
Towards Composable Distributed Real-time and Embedded Software

Krishnakumar Balasubramanian, Nanbor Wang, Chris Gill Douglas C. Schmidt

{kitty,nanbor,cdgill}@cs.wustl.edu schmidt@uci.edu

Department of Computer Science Electrical & Computer Engineering

Washington University, St.Louis University of California, Irvine

Abstract

The complexity of building and validating software is a grow-

ing challenge for developers of distributed real-time and em-

bedded (DRE) applications. While DRE applications are in-

creasingly based on commercial off-the-shelf (COTS) hard-

ware and software elements, substantial time and effort are

spent integrating these elements into applications. Integration

challenges stem largely from a lack of higher level abstrac-

tions for composing complex applications. As a result, consid-

erable application-specific “glue code” must be rewritten for

each successive DRE application.

This paper makes three contributions to the study of com-

posing reusable middleware from standard components in

DRE applications: it (1) describes the limitations of current

approaches in middleware composition, (2) discusses the min-

imum set of requirements required of reusable middleware

components, and (3) presents recurring patterns for software

composition as applied to CIAO, our open-source component

model implementation.

1 Introduction

1.1 Emerging Trends

With the proliferation of enterprise component technologies,

e.g., the CORBA Component Model (CCM) [1], Microsoft

.NET [2], and Enterprise Java Beans (EJB) [3], large-scale dis-

tributed applications are increasingly being developed and de-

ployed in a modular fashion. Modularity elevates the level of

abstraction used to program complex applications, encourages

systematic reuse, and enhances maintainability over an appli-

cation’s lifecycle. Projects also increasingly rely upon com-

mercial off-the-shelf (COTS) components and frameworks as

the basis for their distributed software infrastructure.

Although reuse of primitive components is important, it is

even more useful to compose them into higher-level compo-

nents and ultimately into complete applications. Composition

of software components is not as mature as assembly of hard-

ware components (such as motherboards composed from in-

tegrated circuits) or mechanical components (such as automo-

biles or aircrafts components from standard parts). Neverthe-

less, in the long-term we expect it will be possible to develop

complex software applications built largely by composing and

customizing pre-existing components.

1.2 Key Challenges

Although component-based software development techniques

are maturing for business and desktop systems, they are less

mature for mission-critical domains, such as distributed real-

time and embedded (DRE) applications. This paper focuses

on the following challenges involved in QoS-enabled software

composition in the context of emerging component models:

The need to reduce tight coupling of component meta-

data with component functionality. Component metadata

describes the systemic information for running a component

instance, such as the list of files used to implement the com-

ponent, versioning information, or the required privileges for

a component to function. Moreover, a reusable components

for DRE applications can be applied in a variety of contexts

with differing QoS requirements, such as the deadlines for var-

ious time-critical functionality, concurrency levels, and type

of synchronization mechanisms. These systemic aspects that

allow a component to be reused in multiple contexts need to

be separated from component functionality into metadata and

described in a manner that can be understood by component

users and associated tools.

The need to specify component QoS requirements in a

context-insensitive manner. A component in a DRE appli-

cation may be functionally correct, yet can malfunction due

to failure of assumptions stemming from the lack of context-

dependent information [4], such as concurrency strategies,

component lifetime (e.g., persistent vs. transient), type of in-

vocation (e.g., synchronous or asynchronous), and the QoS

of middleware services, such as event channels [5]. Without

specifying and enforcing the QoS requirements in composition

metadata, component execution environments make unstated

assumptions on QoS properties components need and make it

hard to enforce and adapt QoS properties in open systems.

The need to validate component implementation proper-

ties. A component implementation’s properties (e.g., the im-

plementation language, version of the component, level of

privileges required, and dependencies on other components)

1



must be validated. Validation is required for each individual

component, as well as the application and system levels.

The need to ensure seamless deployment of a complex soft-

ware system. To reduce the complexity of installing and

maintaining complex applications, it is necessary that all the

individual components be deployed using the same framework

and follow the same guidelines. If each individual compo-

nent needs a different mechanism for deployment, the costs

of maintenance outweigh the advantages gained by develop-

ing applications in a component oriented fashion. It is also

hard to track the dependencies of components upon other com-

ponents and ensure that inter-dependent components are ini-

tialized in a particular order. To ease this task, components

need to be packaged as a hierarchy that provides various infor-

mation about the related components and captures dependen-

cies present in component initialization and deployment. This

packaging is necessary so that the deployment process can be

automated, or at least controlled by an administrator.

