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system is generated. A popular variant of MDD is the
Object Management Group’s Model-Driven Architec-
ture (MDA),1 which represents systems using OMG’s
general-purpose Unified Modeling Language (along with
specific profiles) and transforms these models into arti-
facts that run on a variety of platforms like EJB, .NET,
and CCM. 

Unlike MDA, Model-Integrated Computing (MIC),2

a variant of MDD, uses domain-specific modeling lan-
guages (DSMLs) to represent system elements and their
relationships as well as their transformations to plat-
form-specific artifacts. We have successfully applied the
MIC concept to develop several DSML tool suites. Here,
we focus on two: 

• Platform-Independent Component Modeling
Language (PICML), which assists in developing,
configuring, and deploying systems using compo-
nent middleware technology such as CCM; and

• Embedded Control Systems Language (ECSL),
which supports development of distributed embed-
ded automotive applications. 

Both of these tool suites are built using the Generic
Modeling Environment (GME),3 an open source,
metaprogrammable, domain-specific design environment
that developers use to create both DSMLs and models
that conform to these DSMLs within the same graphi-
cal environment.

Model-driven development is an emerging paradigm that improves the software

development life cycle, particularly for large software systems, by providing a higher 

level of abstraction for system design than is possible with third-generation 

programming languages.
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H istorically, software development methodologies
have focused more on improving tools for system
development than on developing tools that assist
with system composition and integration. Com-
ponent-based middleware like Enterprise Java-

Beans (EJB), Microsoft .NET, and the CORBA Compo-
nent Model (CCM) have helped improve software
reusability through component abstraction. However, as
developers have adopted these commercial off-the-shelf
technologies, a wide gap has emerged between the avail-
ability and sophistication of standard software develop-
ment tools like compilers and debuggers, and the tools
that developers use to compose, analyze, and test a com-
plete system or system of systems. As a result, developers
continue to accomplish system integration using ad hoc
methods without the support of automated tools. 

Model-driven development is an emerging paradigm
that solves numerous problems associated with the com-
position and integration of large-scale systems while
leveraging advances in software development tech-
nologies such as component-based middleware. MDD
elevates software development to a higher level of
abstraction than is possible with third-generation pro-
gramming languages.

MODEL-DRIVEN DEVELOPMENT
MDD uses models to represent a system’s elements

and their relationships. Models serve as input and out-
put at all stages of system development until the final
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DOMAIN-SPECIFIC MODELING LANGUAGES
DSMLs are the backbone of model-integrated com-

puting. A DSML can range from something that is very
specific, such as the elements of a radar system, to some-
thing as broad as a component-based middleware appli-
cation built using platforms such as EJB or CCM. The
key idea behind a DSML is its ability to capture domain
elements as first-class objects. A DSML can be viewed as
a five tuple:4

• a concrete syntax defining the specific notation (tex-
tual or graphical) used to express domain elements;

• an abstract syntax defining the concepts, relation-
ships, and integrity constraints available in the lan-
guage;

• a semantic domain defining the formalism used to
map the semantics of the models to a particular
domain;

• a syntactic mapping assigning syntactic constructs
(graphical or textual) to elements of the abstract syn-
tax; and

• a semantic mapping relating the syntactic concepts
to the semantic domain. 

Thus, the abstract syntax determines all syntactically
correct sentences—or models—in the language. A

DSML is also known as a metamodel,
because a DSML is itself a model that defines
all the possible models that developers can
build using it. 

CREATING A DSML
DSMLs are defined visually in GME. The

first step is to identify the different domain
elements and their relationships that we
want to model, which is usually done with
iterative input from a domain expert. Any
MDD tool infrastructure should allow mod-
ification of the elements (or relationships
among elements) with ease.

Second, we map the domain elements to
GME concepts like models and atoms, as
described in the “Generic Modeling Environ-
ment” sidebar. This process is similar to defin-
ing types in a programming language like
C/C++. To capture the DSML’s concrete syn-
tax, developers define the types in the DSML.

With the mapping of domain elements to
GME concepts, UML class diagrams repre-
sent the DSML elements as shown in Figure 1.
With GME, users can customize the visual-
ization of DSML elements—that is, its con-
crete syntax—using a decorator, a component
written in a traditional programming lan-
guage that implements a set of standard call-
back interfaces. Once a decorator is registered

with GME, the environment invokes the callbacks when-
ever it needs to display the element.

