run-time

dependencies easier, it still is error-prone to modify the dependencies manually in

a system that has a large number of components. Addressing these crosscutting

concerns using conventional MDD approaches can increase the type and number of

elements that need to be manipulated at the modeling level, which may negate some
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of the benefits offered by MDD. What is desired is an enhanced MDD approach

that is scalable (i.e., it should be easy to perform modifications to the model even

in the presence of a large number of components), and gives assurance that changes

to model elements keep the model in a consistent state.

1.2. Solution approach → Aspect-oriented model weaving

A promising approach to address the problems associated with applying MDD to

large-scale distributed systems development is aspect-oriented model weaving [6],

which unites the ideas of aspect-oriented software development (AOSD) [7] with

MDD to provide better modularization of properties that crosscut multiple layers

of a model [5].

Our approach to improving the scalability of MDD [8] for component-based

distributed system development — and subsequently untangling the crosscutting

concerns at the modeling level — relies on applying aspect-oriented weaving to

domain-specific modeling languages (DSMLs). In this paper, we illustrate our ideas

in the context of a sample distributed system scenario by applying the Constraint-

Specification Aspect Weaver (C-SAW) [9], which is an aspect-oriented model weaver,

to the Platform-Independent Component Modeling Language (PICML) [10].

PICML is an open-source DSML (available for download at www.dre.

vanderbilt.edu/cosmic) developed using the Generic Modeling Environment

(GME) [11]. PICML enables developers of component-based distributed systems to

define component interfaces, along with their properties and system software build-

ing rules. PICML also provides generative tools to synthesize valid XML descriptor

files that enable automated system deployment. C-SAW is a model transforma-

tion engine that can be used to describe the essence of a model-based crosscutting

concern and transform a model accordingly. In C-SAW, aspects are defined at the

modeling level using the Embedded Constraint Language (ECL). C-SAW assists

model engineers in rapidly inserting and removing new properties and policies into

models without the need for extensive manual adaptation. This paper examines

the benefits that can be achieved by combining the aspect-oriented model weaving

supported by C-SAW with PICML’s MDD-based approach to distributed systems

development. The primary combination of this synergy closes a significant gap in

developing and deploying component-based distributed systems.

Paper organization. The remainder of this paper is organized as follows:

Section 2 evaluates the use of MDD for distributed component systems by using

an unmanned air vehicle (UAV) application as a running example; Sec. 3 gives an

overview of the aspect-oriented model weaving approach, illustrates how we have

applied it to the UAV example developed using PICML, and showcases the benefits

of this approach; Sec. 4 compares our work with other tools that apply aspect-

oriented approaches to distributed component systems development; and Sec. 5

presents concluding remarks.
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2. Evaluating Model-Driven Development Approaches to

Developing Component-Based Systems

MDD provides numerous benefits over programmatic approaches to large-scale

component-based distributed systems development [12]. However, MDD also incurs

challenges due to scalability and crosscutting concerns, similar to the challenges

seen in programmatic approaches. Hence, it is imperative to enhance MDD to ad-

dress these challenges.

To illustrate the crosscutting and scalability challenges in MDD for component-

based distributed systems, we first present a brief overview of MDD approaches

highlighting a DSML which we have developed for component-based distributed

systems. We then use a component-based distributed system case study to illustrate

how the crosscutting challenges manifest themselves in MDD. Our case study is an

emergency response system that uses multiple unmanned air vehicles (UAVs) to

perform aerial imaging, survivor tracking and damage assessment. Using the UAV

scenario, we then highlight the scalability challenges and crosscutting concerns a

model engineer faces when building a system like the emergency response system.

2.1. Overview of model-driven development of component-based

systems

MDD is a paradigm that focuses on using models to describe many system devel-

opment activities (i.e., models provide input and output at all stages of system

development until the final system itself is generated). In MDD, models are used to

describe all artifacts of the system (e.g., interfaces, interactions, and properties of

all the components that comprise the system). These models can be manipulated

in a number of different ways to analyze the system, and in some cases to generate

the complete implementation of the system. In order to capture the semantics in an

effective manner that is as close as possible to the domain of the developed system,

a DSML can be used. A DSML is a five-tuple [13] consisting of:

• Concrete syntax (C), which defines the notation used to express domain

entities,

• Abstract syntax (A), which defines the concepts, relationships and integrity

constraints available in the language,

• Semantic Domain (S), which defines the formalism used to map the semantics

of the models to a particular domain,

• Syntactic mapping (MC: A → C), which assigns syntactic constructs (e.g.,

graphical and/or textual) to elements of the abstract syntax,

• Semantic mapping (MS: A → S), which relates the syntactic concepts to

those of the semantic domain.

