A Platform-Independent Component
Modeling Language for Distributed Real-time
and Embedded Systems *

Krishnakumar Balasubramanian ®™*,

Jaiganesh Balasubramanian?, Jeff Parsons?®,
Aniruddha Gokhale?®, Douglas C. Schmidt®

aDept. of EECS, Vanderbilt University, Nashville

Abstract

This paper provides two contributions to the study of developing and applying
domain-specific modeling languages (DSMLS) to distributed real-time and embed-
ded (DRE) systems — particularly those systems using standards-based QoS-enabled
component middleware. First, it describes the Platform-Independent Component
Modeling Language (PICML), which is a DSML that enables developers to define
component interfaces, QoS parameters and software building rules, and also gen-
erates descriptor files that facilitate system deployment. Second, it applies PICML
to an unmanned air vehicle (UAV) application portion of an emergency response
system to show how PICML resolves key component-based DRE system devel-
opment challenges. Our results show that the capabilities provided by PICML —
combined with its design- and deployment-time validation capabilities — eliminates
many common errors associated with conventional techniques, thereby increasing
the effectiveness of applying QoS-enabled component middleware technologies to
the DRE system domain.

Key words: CoSMIC, Model-driven Development, Real-time CORBA Component
Model

* This work was sponsored in part by AFRL Contract# F33615-03-C-4112 for
DARPA PCES Program, Raytheon, and a grant from Siemens CT.
* Corresponding author E-mail: kitty@dre.vanderbilt.edu

Preprint submitted to Computer and System Sciences 17 December 2005

1 Introduction

Emerging trends and challenges Reusable components and standards-
based component models are increasingly replacing the use of monolithic and
proprietary technologies as the platform for developing large-scale, mission-
critical distributed real-time and embedded (DRE) systems [1]. This para-
digm shift is motivated by the need to (1) reduce life-cycle costs by lever-
aging standards-based and commercial-off-the-shelf (COTS) technologies and
(2) enhance software quality by amortizing validation and optimization ef-
forts over many users and testing cycles. Component technologies, such as the
OMG?’s Lightweight CORBA Component Model (CCM) and Boeing’s Bold-
stroke PRiSm, are establishing themselves as effective middleware platforms
for developing component-based DRE software systems in domains ranging
from software-defined radio to avionics mission computing and total ship com-
puting environments.

The trend towards developing and reasoning about DRE systems via compo-
nents provides many advantages compared with earlier forms of infrastructure
software. For example, components provide higher-level abstractions than op-
erating systems, third-generation programming languages, and earlier genera-
tions of middleware, such as distributed object computing (DOC) middleware.
In particular, component middleware, such as CCM, J2EE, and .NET, sup-
ports multiple views per component, transparent navigation, greater exten-
sibility, and a higher-level execution environment based on containers, which
alleviate many limitations of prior middleware technologies. The additional
capabilities of component-based platforms, however, also introduce new com-
plexities associated with composing and deploying DRE systems using com-
ponents, including (1) the need to design consistent component interface de-
finitions, (2) the need to specify valid interactions and connections between
components, (3) the need to generate valid component deployment descrip-
tors, (4) the need to ensure that requirements of components are met by
target nodes where components are deployed, and (5) the need to guarantee
that changes to a system do not leave it in an inconsistent state. The lack of
simplification and automation in resolving the challenges outlined above can
significantly hinder the effective transition to — and adoption of — component
middleware technology to develop DRE systems.

Solution approach — Model-driven development of component-based
DRE systems To address the needs of DRE system developers outlined
above, we have developed the Platform-Independent Component Modeling Lan-
guage (PICML). PICML is an open-source domain-specific modeling language
(DSML) available for download at www.dre.vanderbilt.edu/cosmic that
enables developers of component-based DRE systems to define application in-

terfaces, QoS parameters, and system software building rules, as well as gen-
erate valid XML descriptor files that enable automated system deployment.
PICML also provides capabilities to handle complex component engineering
tasks, such as multi-aspect visualization of components and the interactions of
their subsystems, component deployment planning, and hierarchical modeling
of component assemblies.

PICML is designed to help bridge the gap between design-time verification
and model-checking tools (such as Cadena, VEST, and AIRES) and the ac-
tual deployed component implementations. PICML also provides higher-level
abstractions for describing DRE systems, using component models that pro-
vides a base for (1) integrating analysis tools that reason about DRE systems
and (2) platform-independent generation capabilities, i.e., generation that can
be targeted at multiple component middleware technologies, such as CCM,
J2EE, and ICE.

2 Overview of PICML

Model-Driven Development (MDD) [2] is a paradigm that focuses on using
models in most system development activities, .e., models provide input and
output at all stages of system development until the final system itself is
generated. A key capability supported by the MDD paradigm is the definition
and implementation of domain-specific modeling languages (DSMLs), which
can be viewed as a five-tuple [3] consisting of: (1) concrete syntax (C), which
defines the notation used to express domain entities, (2) abstract syntax (A),
which defines the concepts, relationships and integrity constraints available
in the language, (3) semantic domain (S), which defines the formalism used
to map the semantics of the models to a particular domain, (4) syntactic
mapping (M¢: A—C), which assigns syntactic constructs (e.g., graphical and /-
or textual) to elements of the abstract syntax, and (5) semantic mapping (Mg:
A—S), which relates the syntactic concepts to those of the semantic domain.

Crucial to the success of DSMLs is metamodeling and auto-generation. A
metamodel defines the elements of a DSML, which is tailored to a particu-
lar domain, such as the domain of avionics mission computing or emergency
response systems. Auto-generation involves automatically synthesizing arti-
facts from models, thereby relieving DSML users from the specifics of the
artifacts themselves, including their format, syntax, or semantics. Examples
of such artifacts includes (but are not limited to), code in some programming
language and/or descriptors, in formats such as XML, that can serve as input
to other tools.

To support development of DRE systems using MDD, we have defined the

Platform-Independent Component Modeling Language (PICML) DSML using
the Generic Modeling Environment (GME) [4]. GME is a meta-programmable
modeling environment with a general-purpose editing engine, separate view-
controller GUI, and a configurable persistence engine. Since GME is meta-
programmable, the same environment used to define PICML is also used to
build models, which are instances of the PICML metamodel.