Using UML class diagrams as the notation for a
DSML’s concrete syntax, developers can capture some
association between elements because semantics like car-
dinality can be sufficiently represented in UML. To fur-
ther constrain associations, GME uses OMG’s Object
Constraint Language5 to provide a built-in constraint
manager, as Figure 2 shows. Since they do not take sys-
tem dynamics into account, DSML semantics using
OCL constraints are static. 

After defining the DSML’s elements and its associated
static semantics, the developer instructs GME to gener-
ate a customized DSML environment using a process
called metainterpretation. This process takes the defin-
ition of the DSML from the previous step; runs a set of
standard transformations ensuring consistency (as does
a traditional compiler); and creates a paradigm file defin-
ing the DSML, which is then registered with GME. It is
now possible to create models conforming to the DSML
using GME.

Although we have defined the elements, the relation-
ships, and the DSML’s static semantics, we also must
define dynamic semantics to make the DSML useful for
complex real-world applications. A DSML’s dynamic
semantics can be enforced by applying model interpreters

Generic Modeling Environment
GME is an open source, visual, configurable design environment for

creating domain-specific modeling languages (DSMLs) and program
synthesis environments (http://escher.isis.vanderbilt.edu). One of
GME’s unique features is that it is metaprogrammable—that is, GME is
used not only to build DSMLs but also to build models that conform to
a DSML. In fact, MetaGME, the GME environment used to build DSMLs,
is itself built using another DSML—or metametamodel. GME provides
the following elements to define a DSML:

• project: the top-level container in a DSML;
• folders: used to group collections of similar elements together;
• atoms: the indivisible elements of a DSML, used to represent the

leaf-level elements in a DSML;
• models: the compound objects in a DSML, used to contain different

types of elements—also known as parts—like references, sets,
atoms, and connections;

• aspects: used primarily to provide a different viewpoint of the same
model (every part of a model is associated with an aspect);

• connections: used to represent relationships between domain ele-
ments;

• references: used to refer to other elements in different portions of
a DSML hierarchy (unlike connections, which can be used to con-
nect elements within a model); and

• sets: containers whose elements are defined within the same
aspect and have the same container as the owner.



written using a traditional pro-
gramming language like C++,
Python, or Java and registered with
GME. When the interpreter is in-
voked, GME gives it access to the
model hierarchy, and it can perform
different kinds of validation and
generative operations on the mod-
els. One such operation can include
generating platform-specific arti-
facts directly from the models.

APPLYING MIC TO
COMPONENT-BASED
APPLICATIONS

A common trend in component
middleware technology is the use
of metadata to capture application
properties that were previously
tightly coupled with the imple-
mentation. This allows for declar-
ative specification of an application
using platform-agnostic technolo-
gies like XML and then automatic
deployment and configuration.

Higher-level abstractions like vir-
tual machines, execution contain-
ers, and extra information about
systems via rich metadata has a
direct impact in enabling people to
build systems that are more het-
erogeneous than previously possi-
ble. However, this also increases
the amount of information that
must be managed by the system
developer as well as the complex-
ity of system integration.

Infrastructure for managing such
complex deployment was essentially
lacking in previous-generation mid-
dleware, and most deployments
were done on an ad hoc basis with-
out much infrastructure reuse or
potential for rigorous system verifi-
cation and validation. This lack of
simplification and automation has hindered the adop-
tion—and ostensible benefits—of component middleware
technologies.

PICML
To address these problems, we developed PICML, an

open source DSML available for download as part of
the CoSMIC MDD framework (www.dre.vanderbilt.
edu/CoSMIC). Developers of component-based systems
can use PICML to define application interfaces, quality-
of-service (QoS) parameters, and system-software build-

ing rules, as well as to generate metadata and XML
descriptor files that enable automated system deploy-
ment. PICML also provides capabilities to handle com-
plex component engineering tasks, such as multi-aspect
visualization of components and subsystem interactions,
component deployment planning, and hierarchical mod-
eling of component assemblies.

Currently, PICML is used in conjunction with the
Component-Integrated ACE ORB (CIAO)—our CCM
implementation—and our Deployment and Configura-
tion Engine (DAnCE),6 a QoS-enabled deployment
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Figure 1. Domain mapping. With the Generic Modeling Environment, users can
customize a domain-specific modeling language’s concrete syntax.

Figure 2. Defining static semantics in GME.To further constrain associations, GME uses
OMG’s Object Constraint Language to provide a built-in constraint manager.
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engine. However, PICML’s design has been
driven by the goal of integrating systems
built using different component technologies
like .NET and EJB.