Crucial to the success of DSMLs is metamodeling and auto-generation. A meta-

model defines the elements of a DSML that are tailored to a particular domain,

such as the domain of avionics mission computing or emergency response systems.
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Auto-generation involves automatically synthesizing artifacts from models, thereby

relieving DSML users from the accidental complexities of the artifacts themselves,

including their format, syntax, or semantics. Examples of such artifacts include

(but are not limited to) code in some programming language, and descriptors (in

formats such as XML) that can serve as input to other tools.

To support effective design and development of component-based sys-

tems, we have defined the Platform-Independent Component Modeling Language

(PICML) [10, 14, 15] using the Generic Modeling Environment (GME) [11]. GME

is a meta-programmable modeling environment with a general-purpose editing en-

gine, separate view-controller GUI, and a configurable persistence engine. Because

GME is meta-programmable, the same environment used to define PICML is also

used to build models, which are instances of the PICML metamodel.

At the core of PICML is a DSML (defined as a metamodel using GME) for

describing components, types of allowed interconnections between components, and

types of component metadata for deployment. The PICML metamodel defines the

different types of modeling elements that are essential for developing, composing,

configuring and deploying component-based systems. The artifacts pertaining to

configuration and deployment of component-based systems that are generated from

PICML are then deployed using the Component-Integrated ACE ORB (CIAO) [16,

17], which is an implementation of the CCM.a

In terms of the five-tuple defined above, PICML uses bitmap-based icons rep-

resenting elements of the platform (e.g., CCM) as the concrete syntax. For ele-

ments like components, PICML also uses enhanced visualizations called “decora-

tors,” which display the different ports of a component and allow connections to

be made between ports of different components. The abstract syntax of PICML is

defined using a variant of UML class diagrams available in GME. In addition to

the class diagrams, OMG’s Object Constraint Language (OCL) is used to enforce

the semantics that are not captured by the class diagrams. The semantic domain

of PICML is the CCM platform. Thus, the semantics of the different elements are

governed by the CCM specification, which defines the elements as well as valid in-

teractions between the different elements that make up a system built using CCM.

The syntactic mapping between the different elements in the abstract syntax to

the elements in the concrete syntax is achieved by associating each element in

the metamodel with icons, or with a decorator (in the case of special elements like

components and assemblies). The semantic mapping associating the elements in the

metamodel with elements in the CCM platform is performed partly using the OCL

constraints, and partly using the various model interpreters defined in PICML. A

model interpreter is a GME plug-in written using a high-level language like C++,

and can be used to enforce the semantics not captured by OCL constraints alone.

Interpreters for PICML are also used to generate various artifacts like component

aPICML is currently being enhanced to model systems using other standards-based component
middleware, such as J2EE and .NET, in addition to CCM.
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configuration files and deployment plans, which are needed for the deployment of

CCM components.

The PICML metamodel defines approximately 115 different types of basic ele-

ments, with 57 different types of associations between these elements grouped under

14 different folders. The PICML metamodel also defines 222 constraints that are en-

forced by GME’s constraint manager during the design process. Using GME tools,

the PICML metamodel can be compiled into a modeling paradigm, which defines a

domain-specific modeling environment. From this metamodel, approximately 20,000

lines of C++ code (used to represent the modeling language elements as equivalent

C++ types) is generated. This generated code allows manipulation of modeling

elements (i.e., instances of the language types using C++) and forms the basis for

writing model interpreters. Each interpreter is written as a DLL that is loaded at

run-time into GME and executed to generate the XML descriptors based on mod-

els developed by the component developers using PICML. PICML currently has

8 interpreters using 222 generated C++ classes and approximately 8,000 lines of

handwritten C++ code to generate the following descriptors needed to support the

OMG Deployment and Configuration (D&C) specification [18]:

• Component Interface Descriptor (.ccd) — Describes the interfaces — ports,

attributes of a single component.

• Implementation Artifact Descriptor (.iad) — Describes the implementation

artifacts (e.g., DLLs, executables) of a single component.

• Component Implementation Descriptor (.cid) — Describes a specific im-

plementation of a component interface; also contains component inter-connection

information.

• Component Package Descriptor (.cpd) — Describes multiple alternative

implementations (e.g., for different OSes) of a single component.

• Package Configuration Descriptor (.pcd) — Describes a component package

configured for a particular requirement.

• Component Deployment Plan (.cdp) — Plan which guides the run-time

deployment.

• Component Domain Descriptor (.cdd) — Describes the deployment target

(e.g., nodes, networks) on which the components are to be deployed.