1.3 Solution Approach

This paper describes how we address the challenges outlined

in Section 1.2 in the implementation of Component-Integrated

ACE ORB (CIAO), which is an extention to the CORBA Com-

ponent Model (CCM) [1], as follows:

Reduced coupling by separating metadata from function-

ality. CCM specifies and CIAO implements a framework

based on eXtensible Markup Language (XML) [6] mech-

anisms to define the grammar for describing component

features. Our XML-based approach to describing compo-

nent properties and systemic metadata makes components

amenable to composition from (1) independent portions of a

larger application and (2) future applications that can parse

XML. This approach helps to decouple the functional aspects

of a component-based application from the underlying QoS

aspects and configuration details, thereby increasing composi-

tion flexibility and systematic reuse. In the CIAO project, we

specify metadata for components via XML, using its content-

agnostic metalanguage properties to express QoS configura-

tion templates and conforming configuration files. Section 4.1

describes how we decouple metadata from functionality in

CIAO.

Context-insensitive specification of QoS requirements. In

CIAO, a component’s dependencies are specified explicitly

using metadata present with each component, thereby re-

ducing the amount of implicit contextual information. This

design helps make the implementation assumptions explicit,

thereby ensuring that the environment in which the compo-

nent executes can either satisfy the assumptions or fail grace-

fully. CIAO extends CCM XML Document Type Definitions

(DTDs) to declare critical QoS parameters of component-

based DRE applications and to specify properties of com-

ponents defined by the CCM. There is considerable flexibil-

ity in specification of QoS requirements so that the require-

ments make sense from the perspective of a component, as

well as from the end-to-end perspective needed for configur-

ing a complete application. Section 4.2 describes how we sup-

port context-insensitive specification of QoS requirements in

CIAO.

Validation of component configurations. After component

properties are specified, their configurations must be validated

at deployment time. In the CIAO project, default attributes

are generated by a component-enabled Component Implemen-

tation Definition Language (CIDL) compiler (Section 3.1) as

part of the metadata for every component. These attributes

can be modified or extended by users. XML DTDs can be

used to (re)validate metadata attributes before components are

deployed, thereby avoiding exceptions during run-time. In ad-

dition, CIAO provide methods to validate (1) configurations

of components, (2) privileges of components, and (3) QoS

properties of the system both during and after an application

is composed from a set of component building blocks. Sec-

tion 4.3 describes how we validate component configurations

in CIAO.

Component packaging and deployment. After specifica-

tion and validation, component implementations need to be

packaged so that they can be deployed. Packaging involves

grouping the component implementations – typically stored in

dynamic link libraries (DLLs) – together with metadata that

describes properties of each particular implementation. Pack-

aged components are in “passive mode,” i.e., all their func-

tionality is present, but they are inert. To perform their func-

tions at run-time, components must be made “active,” and

inter-connections between components established. Deploy-

ment mechanisms are responsible for transitioning compo-

nents from passive to active mode. Section 4.4 describes how

component packaging and deployment is performed in CIAO.

2 Overview of Components and Com-

ponent Models

Some of the capabilities that are shared among most compo-

nent models are as follows:

Multiple views of a component: Each component model

specifies a set of interfaces that a component can export to its

clients. These interfaces vary in the capabilities that they offer.

It is therefore possible for a single component to play multiple

roles to the component’s clients at the same time. Moreover,

a client can navigate from one view to another by using the

introspection interfaces provided by the component.

2



Execution environment: Each component model defines an

environment, known as a container, within which components

can be instantiated and run. Containers shield components

from low-level details of the underlying middleware. They

are also responsible for locating and/or creating component

instances, interconnecting components, and enforcing compo-

nent policies, such as life-cycle, security, and persistence.

Component identity: Component models have mechanisms

to identify their components uniquely. For example, .NET

uses public key cryptography tokens to tag each component’s

interface and identify it uniquely across different software do-

mains. EJB uses the Java Naming and Directory Interface

(JNDI), which encapsulates low-level naming services such as

LDAP, NIS, and DNS. EJB components are identified by hi-

erarchical namespaces which use a directory naming scheme

typically associated with an organization’s Internet domain.

The CCM uses DCE “universally unique ids” (UUIDs) to

identify component implementations. Section 3 explains other

capabilities that the CCM provides to identify components.

3 Overview of the CCM and CIAO

3.1 Key Capabilities of the CCM

The CORBA Component Model (CCM) is an Object Manage-

ment Group (OMG) specification that standardizes the devel-

opment of component-based applications in CORBA. Since

the CCM uses CORBA’s object model as its underlying object

model, developers are not tied to any particular language or

platform for their component implementations.