At the core of PICML is a DSML (defined as a metamodel using GME) for de-
scribing components, types of allowed interconnections between components,
and types of component metadata for deployment. The PICML metamodel
defines ~115 different types of basic elements, with 57 different types of as-
sociations between these elements, grouped under 14 different folders. The
PICML metamodel also uses the OMG’s Object Constraint Language (OCL)
to define ~222 constraints that are enforced by GME’s constraint manager
during the design process.

Using GME tools, the PICML metamodel can be compiled into a modeling
paradigm, which defines a domain-specific modeling environment. From this
metamodel, ~20,000 lines of C++ code (which represents the modeling lan-
guage elements as equivalent C++ types) is generated. This generated code
allows manipulation of modeling elements, i.e., instances of the language types
using C++, and forms the basis for writing model interpreters, which traverse
the model hierarchy to perform various kinds of generative actions, such as
generating XML-based deployment plan descriptors. PICML currently has
~8 interpreters using ~222 generated C++ classes and ~8,000 lines of hand-
written C++ code that traverse models to generate the XML deployment
descriptors (described in Sidebar 1) needed to support the OMG D&C spec-
ification [5]. Each interpreter is written as a DLL that is loaded at run-time
into GME and executed to generate the XML descriptors based on models
developed by the component developers using PICML.

To motivate and explain the features in PICML, we use a running example of a
representative DRE system designed for emergency response situations (such
as disaster recovery efforts stemming from floods, earthquakes, hurricanes)
and consists of a number of interacting subsystems with a variety of DRE QoS
requirements. Our focus in this paper is on the unmanned aerial vehicle (UAV)
portion of this system, which is used to monitor terrain for lood damage, spot
survivors that need to be rescued, and assess the extent of damage. The UAV
transmits this imagery to various other emergency response units, including
the national guard, law enforcement agencies, health care systems, firefighting
units, and utility companies.

3 Building DRE Systems with PICML

Developing and deploying emergency response systems is hard. For example,
there are multiple modes of operations for the UAVs, including aerial imaging,
survivor tracking, and damage assessment. Each of these modes is associated
with a different set of QoS requirements. For example, a key QoS criteria in-
volves the latency requirements in sending images from the flying UAVs to
ground stations under varying bandwidth availability. Similar QoS require-
ments manifest themselves in the traffic management, rescue missions, and
fire fighting operations.

In conjunction with colleagues at BBN Technologies and Washington Uni-
versity, we have developed a prototype of the UAV portion of the emergency
response system [6] described above using the CCM and Real-time CORBA ca-
pabilities provided by CTAO [7]. CTAO extends our previous work on The ACE
ORB (TAO) [8] by providing more powerful component-based abstractions
using the specification, validation, packaging, configuration, and deployment
techniques defined by the OMG CCM [9] and D&C [5] specifications. More-
over, CIAO integrates the CCM capabilities outlined below with TAO’s Real-
time CORBA [8] features, such as thread-pools, lanes, and client-propagated
and server-declared policies. In this section, we first briefly explain the key
capabilities of CCM, and the motivation for using CCM to develop the UAV
portion of the emergency response system. We then describe the challenges
in developing this system using CCM, and then show how we resolved these
challenges by applying a MDD approach using PICML.

3.1 Key Capabilities of the CCM

The CORBA Component Model (CCM) is an OMG specification that stan-
dardizes the development of component-based applications in CORBA. Since
CCM uses CORBA’s object model as its underlying object model, developers
are not tied to any particular language or platform for their component im-
plementations. The CIAO project is based on CCM rather than other popular
component models, such as EJB or .NET, since CORBA is the only COTS
middleware that has made a substantial progress in satisfying the QoS require-
ments of DRE applications. For instance, the OMG has adopted the following
DRE-related specifications in recent several years:

e Minimum CORBA, which removes non-essential features from the full
OMG CORBA specification to reduce footprint so that CORBA can be
used in memory-constrained embedded system applications.

e Real-time CORBA, which includes features that allow applications to
reserve and manage network, CPU, and memory resources predictably end-
to-end.

¢ CORBA Messaging, which exports additional QoS policies, such as asyn-
chronous invocations, timeouts, request priorities, and queuing disciplines,
to DRE applications.

e Fault-tolerant CORBA, which uses entity redundancy of objects to sup-
port replication, fault detection, and failure recovery.

These QoS specification and enforcement capabilities are essential to support
DRE applications. Key elements of the CCM include:

e Component, which is the basic building block used to encapsulate appli-
cation functionality

e Component Home, which is a factory that creates and manages compo-
nents

e Container, which provides components with an abstraction of the under-
lying middleware and regulate their shared access to the middleware in-
frastructure,

e Component Implementation Framework, which defines the program-
ming model for constructing component implementations, using the Com-
ponent Implementation Definition Language (CIDL) descriptions for au-
tomating generation of programming skeletons,

e Component server, which groups components and containers together to
form an executable program.

e ORB Services, which provide common middleware services, such as trans-
action, events, security and persistence.

The components in this UAV application are shown in Figure 1 and the steps
involved in this effort are described below:

1. Identify the components in the system, and define their interfaces,
which involves defining component ports and attributes, using the CORBA 3.x
IDL features provided by CCM. In the UAV example, each UAV is associated
with a stream of images. Each image stream is composed of Sender, Qosket,
and Receiver components. Sender components are responsible for collecting
the images from each image sensor on the UAV. The Sender passes the images
to a series of Qosket [7] components that perform operations on the images
to ensure that the QoS requirements are satisfied. Some Qosket components
include CompressQosket, ScaleQosket, CropQosket, PaceQosket, and a
DiffServQosket. The final Qosket then passes the images to a Receiver
component, which collects the images from the UAV and passes them on to a
display in the control room of the emergency response team.