2.2. A representative case study using PICML

This section presents an emergency response system as the guiding example to

illustrate the MDD approach, and to illustrate the challenges that arise in mod-

eling distributed component systems. This example models emergency response

situations (such as disaster recovery efforts stemming from floods, earthquakes, or

hurricanes) and consists of a number of interacting subsystems. Our focus in this

paper is on the composition, integration and deployment of a UAV, which is used

to monitor terrain for flood damage, spot survivors that need to be rescued, and
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Fig. 1. Emergency response system components.

assess the extent of damage. The UAV transmits this imagery to various other

emergency response units. The software components of this UAV application are

shown in Fig. 1 and described in detail in [10].

The UAV application involves sending streams of images from each UAV to

a control center responsible for monitoring the image data. Each image stream is

composed of a Sender (e.g., the UAV), a number of Qosket components, and a

Receiver component. Sender components are responsible for collecting the images

from each image sensor on the UAV. The Sender passes the images to a series of

Qosket [16] components. Qoskets are software components that encapsulate a set of

contracts, a set of system condition objects and performance adaptation behavior

logic. Thus, Qoskets perform adaptations on the images to ensure that the images

can be transmitted without violating the quality of service (QoS) requirements. Ex-

amples of Qosket components include CompressQosket, ScaleQosket, CropQosket,

PaceQosket, and a DiffServQosket. The final Qosket in the pipeline then passes

the images to a Receiver component, which collects the images and passes them

on to a display in the control room of the emergency response team.
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2.3. Scalability and crosscutting challenges in applying MDD to

component-based distributed systems

This section describes how DSMLs (e.g., PICML) applied to component-based dis-

tributed systems (e.g., a UAV) incur different scalability challenges and crosscut-

ting concerns. We illustrate these challenges as they are manifested in each of the

modeling stages of systems development described below. Although the description

illustrates these challenges as they emerge in PICML, we believe similar challenges

will exist in any DSML used to develop large-scale component-based distributed

systems.

2.3.1. Crosscutting concerns in modeling interface definitions

PICML assists in modeling the individual component types of a system, which

involves either importing the component interface definitions from existing interface

definition language (IDL) files, or explicitly modeling them using PICML. In our

example, this involves defining the interfaces for the Sender, Receiver, Qosket,

SystemResourceManager, and the LocalResourceManager components.

In order to deploy a system using component middleware, such as CIAO,

the individual components that together realize the application must be speci-

fied. This step is very crucial because the type (indicated by its name, such as

LocalResourceManagerComponent) of the individual monolithic components is de-

fined at this stage. The interface of the system with external entities is also defined

during this stage.

These definitions (including the names) serve as a bridge between the entities de-

fined at the modeling level and the corresponding implementation. Such component

definitions are scattered throughout the system model through the use of references

to the individual component types. For example, the component instances that are

used to define the component interactions are instances of the individual component

types. Thus, it is the model engineer’s responsibility to maintain the one-to-many

relationship between the component types and the different instances of the same

type that are scattered across the models. If a component type is modified/deleted,

then the model engineer has to manually update/remove all the references scattered

in the remaining model. This is an inherently time-consuming and error-prone task

when performed manually, and does not scale when the number of components in

the model increase. For example, addition of new ports to a component type that

is part of a stream in the UAV scenario results in a need to modify all the existing

uses of that component type throughout the model.

2.3.2. Modeling implementation artifact definitions

During this stage, a model engineer defines the implementation artifacts shown in

Fig. 2 for each monolithic component, which involves defining the different imple-

mentation artifacts (e.g., shared libraries) that each component depends on, as well
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Fig. 2. Implementation artifact definition.

as describing the dependencies that each component may have on external system

libraries.

For example, when building the UAV application using CIAO, a monolithic

component, such as SystemResourceManager, is composed of three libraries,

(1) SystemResourceManager exec, which contains the implementation of the com-

ponent functionality, (2) SystemResourceManager stub, which contains code that

provides the marshaling and de-marshaling related functionality for each compo-

nent, and (3) SystemResourceManager svnt, which contains the code to glue to-

gether the component with other portions of the execution environment, such as

the underlying CORBA middleware infrastructure. Any error in capturing the de-

pendencies will result in run-time failure of the components. Although the number,

names and kinds of implementation artifacts might differ across different middle-

ware implementations, each component in a distributed system will end up having

dependencies on the artifacts that are necessary to provide the functionality of the

component. Thus, these artifacts need to be modeled explicitly, an activity that

does not scale well as the number of components and their corresponding imple-

mentation artifacts increase. Moreover, the model engineer is also responsible for

maintaining the dependencies as the system evolves. Any error in the maintenance

of the dependency will also result in a run-time error due to unresolved dependencies

on implementation artifacts of component instances.