PICML is defined as a metamodel in GME
for describing components, types of allowed
interconnections between components, and
types of component metadata for deploy-
ment. From this metamodel, the metamodel
interpreter generates 20,000 lines of C++
code representing the modeling language ele-
ments as equivalent C++ types. This gener-
ated code allows manipulation of modeling
elements—that is, instances of C++ language
types—and forms the basis for writing 
model interpreters, which traverse the model
hierarchy to generate XML-based deploy-
ment descriptors. As the “Deployment Meta-
data” sidebar describes, these descriptors
support OMG’s Deployment and Configura-
tion specification.7

Figure 3 shows the typical steps involved in
component-based application development
using PICML’s MDD approach:
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Figure 3. Model-driven development of component-based applications using PICML.The infrastructure uses artifacts output from
PICML to carry out the different stages of component application deployment.

Deployment Metadata
PICML generates the following types of deployment descriptors

based on the OMG Deployment and Configuration specification:

• component interface descriptor (.ccd): describes a single component’s
interfaces, ports, and attributes;

• implementation artifact descriptor (.iad):describes a single component’s
implementation artifacts—for example,DLLs and executables;

• component implementation descriptor (.cid): describes a specific
implementation of a component interface and also contains 
component interconnection information;

• component package descriptor (.cpd): describes a single component’s
multiple alternative implementations—for example, different 
operating systems;

• package configuration descriptor (.pcd): describes a component
package configured for a particular requirement;

• component deployment plan (.cdp): describes the plan that guides the
runtime deployment; and

• component domain descriptor (.cdd): describes the deployment 
target—the nodes and networks—on which the components are
to be deployed.



1. Visual component interface definition. Using
PICML, we create a set of component interface and
other data type definitions in CORBA’s Interface Defini-
tion Language. In this step, we can either import exist-
ing IDL definitions or create new ones from scratch. 

To import existing definitions, the IDL importer can
easily migrate existing CORBA to PICML. The importer
takes IDL files as input, maps their contents to the
appropriate PICML model elements, and generates a
single XML file that can be imported as a PICML model.
To design new interfaces, PICML’s graphical modeling
environment supports using an intuitive drag-and-drop
technique, making this process
largely self-explanatory and inde-
pendent of platform-specific techni-
cal knowledge. 

2. Valid component interaction
definition. By elevating the level of
abstraction, the well-formedness
rules of DSMLs like PICML actually
capture semantic information such
as constraints on model composition
and allowed interactions.

There is a significant difference in the early detection
of errors in the MDD paradigm compared with tradi-
tional object-oriented or procedural development using
a conventional compiler. PICML uses OCL constraints
to define the modeling language’s static semantics,
thereby disallowing invalid systems. In other words,
PICML enforces the correct-by-construction approach
to system development.

3. Hierarchical composition. In a complex system with
thousands of components, visualization becomes an
issue because of the practical limitations of displays as
well as human cognition. Without support for hierar-
chical composition, observing and understanding sys-
tem representations in a visual medium does not scale. 

To increase scalability, PICML defines a hierarchy that
developers can use to view their system at multiple lev-
els of detail depending upon their needs. With hierar-
chical composition, developers can both visualize their
systems and compose systems from smaller subsystems.
This feature supports unlimited levels of hierarchy—
constrained only by the physical memory of the system
used to build models—and promotes the reuse of com-
ponent assemblies. Therefore, developers can use
PICML to develop repositories of predefined compo-
nents and subsystems. 

The hierarchical composition capabilities that PICML
provides are only a logical abstraction: Deployment
plans generated from PICML flatten out the hierarchy to
connect the two destination ports directly, thereby ensur-
ing that no extra communication overhead is attributed
to this abstraction at runtime.

4. Valid deployment descriptor generation. In addi-
tion to ensuring design-time integrity of systems built

using OCL constraints, PICML also generates the
complete set of deployment descriptors needed as
input to the component deployment mechanisms.
These descriptors conform to the OMG D&C specifi-
cation7 and are described in the “Deployment
Metadata” sidebar.

5. Deployment planning. Systems are often deployed
in heterogeneous execution environments. To support
these needs, PICML can specify the target environment,
which includes nodes, interconnects among nodes, and
bridges among interconnects. Once the target environ-
ment is specified, developers can allocate component

instances onto the target environ-
ment’s various nodes. PICML cur-
rently provides facilities for specify-
ing static allocation of components
to nodes. 