) R
DY, Stream 1 DY (€ Receptacle
——
O Facet
vent Source
SystemResource DY, Control Center

Manager Display Y) Event Sink
DY,
DD Stream 3 DY
C) Component

D —
Stream 4
~~ ~—

Compress
Qosket

Receiver

-, Local Scale
Sender Resource
Manager Qosket Qosket
(. Cropping QoS
Predictor
(‘ Compression QoS
Predictor
(‘ Scaling QoS
Predictor

Fig. 1. Emergency Response System components

Each Sender, Receiver, and the various Qosket components pass images via
CCM event source and sink ports. There are also manager components that
define policies, such as the relative importance of the different mission modes
of each UAV. These policies in turn modify existing resource allocations by the
Qosket components. For example, the global SystemResourceManager com-
ponent monitors resource allocation across all the UAVs that are operational
at any moment, and is responsible for communicating policy decisions from
the control center to each UAV by triggering mode changes. The per-stream
LocalResourceManager component is responsible for instructing the Qosket
components to adapt their internal QoS requirements according to the mode
in which the UAV is currently operating.

2. Define interactions between components, which involves keeping track
of the types of each component’s ports and ensuring that components which
must be interconnected have matching ports defined. In the UAV example, this
involves connecting the different components that comprise a single stream
in the correct order since some components (such as DeCompressQosket)
do the reverse of an operation performed by another component (such as
CompressQosket). The manager components need to be connected to receive
monitoring information about the existing QoS in each stream of image data.

3. Compose the UAV application by defining CCM deployment de-
scriptors, which involves selecting a set of component implementations from a
library of available implementations, describing how to instantiate component

instances using these component implementations, and specifying connections
between component instances. In the UAV example, this first involves com-
bining the different components that comprise a single stream of images into
a single assembly, represented by an XML descriptor. The complete UAV ap-
plication is then created by making copies of this file to represent each UAV
in flight.

4. Deploy the UAV application onto its runtime platform, which in-
volves ensuring that the implementation artifacts and the associated deploy-
ment descriptors are available on the actual target platform, and initiating the
deployment process using the standard OMG D&C [5] framework and tools.
In the UAV example, this involves taking the hand-written XML descriptors
and deploying the application using these descriptors as input.

5. Refine the component-based UAV application, which involves mak-
ing changes to existing component interface definitions or adding new compo-
nent types, as part of enhancing the initial UAV application prototype. In the
UAV example, this involves adding or removing a Qosket component in the
pipeline for a single stream depending on results from empirical evaluation of
the system.

One of the challenges of using just component middleware is that errors of-
ten go undetected until late in the development cycle. When these errors are
eventually detected, moreover, repairing them often involves backtracking to
multiple prior life-cycle steps, which impedes productivity and increases the
level of effort. As a result, the advantages of transitioning from DOC mid-
dleware to component middleware can be significantly obstructed, without
support from higher-level tools and techniques. These observations underscore
the importance of enhancing design-time support for DRE systems built using
component middleware, as well as the importance of automating the deploy-
ment of such systems.

3.2 Resolving the UAV Application Challenges with PICML

As discussed in [10], the use of QoS-enabled component middleware to develop
the UAV application significantly improved upon an earlier DOC middleware
prototype of this application [11]. In the absence of model-driven development
(MDD) tool support, however, a number of significant challenges remain un-
resolved when using component middleware. For concreteness, the remainder
of this section describes five key challenges that arose when the UAV applica-
tion was developed using CCM and CIAQO, and examines how key features of
PICML can be applied to address the limitations associated with developing
QoS-enabled component middleware-based DRE systems, such as the UAV

application.

We use CCM and CIAO as the basis for our research because it is layered on
top of Real-time CORBA, which provides significant capabilities for satisfying
end-to-end QoS requirements of DRE systems [8]. There is nothing inherent
in PICML, however, that limits it to CCM or CIAQO. Likewise, the challenges
described below are generic to component middleware, and not deficiencies of
CCM or CIAO. For example, both J2EE and Microsoft .NET use XML to
describe component assemblies, so the challenges we describe apply to them,
as well.

3.2.1 Accidental Complezities in Component Interface Definition.

IDL for CCM (i.e., CORBA 3.x IDL) defines extensions to the syntax and se-
mantics of CORBA 2.x IDL. Every developer of CCM-based applications must
therefore master the differences between CORBA 2.x IDL and CORBA 3.x
IDL. For example, while CORBA 2.x interfaces can have multiple inheritance,
CCM components can have only a single parent, so equivalent units of com-
position (i.e., interfaces in CORBA 2.x and components in CCM) can have
subtle semantic differences. Moreover, any component interface that needs to
be accessed by component-unaware CORBA clients should be defined as a
supported interface as opposed to a provided interface.

In any system that transitions from an object-based architecture to a component-
based architecture, there is likelihood of simultaneous existence of simple
CORBA objects and more sophisticated CCM components. Design of com-
ponent interfaces must therefore be done with extra care. In the UAV appli-
cation, for example, though the Qosket components receive both allocation
events from the resource managers and images from the Sender and other
Qosket components, they cannot inherit from base components implementing
each functionality. Similarly, the Receiver component interface needs to be
defined as a supported interface, rather than a provided interface.

3.2.2 Solution — Visual Component Interface Definition.

A set of component, interface, and other datatype definitions may be created
in PICML using either of the following approaches:

¢ Adding to existing definitions imported from IDL. In this approach,
existing CORBA software systems can be easily migrated to PICML using
its IDL Importer, which takes any number of CORBA IDL files as input,
maps their contents to the appropriate PICML model elements, and gener-
ates a single XML file that can be imported into GME as a PICML model.
This model can then be used as a starting point for modeling assemblies

and generating deployment descriptors.

e Creating IDL definitions from scratch. In this approach, PICML’s
graphical modeling environment provides support for designing the inter-
faces using an intuitive “drag and drop” technique, making this process
largely self-explanatory and independent of platform-specific technical knowl-
edge. Most of the grammatical details are implicit in the visual language,
e.g., when the model editor screen is showing the “scope” of a definition,
only icons representing legal members of that scope will be available for
dragging and dropping.