Another example of a concern associated with an implementation is the need

to follow specific naming conventions as imposed by the underlying middle-

ware, wherein the naming of implementation artifacts in the model must mirror

the naming conventions of the underlying component middleware infrastructure.
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For example, in the default configuration of CIAO, if the three dependent li-

braries for SystemResourceManagerare not named SystemResourceManager exec,

SystemResourceManager stub, and SystemResourceManager svnt respectively, it

will result in a run-time error. Another example from .NET related to naming is

with the manifest files associated with an assembly. Each assembly in .NET (equiv-

alent to a component in CCM) is associated with a manifest file. A manifest file is

an XML file that can be used to configure the behavior of the assembly. Before the

.NET run-time loads an assembly, it searches for any manifest files associated with

the assembly. This search is designed to look for manifest files that follow a specific

naming convention, and only in specific directories: For each assembly implemented

as a shared library, say Foo.dll, the .NET run-time searches for a manifest file named

Foo.dll.manifest; for each assembly implemented as an executable, say Foo.exe, the

.NET run-time searches for a manifest file named Foo.exe.manifest. If the manifest

files are given different names, the .NET run-time does not load the manifest, which

might result in a different behavior for the assembly Foo.

Yet another naming related crosscutting concern is with the specification of the

entry point for loading a component implemented as a shared library in a language

like C++. Because the C++ compiler mangles the names of the methods in classes,

method names that need to be exported are marked using special extern "C" tags.

Only names that are marked using these tags are available for invocation by clients

that dynamically load these components. In order to ensure that a component can

be dynamically loaded, the model engineer must make sure that the definitions of

the entry points defined in the implementation artifacts of a component actually

map to entry points defined in the shared libraries.

2.3.3. Modeling interaction definitions

During this stage of development, a model engineer defines the different inter-

actions between components, which involves composing the application from a

set of individual components. The components are connected using their ports

to form assemblies, which could be nested. In PICML, assemblies contain mono-

lithic components that are connected together. Assemblies can also be hierar-

chical (i.e., an assembly can contain other assembly components). In our exam-

ple, each stream of images is modeled as an assembly by connecting the Sender,

LocalResourceManager, Qoskets, and the Receiver, as shown in Fig. 3. This as-

sembly is then instantiated multiple times depending on the number of UAVs, along

with the SystemResourceManager, and the ControlCenterDisplay, to form the

complete UAV application.

There are several cases when much effort is required to manually add (or remove)

new links between components:

1. If a component is removed from an application,

2. If a new port is to be connected to all external uses of a component,
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Fig. 3. Interaction definition.

3. Or, if a component is replaced by another component.

In cases where the number of components is large, the amount of effort required to

perform these modifications manually is equivalent to starting the modeling effort

from scratch. In the UAV example, the addition of a new management interface

to all the Qosket components will result in extensive changes to every assembly

that models a stream. The amount of effort grows exponentially because a single

assembly is instantiated multiple times, depending upon the number of UAVs that

are desired. Even if the required changes are performed manually, it is necessary

to ensure that the changes are correct by checking the constraints in the model. In

case there are violations, the correction of the constraint violation also needs to be

done manually. Thus, changes to the interactions between components necessitate

similar changes at multiple locations — scattered across the whole model — in a

repetitive fashion.

2.3.4. Modeling package definitions

The packaging of component assemblies involves defining the relation between units

of deployment called packages, and the individual assemblies that are the output

of the composition process defined earlier. A package is associated with a top-level

assembly, and is used to bootstrap the deployment of the application. For exam-

ple, in the UAV application, the top-level assembly that contains many individual
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streams as sub-assemblies needs to be associated with a package so that the UAV

application can be deployed. Packages are the units of deployment in CCM. It is

also true for other middleware technologies like EJB (e.g., EJB uses an .ear file to

initiate deployment). In order for a deployment tool to be successful in deploying

an application, each package needs to be associated with metadata that describes

the capabilities of each package. Examples of such metadata include the interfaces

that are implemented by the component(s) that are contained in a package, depen-

dencies on the run-time environment by components in a package, and any startup

ordering dependencies on external components.

Thus, it is necessary to maintain the consistency of a package during system

evolution. For example, any change in the interface definition needs to result in

an appropriate change in the packages containing components that implement that

interface. Any change in the dependent implementation artifacts of a component

implementation also requires that the corresponding component package be up-

dated with these artifacts. For example, in the UAV application, any change to the

composition of a stream by addition or removal of a Qosket component necessitates

appropriate changes to be made to the component packages. The need to ensure

that changes to some elements are propagated to a dependent element indicates the

emergence of another crosscutting concern.

2.3.5. Modeling the domain definition and component mapping

Domain definition involves modeling the elements of the target domain and a map-

ping between component instances and the target domain. This task is usually

done by a domain administrator who has knowledge of the physical infrastructure

on which the application is to be deployed. After the elements of the target domain

are defined, a mapping between the individual component instances and assemblies

onto elements of the target domain is specified. This activity results in the creation

of a deployment plan, which is used by the run-time infrastructure to deploy the

application.