EMBEDDED DESIGN 
USING ECSL

The model-based approach for
embedded systems development has
heretofore been confined to the func-

tional aspects of the system design and is restricted to a
limited suite of tools—most notably the Mathworks
family of Matlab, Simulink, and Stateflow tools. 

Simulink and Stateflow are powerful graphical system
design tools for modeling and simulating continuous
and discrete event-based behavior in a dynamic system.
However, these tools by no means cover the entire spec-
trum of embedded systems development. 

The embedded systems development process includes
several other complex activities such as requirements
specification, verification, mapping onto a distributed
platform, scheduling, performance analysis, and syn-
thesis. Although some existing tools individually sup-
port one or more of these development activities,
integration with the Mathworks suite is often lacking.
This makes it difficult to maintain a consistent view of
the system as the design progresses and requires signif-
icant manual effort to create different representations
of the same system. 

To address these deficiencies, our Embedded Control
Systems Language (ECSL) supports

• annotation of structural design, software-compo-
nent design, and behavior implementation to sup-
ply information needed by a code generator; 

• creation of hardware-topology design models, 
electronic control unit (ECU)-design models, and
firmware-implementation design models; and 

• creation of deployment models that capture com-
ponent and communication mapping.

ECSL also imports existing Simulink/Stateflow (SL/SF)
models into the GME environment.

February 2006 37

PICML defines a hierarchy 
that developers can use to 

view their system at multiple
levels of detail depending 

upon their needs.



38 Computer

Embedded automotive applications
Designing and developing embedded automotive sys-

tems is becoming notoriously difficult. In recent years,
there has been an explosion in the scale and complexity
of these systems, with a push toward drive-by-wire tech-
nologies, increasing feature levels, and increasing capa-
bilities in embedded computing platforms. To address
this level of complexity, the automotive industry has in
general embraced the model-based approach for embed-
ded systems development. 

Figure 4 depicts the activities in an automotive embed-
ded systems development process as supported by the
ECSL tools. Each rectangular block denotes a particu-
lar activity, and arrows indicate the workflow between
different activities. Activities can roughly be grouped in
three blocks: hardware design, software design, and
mapping. (Requirements engineering is not within the
scope of this tool suite, although it is the basis for most
of the modeling and development activities.)

Hardware design includes specifying ECUs in a net-
work and their connections with buses and defining an
architectural topology of the distributed embedded plat-
form. Refinements of this activity include designing indi-
vidual ECUs, selecting the processors, and determining
the memory and I/O requirements.

Software design includes 

• structural design: the hierarchical 
decomposition of the embedded 
system into subsystems from a func-
tional viewpoint; 

• component design: another form of 
decomposition, not independent of 
the functional decomposition, deal-
ing with more classical embedded 
software concerns such as real-time 
requirements, real-time tasks, peri-
odicity, deadlines, and scheduling; 
and 

• functional/behavioral design: the 
elaboration of the hierarchical 
structural design’s leaf elements in 
terms of a synthesizable realization. 

Mapping includes activities involving
both software and hardware objects,
such as decisions regarding the deploy-
ment of certain complete or partial func-
tions to hardware nodes that are part of
the network and the assignment of sig-
nals to bus messages.

The abstract design process shown in
Figure 4 is made concrete by a number of
supporting tools, including GME/ECSL,
ML2ECSL, and ECSL/CG. GME/ECSL
is the Generic Modeling Environment

tailored to support the ECSL modeling language. The
ML2ECSL translator imports SL/SF models into the
ECSL environment. Finally, ECSL/CG is a specialized
code generator that produces various low-level produc-
tion artifacts from ECSL models, including real-time
operating system configuration, firmware configuration
code, and behavioral implementation of the components.

ECSL concepts
ECSL, a graphical modeling language built using

GME that contains modeling concepts for design activ-
ities, comprises a suite of sublanguages.

Functional modeling. ECSL’s SL/SF sublanguages
mirror the capabilities found in the Simulink and
Stateflow languages such that all SL/SF models can be
imported into the GME/ECSL environment. Simulink
follows a dataflow-diagram visual notation, while
Stateflow supports Statechart-like hierarchical finite
state machines.