CORBA IDL can be generated from PICML, enabling generation of software
artifacts in languages having a CORBA IDL mapping. For each logically sep-
arate definition in PICML, the generated IDL is also split into logical file-type
units. PICML’s interpreter will translate these units into actual IDL files with
#include statements based on the inter-dependencies of the units detected
by the interpreter. PICML’s interpreter will also detect requirements for the
inclusion of canonical CORBA IDL files and generate them as necessary.

Application to the UAV example scenario. By modeling the UAV com-
ponents using PICML, the problems associated with multiple inheritance, se-
mantics of IDL, etc. are flagged at design time. By providing a visual envi-
ronment for defining the interfaces, PICML therefore resolves many problems
described in Section 3.2.1 associated with definition of component interfaces.
In particular, by modeling the interface definitions, PICML alleviates the need
to model a subset of interfaces for analysis purposes, which has the added ad-
vantage of preventing skew between the models of interfaces used by analysis
tools and the interface used in implementations. It also removes the effort
needed to ensure that the IDL semantics are satisfied, resulting in a ~50%
reduction in effort associated with interface definition.

3.2.3 Defining Consistent Component Interactions.

Even if a DRE system developer is well-versed in CORBA 3.x IDL, it is hard to
keep track of components and their types using plain IDL files, which are text-
based and hence provide no visual feedback, i.e., to allow visual comparison to
identify differences between components. Type checking with text-based files
involves manual inspection, which is error-prone and non-scalable. CCM de-
fines the following valid interactions between the ports — Facets, Receptacles,
Event Sources and Event Sinks — of a component: Facet-Receptacle interac-
tions, and Event Source-Event Sink interactions. However, an IDL compiler
will not be able to catch mismatches in the port types of two components that
need to be connected together, since component connection information is not
defined in IDL. This problem only becomes worse as the number of compo-
nent types in a DRE system increases. In our UAV application for example,

10

enhancing the UAV with new capabilities can increase the number of compo-
nent types and inter-component interactions. If a problem arises, developers
of DRE systems may need to revise the interface definitions until the types
match, which is a tedious and error-prone process.

3.2.4 Solution — Semantically Compatible Component Interaction Defini-
tion.

PICML defines the static semantics of a system using a constraint language
and enforces these semantics early in the development cycle, i.e., at design-
time. This type checking can help identify system configuration errors similar
to how a compiler catches syntactic errors early in the programming cycle.
Static semantics refer to the “well-formedness” rules of the language. The
well-formedness rules of a traditional compiler are nearly always based on a
language grammar defining valid syntax. By elevating the level of abstrac-
tion via MDD techniques, however, the corresponding well-formedness rules
of DSMLs like PICML actually capture semantic information, such as con-
straints on composition of models, and constraints on allowed interactions.

let facets = self.connectedFCOs(invoke) in
facets->forAll (i : ProvidedRequestPort |
let supertypes = i.refersTo().oclAsType(gnme::Model).allParents(Set{}) in
(supertypes->one (k: gme::FCO | k.name() = self.refersTo().name())
or self.refersTo().name() = i.refersTo().name()))

Constraint Listing 1: A Receptacle should be connected to a matching Facet

There is a significant difference in the early detection of errors in the MDD
paradigm compared with traditional object-oriented or procedural develop-
ment using a conventional programming language compiler. In PICML, OCL
constraints are used to define the static semantics of the modeling language,
thereby disallowing invalid systems to be built using PICML. In other words,
PICML enforces the paradigm of “correct-by-construction.” For example, the
constraint shown in Constraint Listing 1 is a PICML constraint, that checks
that the type of a receptacle matches either the corresponding facet’s type, or
that the receptacle is a super type of the facet type. This is a good example
of a constraint that ensures the type compatibility of components that are
composed to form an assembly.

Constraints in PICML aren’t necessarily restricted to type conformance. Con-
straint Listing 2 is an existential constraint, i.e., it checks for the presence of
an implementation corresponding to each instance of a component used in an
assembly. Each component type may have different alternate implementations
offering different QoS behavior, and the correct implementation is chosen at
deployment time. Section 3.2.8 describes this process in greater detail. How-
ever, in order to select the correct component implementation at deployment
time, it is critical that each instance of a component be associated with an

11

implementation, and this constraint checks this invariant for every component
instance in the model.

let instances = self.modelParts(Component) in
let monolithicImpls = project.allInstances0f (MonolithicImplementation) in

instances->forAll (x : Component |

let myType = x.ComponentParentType() in

monolithicImpls->exists (impl : MonolithicImplementation |
let interfaces = impl.connectedFCOs(Implements) in
interfaces->size() = 1 and
interfaces->exists (interface : Reference |
interface.refersTo() .name() = myType.name())))

Constraint Listing 2: Every Component should have a corresponding implemen-
tation

Another example of a constraint in PICML is the ability to restrict the flow of
information in a particular direction, i.e., top-down or bottom-up. Attributes
of components in CCM can have default values assigned to them in the im-
plementation. Depending on the context, attributes of components can also
have values propagated to them from outside. This propagation is done using
an “attribute mapping”, which is a mechanism to propagate the value of an
attribute of a higher-order element like an assembly, to one or more attributes
of one of more components inside the assembly. Constraint Listing 3 restricts
this propagation of initial assignment to flow in a strictly top-down fashion,
i.e., to give a behavior that matches the behavior of turning of a top-level
knob affecting the low-level knobs of a system.

let mappings = self.referenceParts (AttributeMapping) in
let children = self.modelParts(ComponentAssembly) in
mappings->forAll (x : AttributeMapping |
let delegates = x.connectedFCOs("dstAttributeMappingDelegate",
AttributeMappingDelegate) in
delegates->forAll (y : FCO |
let delParent : Model = y.parent() in
children->exists (z : ComponentAssembly |
delParent.name() = z.name())))

Constraint Listing 3: AttributeMappings can only be delegated from a high-level
assembly to sub-assemblies, and not vice-versa

By using GME’s constraint manager, PICML constraints can be (1) evaluated
automatically (triggered by a specified modeling event such as attempting a
connection between ports of two components) or on demand, (2) prioritized
to control order of evaluation and severity of violation, and/or (3) applied
globally or to one or more individual model elements