In order to ensure successful deployment of the application, the mapping be-

tween the component instances (or assemblies) and nodes of the target domain

needs to be consistent. Although constraints can help in matching the capabilities

of each node with the requirements of the individual components, all the compo-

nents (or assemblies) need to be assigned to nodes, and this assignment needs to

be updated when the definitions of the component assemblies change. Any error in

this process shows up only at run-time, which is very late in the lifecycle and proves

to be very expensive to correct. For example, in the UAV example, if a new type

of Qosket (e.g., DiffServQosket, which assists in enforcing network priorities) is

added to each stream, it is necessary to ensure that the DiffServQosket is mapped

to a UAV. Without the DiffServQosket, a UAV will not be able to perform QoS

adaptations based on network priorities, and images that are critical to a mission

might show up in the control center after images that are peripheral. This would
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potentially undermine the importance of the images sent by the UAV.

The use of MDD to develop systems like the UAV application provides a signif-

icant improvement over programmatic approaches based on using only component

middleware. However, as outlined in the UAV context, a number of tangled con-

cerns and scalability issues emerge in the modeling of component-based distributed

systems. The concept of a component pervades these artifacts, and the challenges

that occur are due to the tangling of the concerns associated with a component at

multiple places in the model. If left unresolved, these challenges can hamper de-

veloper productivity, and also negatively affect the correctness of the system being

modeled. Section 3 describes our solution to these problems.

3. Applying Aspect-Oriented Model Weaving to PICML

This section presents a solution to the crosscutting and scalability challenges of

modeling large-scale distributed systems described in Sec. 2.3. Our approach to

resolving these challenges relies on the use of aspect-oriented model weaving using

C-SAW. We first provide an overview of aspect-oriented modeling and then describe

our solution.

3.1. Overview of aspect-oriented modeling

A distinguishing feature of AOSD is the notion of crosscutting, which characterizes

the phenomenon whereby some representation of a concern is scattered among

multiple boundaries of modularity, and tangled amongst numerous other concerns.

Aspect-Oriented Programming (AOP) languages, such as AspectJ [19], permit the

separation of crosscutting concerns into aspects.

We have found that the same crosscutting problems that arise in code also exist

in domain-specific models [5]. For example, it is often the case that the metamodel

forces a specific type of decomposition, such that the same concern is repeatedly

applied in many places, usually with slight variations at different nodes in the

model. This is a consequence of the “dominant decomposition” [20], which occurs

when a primary modularization strategy is selected that subjects other concerns to

be described in a non-localized manner.

Aspect-Oriented Modeling (AOM) is an AOSD extension applied to earlier

stages of the lifecycle. Our specific perspective of AOM improves the modeling

task itself by providing the ability to specify properties across a model during the

system modeling process. This action is performed by using a weaver that has been

constructed for the GME modeling tool. We consider AOM to be much more than

mere notations that provide traceability to latter stages of development — a model

weaver can assist in the automation of the modeling process.

3.2. Aspect modeling with C-SAW

We have designed C-SAW to provide support for modularizing crosscutting mod-

eling concerns in the GME. This weaver operates on the internal representation of
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a model (similar to an abstract syntax tree of a compiler). GME provides a frame-

work that allows DSML developers to register custom actions and hooks with the

environment. These hooks can read and write the elements of a model during the

modeling stage. GME also provides an introspection API, which provides knowl-

edge about the types and instances of a model, without a priori knowledge about

the underlying DSML. Utilizing this feature of GME, we have implemented C-SAW

as a “plug-in,” which is GME terminology for a DSML independent hook. Thus,

the benefits of C-SAW are applicable across a whole spectrum of DSMLs.

To be effective, C-SAW also requires the features of an enhanced model trans-

formation language. Standard OCL is strictly a declarative language for specifying

assertions and properties of UML models. Our need to extend OCL is motivated

by the fact that we require an imperative language for describing the actual model

transformations. We designed a language called the Embedded Constraint Lan-

guage (ECL) to describe model transformations. ECL is an extension of the OCL

and provides many of the common features of OCL, such as arithmetic operators,

logical operators, and numerous operators on collections (e.g., size, and select). A

unique feature of ECL that is not provided within OCL, however, is a set of re-

flective operators for querying models. For example, aggregation operators (e.g.,

models(expression) and atoms(expression)) are used to select all the models

from a model container (and all the atoms from a model) that satisfy the constraint

specified by the expression. These operators, together with the select operator, can

be applied to first class model objects (e.g., a container model or primitive model

element) to obtain reflective information needed to perform model weaving. In addi-

tion, ECL provides a set of transformation operators to change the state of a model

such as addModel, addAtom, removeModel, removeAtom and setAttribute. The

operators can change the structure and properties of a model.