Component modeling. This sublanguage allows soft-
ware modeling in two stages: integrating and then com-
ponentizing SL/SF models. Componentization is specified
using the GME containment and reference capabilities:
Components are GME models that contain references to
elements of the functional model imported from SL/SF.
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Figure 4. ECSL process. Each rectangular block denotes a particular activity, and
arrows indicate the workflow between different activities. Activities can roughly
be grouped in three blocks: hardware design, software design, and mapping.



Components consist of
ports that allow the spec-
ification of intercompo-
nent communication, as
well as interfaces to phys-
ical devices including sen-
sors and actuators. Port
attributes capture re-
quired communication
properties such as data
type, scaling, and bit
width. The intracompo-
nent dataflow exists with-
in the imported functional
models. The designer
introduces the intercom-
ponent dataflow after
componentizing the im-
ported models.

Hardware topology
modeling. Designers can
use ECSL’s hardware
modeling to specify the
hardware topology, in-
cluding the processors
and communication links
between the processors.
ECU models represent specific processors and have two
ports representing the I/O channels and the bus connec-
tions. ECU firmware specifics with respect to memory
size and CPU speed are captured with attributes. I/O
channel ports come in two variants: sensor ports and
actuator ports. Bus models represent communication
pathways used to connect ECUs and are expressed as
GME atoms whose attributes specify various physical
communication system properties such as bit rates.

Deployment (mapping) modeling. This modeling
sublanguage captures how software components are
deployed on the hardware. The designer can use the
ECU model’s deployment aspect to map the software
component to the ECU using GME’s reference concept. 

Note that deployment models are separate from soft-
ware models, thus allowing the reuse of software mod-
els in different hardware architectures. Furthermore,
component ports are connected to ECU ports to indi-
cate how the component software interfaces map to
actual sensors, actuators, and buses.

Generating code and other artifacts
As Figure 5 shows, the ECSL/CG tool is a code gen-

erator that produces code artifacts necessary for system
implementation. The tool generates the following types
of files: 

• an OIL (OSEK Implementation Language) file for
each ECU node that includes a listing of all used

OSEK (www.osek-vdx.org) objects and their 
relations; 

• one or more C files implementing OSEK tasks; 
• application-behavior code called out from within a

task frame; and 
• glue code comprising one or more C code/header

files that resolve the calls to the controller area net-
work (CAN) driver or the firmware to provide access
to CAN signals or hardware I/O signals.

Together, these generated artifacts comprise the entire
application code. While the code generator supports syn-
thesis of application-behavior code, it is feasible to link in
externally supplied application-behavior code, which can
be either handwritten or generated using a third-party
tool. Additional framework code is generated using ven-
dor-supplied tools such as those from Vektor Informatik
that configure the controller area network bus. Also,
developers can use the OSEK vendor-supplied tools to
process the generated OIL files that configure the oper-
ating system and set up the tasks and task properties.

We have evaluated the code generator with several
examples of small to medium complexity such as a
defroster controller and a steering and braking con-
troller. The generated code for these examples was func-
tionally correct and bug-free. We can systematically
derive the correctness based on the glue code construc-
tion; however, a formal proof of correctness of the appli-
cation-behavior code generation is an open problem and
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remains a work in progress. We are also investigating
techniques for automatically generating a test suite for
the application behavior code generation.

The automotive application domain that the tools tar-
get emphasizes the readability and traceability of gen-
erated code. Therefore, the code generator does not
perform any aggressive optimization on the Statecharts
specifying application component behavior.

M odel-driven development is a promising para-
digm for tackling system composition and inte-
gration challenges. MDD elevates the abstraction

level of software development and bridges the gap
between technology domains by allowing domain
experts (who may not be experts in software develop-
ment) to design and build systems. This higher level of
abstraction also allows transformation between models
in different domains without resorting to low-level inte-
gration solutions such as standard network protocols. 

The Platform-Independent Component Modeling
Language, a DSML built using GME, simplifies and
automates many activities associated with developing
and deploying component-based systems. The Embedded
Control Systems Language is a DSML tool suite that sup-
ports development of distributed embedded automotive
systems by interfacing with existing engineering tools,
while adding new capabilities to support deployment on
distributed platforms and integration of model verifica-
tion tools into the development process.

MDD ensures the semantic consistency of systems by
enforcing the correct-by-construction philosophy. It also
solves many of the accidental complexities that arise
during system integration due to the heterogeneity of
the underlying component middleware technologies.
With improvements in generative techniques, MDD 
has the potential to automate code generation just as
compilers replaced assembly language/machine-code
programming. �
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