Application to the UAV example scenario. In the context of our UAV
application, the components of a single stream can be modeled as a CCM
assembly. PICML enables the visual inspection of types of ports of compo-
nents and the connection between compatible ports, including flagging er-
ror when attempting connection between incompatible ports. For example,
PICML will flag attempts to connect incompatible LocalResourceManager
receptacles with the facets of the Qoskets in a stream in the UAV scenario.
By constraining the direction of flow of information, PICML also ensures that

12

the global policies that are set by the SystemResourceManager are honored
by the LocalResourceManagers of the individual streams. PICML also dif-
ferentiates different types of connections using visual cues, such as dotted
lines and color, to quickly compare the structure of an assembly. By provid-
ing a visual environment coupled with rules defining valid constructs, PICML
therefore resolves many problems described in Section 3.2.3 with ensuring con-
sistent component interactions. By enforcing the constraints during creation
of component models and interconnections — and by disallowing connections
to be made between incompatible ports — PICML completely eliminates the
manual effort required to perform these kinds of checks.

3.2.5 Generating Valid Deployment Descriptors.

Component developers must not only ensure type compatibility between inter-
connected component types as part of interface definition, but also ensure the
same compatibility between instances of these component types in the XML
descriptor files needed for deployment. This problem is of a larger scale than
the one above, since the number of component instances typically dwarfs the
number of component types in a large-scale DRE system. Moreover, a CCM
assembly file written using XML is not well-suited to manual editing.

In addition to learning IDL, DRE system developers must also learn XML to
compose component-based DRE systems. In our example UAV application,
simply increasing the number of UAVs increases the number of component in-
stances and hence the component interconnections. The increase in component
interconnections is typically not linear with respect to increase in number of
component instances. Any errors in this step are likely to go undetected until
the deployment of the system at run-time.

3.2.6 Solution — Automatic Deployment Descriptor Generation.

In addition to ensuring design-time integrity of systems built using OCL con-
straints, PICML also generates the complete set of deployment descriptors
that are needed as input to the component deployment mechanisms. The de-
scriptors generated by PICML conform to the descriptors defined by the stan-
dard OMG D&C specification [5]. Sidebar 1 shows an example of the types
of descriptors that are generated by PICML, with a brief explanation of the
purpose of each type of descriptor.

Since the rules determining valid assemblies are encoded into PICML via its
metamodel, and enforced using constraints, PICML ensures that the generated
XML describes a valid system. Generation of XML is done in a programmatic
fashion by writing a Visitor class that uses the Visitor pattern to traverse the
elements of the model and generate XML. The generated XML descriptors also

13

Sidebar 1: Generating Deployment Metadata

PICML generates the following types of deployment descriptors based on
the OMG D&C specification:

e Component Interface Descriptor (.ccd) — Describes the interfaces
— ports, attributes of a single component.

e Implementation Artifact Descriptor (.iad) — Describes the imple-
mentation artifacts (e.g., DLLs, executables etc.) of a single component.

e Component Implementation Descriptor (.cid) — Describes a spe-
cific implementation of a component interface; also contains component
inter-connection information.

e Component Package Descriptor (.cpd) — Describes multiple alter-
native implementations (e.g., for different OSes) of a single component.

e Package Configuration Descriptor (.pcd) — Describes a component
package configured for a particular requirement.

e Component Deployment Plan (.cdp) — Plan which guides the run-
time deployment.

e Component Domain Descriptor (.cdd) — Describes the deployment
target i.e., nodes, networks on which the components are to be deployed.

ensure that the names associated with instances are unique, so that individual
component instances can be identified unambiguously at run-time.

Application to the UAV example scenario. In the context of the UAV ap-
plication, the automated generation of deployment descriptors using PICML
not only removes the burden of knowing XML from DRE system developers,
it also ensures that the generated files are valid. Adding (or removing) com-
ponents is as easy as dragging and dropping (or deleting) an element, making
the necessary connections, and regenerating the descriptors, instead of hand-
modifying the existing XML files as would be done without such tool support.
This automation resolves many problems mentioned in Section 3.2.5, where
the XML files were hand-written and modified manually in case of errors with
the initial attempts.

For example, it is trivial to make the ~100 connections in a graphical fash-
ion using PICML, as opposed to hand-writing the XML. All the connections
between components for the UAV application were made in a few hours, and
the XML was then generated instantaneously, i.e. at the click of a button. In
contrast, it required several days to write the same XML descriptors manually.
PICML also has the added advantage of ensuring that the generated XML files
are syntactically valid, which is a task that is very tedious and error-prone to

14

perform manually.

3.2.7 Associating Components with the Deployment Target.

In component-based systems there is often a disconnect between software im-
plementation related activities and the actual target system since (1) the soft-
ware artifacts and the physical system are developed independently and (2)
there is no way to associate these two entities using standard component mid-
dleware features. This disconnect typically results in failures at run-time due to
the target environment lacking the capabilities to support the deployed com-
ponent’s requirements. These mismatches can also often be a source of missed
optimization opportunities since knowledge of the target platform can help (1)
optimizing component implementations, (2) selecting appropriate component
implementations to be deployed and (3) customizing the middleware for the
appropriate target environment. In our UAV application, components that
reside on a single UAV can use collocation facilities provided by ORBs to
eliminate unnecessary (de)marshaling. Without the ability to associate com-
ponents with targets, errors due to incompatible component connections and
incorrect XML descriptors are likely to show up only during actual deployment
of the system.

3.2.8 Solution — Deployment Planning.

In order to satisfy multiple QoS requirements, DRE systems are often de-
ployed in heterogeneous execution environments. To support such environ-
ments, component middleware strives to be largely independent of the specific
target environment in which application components will be deployed. The
goal is to satisfy the functional and systemic requirements of DRE systems by
making appropriate deployment decisions that account for key properties of
the target environment, and retain flexibility by not committing prematurely
to physical resources.