The AOM approach that we have adopted in C-SAW can be summarized by the

diagram in Fig. 4. As shown in this figure, model transformations are performed

between the source models and the target models that belong to the same meta-

model. C-SAW weaves additive changes into these source models to generate the

target models relying on transformation specifications written in ECL.

• Modeling Aspects: A modeling aspect is a modular construct that specifies

a crosscutting concern in a model hierarchy. A modeling aspect describes the

context of a strategy call (see the definition of strategy below), which can be a

specific model, atom, or connection. Like a pointcut designator in AspectJ [19],

a modeling aspect is responsible for identifying a set of model nodes across a

model hierarchy in a modular way, and offers the capability to make quantifiable

statements across the boundaries of a model.

• Strategies: A strategy is used to specify transformation logic (e.g., constraint

propagation, and the application of specific properties) to the model nodes.b Each

b“Model nodes” refer to modeling elements that are defined in the metamodel, and serve as
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DefinesDefines

MetaModel

Source Model

ECL Transformation 

Specifications

Target Model

aspect Start( )
{declare componentTypesFolder, implementationArtifactsFoler,
packagesFolder : folder;
componentTypesFolder := rootFolder().addFolder("ComponentTypes",
"ComponentTypes");

….

Aspect

Weaving

Fig. 4. C-SAW aspect model weaver framework.

metamodel will have unique strategies that can be applied to a model through

C-SAW. A strategy provides a hook that the weaver can call in order to process

node-specific application and propagation. Thus, strategies offer numerous ways

for instrumenting nodes in a model with crosscutting concerns. A strategy call

in an aspect implements the binding and parameterization of the strategy to all

the model nodes specified by the aspect.

3.3. Resolving UAV crosscutting modeling challenges with C-SAW

As described in Sec. 2.3, the modeling concern related to application deployment

has been decomposed into multiple views along the dimension of the underlying

CCM run-time. However, this modularization results in related concepts from the

dimensions of individual components and assemblies to be non-localized and split

across multiple entities. This section describes how C-SAW is used to modular-

ize the concepts related to individual components and assemblies. The approach

takes advantage of aspect-oriented model weaving to fill in the information into the

various artifacts that are necessary to deploy the UAV application.

visualization elements in the domain model.
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1: aspect Deploy()

2: {

3: // Create a folder called "ImplArtifacts"

4: implementationArtifactsFolder

5: := rootFolder().addFolder("ImplementationArtifacts", "ImplArtifacts");

6:

7: // Create a folder called "Packages"

8: packagesFolder := rootFolder().addFolder("ComponentPackages", "Packages");

9:

10: // Retrieve component assembly, and invoke strategy

11: rootFolder().findFolder("ComponentImplementations").models()

12: ->select(f | f.kindOf() == "ComponentImplementationContainer")

13: ->models()->select(p | p.kindOf() == "ComponentAssembly")

14: ->models()->select(c | c.kindOf() == "Component")

15: ->WeaveDeploymentArtifacts();

16: }

Aspect Listing 1: Deployment Modeling Aspect

The task of modularizing the concerns of deployment begins with defining a

modeling aspect in C-SAW. Aspect Listing 1 shows a snippet of the definition of

the Deploy aspect. This modeling aspect defines the tasks that a model engineer

typically performs manually. It enables creation of different folders, which will con-

tain the different orthogonal entities (e.g., implementation artifacts and component

packages) needed to deploy an application using CCM. The initial creation of these

folders is similar to inter-type declarations in AspectJ [19]. Specifically, lines 4 and

5 create a new ImplementationArtifacts folder called ImplArtifacts (note that

the first parameter of the addFolder() function indicates the folder type and the

second parameter represents the name of the folder) under the root folder of a UAV

model. Similarly, line 8 creates a new ComponentPackages folder named Packages.

This aspect has been extended to cover all the different activities that were dis-

cussed in Sec. 2.3. Due to space constraints, we have not shown all of the different

entities that are created by this aspect.

After creating the required folders, the Deploy aspect determines all com-

ponent assemblies, which contain the definitions of the component interactions.

The component assemblies are discovered by the weave-time introspection fa-

cilities that are provided by ECL. As shown from line 11, a component as-

sembly can be retrieved from the top level ComponentImplementations folder’s

ComponentImplementationContainer models. For each component model in the

component assembly, the WeaveDeploymentArtifacts strategy is applied, as shown

in Strategy Listing 1. Thus, this strategy is applied across model boundaries.

WeaveDeploymentArtifacts aggregates the different strategies that need to be

applied to each individual component. For brevity, we illustrate just two such strate-

gies — ImplementationArtifacts (as shown in line 3) and PackageDefinition

(line 4) — which are necessary to solve the challenges described in Secs. 2.3.2 and

2.3.4. Several other deployment strategies have been created, but are not shown

here in order to keep the example concise.
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1: strategy WeaveDeploymentArtifacts()

2: {

3: ImplementationArtifacts();

4: PackageDefinition();

5: }

Strategy Listing 1: Weave Deployment Artifacts Strategy

1: strategy ImplementationArtifacts()
2: {

3: component := self;
4: componentName := component.getName();

5:
6: // Create an instance of model ArtifactContainer

7: artContainer := rootFolder().findFolder("ImplArtifacts")
8: .addModel("ArtifactContainer", componentName);
9:

10: // Create Foo_exec, Foo_stub and Foo_svnt
11: ia_exec := artContainer.addAtom("ImplementationArtifact", componentName + "_exec");

12: ia_stub := artContainer.addAtom("ImplementationArtifact", componentName + "_stub");
13: ia_svnt := artContainer.addAtom("ImplementationArtifact", componentName + "_svnt");
14:

15: // Set the attribute "location" of Foo_exec, Foo_stub and Foo_svnt
16: ia_exec.setAttribute("location", componentName + "_exec");

17: ia_stub.setAttribute("location", componentName + "_stub");
18: ia_svnt.setAttribute("location", componentName + "_svnt");

19:
20: // Create a reference to Foo_stub
21: ia_stubRef

22: := artContainer.addReference("ImplementationArtifactReference", ia_stub);
23:

24: // Create a connection between Foo_svnt and Foo_stub reference
25: artContainer.addConnection("ArtifactDependsOn", ia_svnt, ia_stubRef);

26:
27: // Create a connection between Foo_exe and Foo_stub reference
28: artContainer.addConnection("ArtifactDependsOn", ia_exec, ia_stubRef);

29: }

Strategy Listing 2: Implementation Artifact Strategy

The ImplementationArtifacts strategy shown in Strategy Listing 2 is respon-

sible for creating the different auxiliary shared libraries that are needed to imple-

ment a single monolithic component. Specifically, the strategy first retrieves the

component (line 3) and its name (line 4). It then adds an ArtifactContainer model

with the component name under the ImplementationArtifacts folder that was

created in the Deploy aspect. From line 11 to line 18, three different component

libraries are built within the ArtifactContainer model as ImplementationArtifact

atoms by extending the component name with different suffixes (i.e., exec, stub

and svnt). Lines 21 and 22 create a reference to stub. Finally, two dependencies

are established in line 25 and line 28 as connections between the library atoms. It

can be seen that this strategy modularizes:

• Creation of all implementation artifacts mandated by the underlying run-time,

• Creation of implementation artifacts that adhere to a specific naming convention,

• Keeping track of dependencies between a single monolithic component and its

associated implementation artifacts,
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• Setting attribute values (e.g., location and entry points) in shared libraries.

By modularizing the different activities associated with defining implementation

artifacts and allowing for customizability based on idiosyncrasies of specific run-

time environments, C-SAW helps resolve the challenge described in Sec. 2.3.2 by

modularizing artifact definitions for all available components. This is a very time-

consuming and error-prone task if performed manually across multiple components.

1: strategy PackageDefinition()

2: {

3: component := self;

4: componentName := component.getName();

5:

6: // Create an instance of model PackageContainer

7: pkgContainer := rootFolder().findFolder("Packages")

8: .addModel("PackageContainer", componentName);

9:

10: // Create an instance of atom ComponentPackage

11: compPackage := pkgContainer.addAtom("ComponentPackage", componentName);

12:

13: // Create a reference to the current component

14: componentRef := pkgContainer.addReference("ComponentRef", component);

15:

16: // Create a connection between ComponentPackage and component reference

17: pkgContainer.addConnection("PackageInterface", compPackage, componentRef);

18: }

Strategy Listing 3: Package Definition Strategy

The PackageDefinition strategy shown in Strategy 3 is responsible for creating

a package and associating a component assembly with the component package.

Line 11 creates a component package as an atom within the package container that

was constructed in line 7. Line 17 builds an association connection between this

component package and the component reference that was created in line 14. Similar

strategies were defined to solve the challenges outlined in Secs. 2.3.1, 2.3.3 and 2.3.5.

By combining specification aspects and strategies, C-SAW enhances the utility of a

DSML like PICML, and resolves the challenges associated with a pure MDD-based

approach to improve development of component-based distributed systems.

4. Related Work

The object-oriented and structured paradigms each had their genesis at the imple-

mentation level, and were applied afterward to earlier phases of the software lifecy-

cle. A similar trend has occurred in the investigation of aspect-oriented concepts.

Although the initial emphasis has been on aspect-oriented programming, there is a

growing body of research that is focused on applying aspects and other new sep-

aration of concerns ideas to non-code artifacts [21]. Over the past decade, AOSD

techniques have been investigated at all levels of the development lifecycle [22],
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including requirements engineering and early design [23], and detailed analysis and

design [24].