To support these needs, PICML can be used to specify the target environment
where the DRE system will be deployed, which includes defining: (1) Nodes,
where the individual components and component packages are loaded and
used to instantiate those components, (2) Interconnects among nodes, to
which inter-component software connections are mapped, to allow the instan-
tiated components to communicate, and (3) Bridges among interconnects,
where interconnects provide a direct connection between nodes and bridges to
provide routing capability between interconnects. Nodes, interconnects, and
bridges collectively represent the target environment.

Once the target environment is specified via PICML, allocation of component
instances onto nodes of the target environment can be performed. This ac-

15

tivity is referred to as component placement, where systemic requirements of
the components are matched with capabilities of the target environment and
suitable allocation decisions are made. Allocation can either be: (1) Static,
where the domain experts know the functional and QoS requirement of each
of the components, as well as knowledge about the nodes of the target envi-
ronment. In such a case, the job of the allocation is to create a deployment
plan comprising the components—node mapping specified by the domain ex-
pert, or (2) Dynamic, where the domain expert specifies the constraints on
allocation of resources at each node of the target environment, and the job of
the allocation is to choose a suitable component—node mapping that meets
both the functional and QoS requirement of each of the components, as well
as the constraints on the allocation of resources.

PICML currently provides facilities for specifying static allocation of compo-
nents. In order to compute the static deployment plan for the components and
the component assemblies, PICML makes use of the following inputs specified
in the model:

e Component Implementation Capabilities. Component middleware pro-
vide multiple implementations with different QoS characteristics for the
same component interface. PICML provides mechanisms to annotate com-
ponent implementations with capabilities at the modeling level.

e Component Middleware Target Capabilities. As described in Sec-
tion 1, DRE systems are deployed in heterogeneous target environments,
each of them exposing various capabilities like processing power, memory
for the applications to be operated. PICML allows such capabilities to be
specified while modeling the target environment in which the component
middleware is going to be deployed.

e Component Implementation Selection Requirements. Different uses
of the same component might need to perform under differing QoS require-
ments. PICML allows the system integrators to specify component imple-
mentation selection requirements with each use of a component in an as-
sembly.

As shown in Figure 2, domain experts can visually map the components with
the respective target nodes, as well as provide additional hints, such as whether
the components need to be process-collocated or host-collocated, provided
two components are deployed in the same target node. PICML generates a
deployment plan which uses the component implementation capabilities, the
target capabilities and the component implementation selection requirements,
and generates the mapping of components to nodes. This deployment plan
is then used by the CIAO run-time deployment engine to perform the actual
deployment of components to nodes.

Application to the UAV example scenario. In the context of the UAV

16

COMPONENT REPOSITORY

U

QoS Specs | |[Dependencies

. Deployer
Configured Packages

Access)
F'Q Anhfy Exact

(Configurations) Deployment
Plan
= / Planner
5 s B
R Gd -
Desktop Printer Laptop compu
—_—
- Bridge _
‘L-ﬂ-u Target Environment
¢ @ Access Creates
Resources
Firewall

)

Domain Admintrator
Fig. 2. Component Deployment Planning

example, PICML can be used to specify the mapping between the different
Qosket components and the target environment, i.e., the UAVs, in the path
from each UAV to the Receiver component at the control center. By model-
ing the target environment in the UAV example using PICML, therefore, the
problem with a disconnect between components and the deployment target
described in Section 3.2.7 can be resolved. In case there are multiple possible
component—node mappings, PICML can be used to experiment with different
combinations since it generates descriptors automatically. PICML thus com-
pletely eliminates the manual effort involved in creating the deployment plan
when there is a need to test different deployment scenarios.

3.2.9 Automating Propagation of Changes Throughout a DRE System.

Making changes to an existing component interface definition can be painful
since it may involve retracing all the steps of the initial development. It also
does not allow any automatic propagation of changes made in a base compo-
nent type to other portions of the existing infrastructure, such as the compo-
nent instances defined in the descriptors. Moreover, it is hard to test parts of
the system incrementally, since it requires hand-editing of XML descriptors
to remove or add components, thereby potentially introducing more prob-
lems. The validity of such changes can be ascertained only during deploy-
ment, which increases the time and effort required for the testing process.
In our component-based UAV application, for example, changes to the basic
composition of a single image stream are followed by laborious changes to each
individual stream, impeding the benefits of reuse commonly associated with

17

component-based development.

3.2.10 Solution — Hierarchical Composition.

In a complex DRE system with thousands of components, visualization be-
comes an issue because of the practical limitations of displays, and the lim-
itations of human cognition. Without some form of support for hierarchical
composition, observing and understanding system representations in a visual
medium does not scale. To increase scalability, PICML defines a hierarchy
construct, which enables the abstraction of certain details of a system into
a hierarchical organization, such that developers can view their system at
multiple levels of detail depending upon their needs.

The support for hierarchical composition in PICML not only allows DRE
system developers to visualize their systems, but also allows them to compose
systems from a set of smaller subsystems. This feature supports unlimited
levels of hierarchy (constrained only by the physical memory of the system used
to build models) and promotes the reuse of component assemblies. PICML
therefore enables the development of repositories of predefined components
and subsystems.

The hierarchical composition capabilities provided by PICML are only a logical
abstraction, i.e., deployment plans generated from PICML (described in 3.2.8)
flatten out the hierarchy to connect the two destination ports directly (which
if not done will introduce additional overhead in the communication paths
between the two connected ports), thereby ensuring that at run-time there
is no extra overhead that can be attributed to this abstraction. This feature
extends the basic hierarchy feature in GME, which allows a user to double-
click to view the contents of container objects called “models.”

Application to the UAV example scenario. In the UAV example, the
hierarchy abstraction in PICML allows the composition of components into
a single stream assembly as shown in Figure 3, as well as the composition
of multiple such assemblies into a top-level scenario assembly as shown in
Figure 4.

As a result, large portions of the UAV application system can be built using
reusable component assemblies. In turn, this increased reuse allows for au-
tomatic propagation of changes made to an subsystem to all portions of the
system where this subsystem is used, resolving many problems mentioned in
Section 3.2.9. PICML therefore helps prevent mismatches and removes dupli-
cation of subsystems.

Hierarchical assemblies in PICML also help reduce the effort involved in mod-
eling of component assemblies by a factor of IN:1, since N usages of a basic

18

JAV - [Stream1

\V/UAV/FourStreams/FourStreams/]

G Ele Edt Vew Wndow Hep BEE
|véildE@axAa(+t i #vE A EEDEED 2| MPOEY
R I Name[Steami [Componentassembl Aspect|Packaging | Type: [Sueam Zoom: [125% v 8
w & Aosresate | nhertancs | Meta |
= | [FourSteams |
Rl
® (@2 tedaceDeions
Q Q0 PredefinedTypes
& . £ & U
[j| ResourceAllocationEvt PolicyChangeEjt ImageGenerationEvt B g;“ﬂ“'f:ﬁ:;“’:m
delegatesTo image:)
delegatesTo g u"m’g;ﬁ’;""m’”
| CropQosket i FES
- 8 [CropQosket] -
i = I Sream3
iz Oulgo “enmt; 0 Sreamt
ol
2
£ 18 SingeStream
Sender image: = !ﬂgstream
[Sender | _— 1 14 CompressQosket
| T 14 CompressionQosPrecictor
| ScaleQosket i =t zzvmgﬂ e
[ScaleQosket ehit i 71 Dw;?w%ma
qosLe invore 4 mageGenerationEvt
1 1 RM
invoke G PolicyCrangeEnt
&) i 4 ResourceAlocationEvt
CompressionQosPredictor ‘"3”““ | 1 1 ScaeQosket
[CompressionQosPredictor | I T :‘ SehaGosRreddar
imag 1 I Sender
qosL
iy - - [CompressQosket]
it CroppingQosPredictor imag
[CroppingQosPredictor]
Scallr?gQusPrec.ilctor DiffServQosket
[ScalingQosPredictor] [DiffServQosket | g
i >
| |] e 2]
| = eI [125% PIcHL 1223 AN

Fig. 3. Single Image Stream Assembly

Id Fle Edt Vew Vindow bep
|/ed=@%X A0 st VS A EETDTED 2 |[MPDorEY
X T Name] B P =] Base: [WA
Y
#
o publish
LY Resou mage
deliverTo
& delvdrro
L77 Stream1
€ lgetiverTo F'
3 3 = defverTo
publish & Image - Publish
+; ' Resou
dpliverTo |
feliverTo Stream2 il =
o) 2 resou outgo
pupiisnfublish o
[SystemResourceManager | Pudlish [MultiReceiver]
eliverTo
Stream3
c2
deierTo
publish
;M
Stream4
'@ I)
Reacly

-~ DT [125% picwL [12:16 AM]

Adgregate | inhertance | Meta |

|
B

Q8 ntefaceDefritions

(30 PredefinedTypes
= UAY,

= |8 FouStreams

£ 18] FouStreams

1 1 caoc
81 PublishConnector
T
T i Sream
T i sream2
T 04 Sream3
1 [Sreamd
ot

2

SingeStream

6 Stream
1 14 CompressQosket
1 1 CompressionGosPredictor
T 1 CopQosket
T 14 CroppinglosPredictor
T 1l DffServaosket
{4 ImageGenerationEvt
1 1 (RM
{4 PolicyChangsEvt
% ResourceAlocationEvt
1 1 SealeQosket
T 14 ScaingGosPredictor
T 0 Sender

i]

Fig. 4. UAV Application Assembly Scenario

assembly can be replaced with N instances of the same assembly, as well as
providing for automatic generation of descriptors corresponding to the N in-
stances. This technique was used to model a single stream of image from a
UAV, and this single assembly was used to instantiate all the four streams of

data, as shown in Figure 4.

19

4 Related Work

This section summarizes related efforts associated with developing DRE sys-

tems using an MDD approach and compares these efforts with our work on
PICML.

Cadena Cadena [12] is an integrated environment developed at Kansas
State University (KSU) for building and modeling component-based DRE sys-
tems, with the goal of applying static analysis, model-checking, and lightweight
formal methods to enhance these systems. Cadena also provides a component
assembly framework for visualizing and developing components and their con-
nections. Unlike PICML, however, Cadena does not support activities such
as component packaging and generating deployment descriptors, component
deployment planning, and hierarchical modeling of component assemblies. To
develop a complete MDD environment that seamlessly integrates component
development and model checking capabilities, we are working with KSU to
integrate PICML with Cadena’s model checking tools, so we can accelerate
the development and verification of DRE systems.

VEST and AIRES The Virginia Embedded Systems Toolkit (VEST) [13]
and the Automatic Integration of Reusable Embedded Systems (AIRES) [14]
are MDD analysis tools that evaluate whether certain timing, memory, power,
and cost constraints of real-time and embedded applications are satisfied.
Components are selected from pre-defined libraries, annotations for desired
real-time properties are added, the resulting code is mapped to a hardware
platform, and real-time and schedulability analysis is done. In contrast, PICML
allows component modelers to model the complete functionality of components
and intra-component interactions, and doesn’t rely on predefined libraries.
PICML also allows DRE system developers the flexibility in defining the tar-
get platform, and is not restricted to just processors.

ESML The Embedded Systems Modeling Language (ESML) [15] was devel-
oped at the Institute for Software Integrated Systems (ISIS) to provide a
visual metamodeling language based on GME that captures multiple views of
embedded systems, allowing a diagrammatic specification of complex models.
The modeling building blocks include software components, component in-
teractions, hardware configurations, and scheduling policies. The user-created
models can be fed to analysis tools (such as Cadena and AIRES) to perform
schedulability and event analysis. Using these analyses, design decisions (such
as component allocations to the target execution platform) can be performed.
Unlike PICML, ESML is platform-specific since it is heavily tailored to the

20

Boeing Boldstroke PRiSm QoS-enabled component model [1,16]. ESML also
does not support nested assemblies and the allocation of components are tied
to processor boards, which is a proprietary feature of the Boldstroke compo-
nent model. We are working with the ESML team at ISIS to integrate the
ESML and PICML metamodels to produce a unified DSML suitable for mod-
eling a broad range of QoS-enabled component models.