Several researchers have investigated the application of AOSD concepts within

the context of the UML [25–27]. In fact, a very successful workshop on aspect-

oriented modeling (now in its 8th edition) has served as a common venue for re-

searchers working in the new aspect modeling area [28]. These efforts have yielded

guidelines for describing crosscutting concerns at higher levels of abstraction. A

focal point of these efforts is the development of notational conventions that assist

in the documentation of concerns that crosscut a design. Such notational conven-

tions improve the ability to modularize a design that is described as a UML model.

Moreover, the initial aspect modeling contributions have the important trait of im-

proving the traceability of crosscutting concerns from design to implementation.

From this perspective, the general goals of aspect modeling are similar to the ob-

jectives presented in this paper.

Many of the UML aspect modeling efforts have done much to improve the appli-

cability of AOSD at the modeling level, but they generally tend to treat the concept

of aspect-oriented design as an adjective; i.e., the focus has been on the notational

and decorative attributes concerned with aspects and their representation within

UML. The majority of aspect modeling research differs from the approach presented

in this paper. The application of C-SAW is much more than a notational abstrac-

tion. The research into C-SAW has concentrated on the idea of building actual

weavers for domain models; i.e., aspect modeling is approached as a specific appli-

cation of model transformation, where models are evolved to specify crosscutting

properties. The contribution of C-SAW, and the application to component-based

distributed systems, is to consider aspect modeling as a verb. That is, viewing AOSD

as a mechanism to improve the modeling task, itself, by providing the ability to

quantify properties across a model during the system modeling process. This action

is performed by utilizing a weaver that has been constructed with the concepts of

modeling in mind. A research effort that also appears to have this goal in mind can

be found in [29], which is focused on UML models, but provides transformation

capabilities in addition to notational abstractions to represent aspects.

5. Concluding Remarks

Although MDD approaches to building distributed systems have inherent advan-

tages over a purely programmatic approach, additional tools are needed to assist in

modularizing crosscutting concerns that are not effectively captured by modeling

languages like PICML. To address this problem, this paper described the aspect-

oriented model weaving capabilities of the Constraint-Specification Aspect Weaver

(C-SAW). Using the C-SAW concepts — strategies and modeling aspects — many

of the problems associated with scattered pieces of deployment related artifacts

and model scalability can be effectively addressed. Weaving at the modeling level

is a form of transformation that enables a developer to evolve and maintain con-
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sistency across numerous views that are available in a modeling language. The key

contribution is an ability to make changes across a model in many locations in an

automated manner.

In the specific context of distributed component-based systems, the primary

lessons learned concern the productivity benefits that can be achieved from an

automated approach to evolving domain-specific models in the presence of cross-

cutting concerns. A manual approach to the specific challenges presented in Sec. 2.3

is tedious and error-prone. When the number of components increases, the number

of steps required to make such modifications increase accordingly. Because of the

crosscutting nature of model properties and constraints, the manual modification

of models hampers productivity because of all the mouse clicking and typing in-

volved in each change. An aspect model weaver like C-SAW offers needed support

to evolve crosscutting concerns that appear in modeling interface and artifact def-

initions. Other concerns (e.g., component interactions, component packaging, and

component mapping) also require the model engineer to explore various design al-

ternatives in a way that is not practical through manual modification. The lessons

learned in this context add to the growing number of application areas to which

we have applied C-SAW, including mission computing avionics [6] and hardware

configuration of physics-based applications [8].

There are several limitations to C-SAW that are being addressed as future work.

One limitation, as shown in Fig. 4, is that C-SAW only works within a single

metamodel. That is, model transformations cannot occur between models that are

defined by different metamodels. This is not a problem for the types of crosscutting

deployment concerns mentioned in this paper, but this limitation does prohibit more

advanced transformations to be performed in other domains. We are working toward

a future version of C-SAW that allows the specification of model transformations

across multiple metamodels. A second limitation of C-SAW is the lack of support

to help ensure the correctness of a modeling aspect and strategy. Currently, there

is no capability provided to the model engineer to help assist in determining if an

error exists in a C-SAW transformation. To address this issue, we are currently

developing a testing and debugging capability within C-SAW. This would allow

test cases to be constructed to determine if the ECL is written correctly to perform

a desired transformation. If an error in the ECL exists, a debugger for the ECL

would allow a model engineer to step through each line of ECL and examine the

affect that occurs within the model.

In summary, this paper has demonstrated the application of aspect modeling to

address the deployment concerns of distributed component-based systems modeled

using PICML. The combination of MDD tools like PICML, and aspect-oriented

model weavers like C-SAW, are crucial to realizing the goal of automated design

and development of component-based middleware systems.
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