Ptolemy IT Ptolemy II [17] is a tool-suite from the University of California
Berkeley (UCB) that supports heterogeneous modeling, simulation, and design
of concurrent systems using an actor-oriented design. Actors are similar to
components, but their interactions are controlled by the semantics of models of
computation, such as discrete systems. The set of available actors is limited to
the domains that are natively defined in Ptolemy. Using an actor specialization
framework, code is generated for embedded systems. In contrast, PICML does
not define a particular model of computation. Also, since PICML is based
on the metamodeling framework of GME, it can be customized to support
a broader range of domains than those supported by Ptolemy II. Finally,
PICML targets component middleware for DRE systems and can be used with
any middleware technology, as well as any programming language, whereas
Ptolemy II is based on Java, with preliminary support for C.

5 Concluding Remarks

Although component middleware represents an advance over previous genera-
tions of middleware technologies, its additional complexities threaten to negate
many of its benefits without proper tool support. To address this problem,
we describe the capabilities of the Platform-Independent Component Model-
ing Language (PICML) in this paper. PICML is a domain-specific modeling
language (DSML) that simplifies and automates many activities associated
with developing, and deploying component-based DRE systems. In particu-
lar, PICML provides a graphical DSML-based approach to define component
interface definitions, specify component interactions, generate deployment de-
scriptors, define elements of the target environment, associate components
with these elements, and compose complex DRE systems from such basic sys-
tems in a hierarchical fashion.

To showcase how PICML helps resolve the complexities of QoS-enabled com-
ponent middleware, we applied it to model key aspects of an unmanned air ve-
hicle (UAV) application that is representative of emergency response systems.
Using this application as a case study, we showed how PICML can support
design-time activities, such as specifying component functionality, interac-
tions with other components, and the assembly and packaging of components,

21

and deployment-time activities, such as specification of target environment,
and automatic deployment plan generation.

Acknowledgments

Portions of the work in this paper was done during Krishnakumar’s internship
at BBN Technologies, in Cambridge, MA. We would like to thank Prakash
Manghwani, Matt Gillen, Praveen Sharma, Jianming Ye, Joe Loyall, Richard
Schantz, and George Heineman at BBN for providing us with the component-
based UAV application used as the motivating example in this paper. We
would also like to thank Nanbor Wang, Venkita Subramonian, and Christopher
Gill from Washington University for their efforts in implementing the original
CIAO, and subsequent extensions that support Real-time CORBA features
with CCM.

References

[1] D. C. Sharp, W. C. Roll, Model-Based Integration of Reusable Component-
Based Avionics System, in: Proc. of the Workshop on Model-Driven Embedded
Systems in RTAS 2003, 2003.

[2] J. Greenfield, K. Short, S. Cook, S. Kent, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, John Wiley &
Sons, New York, 2004.

[3] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-integrated development
of embedded software, Proceedings of the IEEE 91 (1) (2003) 145-164.

[4] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
G. Karsai, Composing Domain-Specific Design Environments, IEEE Computer
(2001) 44-51.

[5] Object Management Group, Deployment and Configuration Adopted
Submission, OMG Document ptc/03-07-08 Edition (Jul. 2003).

[6] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro, G. Duzan,
Component-Based Dynamic QoS Adaptations in Distributed Real-Time and
Embedded Systems, in: Proc. of the Intl. Symp. on Dist. Objects and
Applications (DOA’04), Agia Napa, Cyprus, 2004.

[7] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P. Loyall,
R. E. Schantz, C. D. Gill, QoS-enabled Middleware, in: Q. Mahmoud (Ed.),
Middleware for Communications, Wiley and Sons, New York, 2003, pp. 131—
162.

22

[8] D. C. Schmidt, D. L. Levine, S. Mungee, The Design and Performance of Real-
Time Object Request Brokers, Computer Communications 21 (4) (1998) 294—
324.

[9] Object Management Group, CORBA Components, OMG Document
formal/2002-06-65 Edition (Jun. 2002).

[10] N. Wang, C. Gill, D. C. Schmidt, V. Subramonian, Configuring Real-time
Aspects in Component Middleware, in: Lecture Notes in Computer Science:
Proc. of the International Symposium on Distributed Objects and Applications
(DOA’04), Vol. 3291, Springer-Verlag, Agia Napa, Cyprus, 2004, pp. 1520-1537.

[11] R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues and
Y. Krishnamurthy and 1. Pyarali, Flexible and Adaptive QoS Control
for Distributed Real-time and Embedded Middleware, in: Proceedings of
Middleware 2003, 4th International Conference on Distributed Systems
Platforms, IFIP/ACM/USENIX, Rio de Janeiro, Brazil, 2003.

[12] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad, Cadena: An Integrated
Development, Analysis, and Verification Environment for Component-based
Systems, in: Proceedings of the 25th International Conference on Software
Engineering, Portland, OR, 2003.

[13] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
B. Ellis, VEST: An Aspect-based Composition Tool for Real-time Systems,
in: Proceedings of the IEEE Real-time Applications Symposium, IEEE,
Washington, DC, 2003, pp. 58—69.

[14] S. Kodase, S. Wang, Z. Gu, K. G. Shin, Improving Scalability of Task Allocation
and Scheduling in Large Distributed Real-time Systems using Shared Buffers,
in: Proceedings of the 9th Real-time/Embedded Technology and Applications
Symposium (RTAS), IEEE, Washington, DC, 2003.

[15] G. Karsai, S. Neema, B. Abbott, D. Sharp, A Modeling Language and Its
Supporting Tools for Avionics Systems, in: Proceedings of 21st Digital Avionics
Systems Conf., 2002.

[16] W. Roll, Towards Model-Based and CCM-Based Applications for Real-Time
Systems, in: Proceedings of the International Symposium on Object-Oriented
Real-time Distributed Computing (ISORC), IEEE/IFIP, Hakodate, Hokkaido,
Japan, 2003.

[17] J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, Ptolemy: A Framework
for Simulating and Prototyping Heterogeneous Systems, International Journal
of Computer Simulation, Special Issue on Simulation Software Development
Component Development Strategies 4.

23