Facets


ComponentServer


Container


ComponentHome


ORB Middleware


Operating System


Transaction
 Persistence
 Events
 Security
 QoS


Component


Container


ComponentHome


Component
 Component
 Component
Receptacle


External Interfaces


Figure 1: Key Elements in the CORBA Component Model

Key elements of the CCM include:

• Component, the basic building block used to encapsulate

application functionality

• ComponentHome, a factory that creates and manages

components

• Container, which provides components with an abstrac-

tion of the underlying middleware and regulate their

shared access to the middleware infrastructure,

• Component Implementation Framework, which de-

fines the programming model for constructing component

implementations, using the Component Implementation

Definition Language (CIDL) descriptions for automating

generation of programming skeletons,

• Component server, which groups components and con-

tainers together to form an executable program.

• ORB Services, which provide common middleware ser-

vices, such as events, security and persistence.

Figure 1 illustrates some of the above described elements.

The remainder of this section explains why these elements are

needed in the CCM by illustrating the key software develop-

ment challenges they address.

3.1.1 Reusing Commonality in Software Applications

Context: A family of applications exhibiting commonality

that can be refactored into reusable units, each of which offers

specific functionality.

Problem: If application software is implemented in a mono-

lithic fashion, it is hard to identify and refactor common

functionality among related applications. Choosing module

boundaries is hard without appropriate abstractions for de-

scribing functionality. Lack of functional abstractions leads to

unnecessary duplication across different modules and prevents

systematic reuse.

CCM Solution → Component: Define a component ab-

straction that serves as the building block for the structure of

software applications, as well as the candidate for demarcat-

ing modularity and functionality. The capabilities of a CCM

component are defined using extensions to OMG’s CORBA

2.x Interface Definition Language (IDL).

3.1.2 Deoupling Components and Middleware

Context: Development of component software relies on ser-

vices provided by the middleware.

Problem: In earlier generation middleware based on object

models, programmers were responsible for connecting to and

configuring the policies of the underlying middleware. For

example, before the advent of the CCM, CORBA developers

had to explicitly bind to and configure the policies of mid-

dleware entities such as event channels and security services.

These manual programming activities required developers to

(re)write substantial amounts of “glue-code,” which was often

3



larger than that required to use the functionality. These activi-

ties were error-prone since they required application develop-

ers to manage low-level details of the underlying middleware.

CCM Solution → Containers: The container abstraction

provides the context in which components run. A container

acts as a bridge between the low-level middleware and a com-

ponent by interacting with underlying middlware based on the

policies defined in the component. A container also provides

an execution environment for components, e.g., it defines in-

terception points where various run-time policies such as se-

curity can be imposed and validated. Components can also

use the capabilities provided by the containers to avoid undue

dependence on the underlying middleware.

3.1.3 Specifying Component Interconnections

Context: A complex system consisting of individual com-

ponents that must interoperate with each other at run-time.

Problem: A component can provide functionality at differ-

ent granularities. In software developed using object models, a

one-to-one association typically exists between an object and

the roles played by the object i.e., a user of an object either

gets all the functionality and the artifacts of that functional-

ity or nothing. In complex software applications, however, a

one-to-one association of component and component roles can

result in an unwieldy proliferation of interfaces that must be

managed explicitly by client application developers.

CCM Solution → Ports: Define a port abstraction that can

expose multiple views of a component to clients, based on con-

text and functionality. CCM ports define a set of connection

points between components to expose various roles supported

by a component interface. These port mechanisms specify the

interaction model among interdependent components.

3.1.4 Configuring Components

Context: A system where a component needs to be config-

ured differently depending on the context in which it is used.

Problem: As the number of component configuration para-

meters and options increase, it can become overwhelmingly

complex to configure applications consisting of many individ-

ual components. The problem stems not only from the num-

ber of alternative combinations, but also from the disparate

interfaces for modifying these configuration parameters. Ob-

ject models have historically required application developers

to write large amounts of “glue code” to interconnect and con-

figure components. In addition to being tedious and error-

prone, this coding process exposes the application developers

to low-level details of the underlying middleware.

CCM Solution → Assembly: Define an assembly abstrac-

tion to group components and characterize their metadata that

describes the components present in the assembly. Each com-

ponent’s metadata in turn describes the features available in it

(i.e., properties) or the features that it requires (i.e., a depen-

dency). After an assembly is defined, the task of modifying the

parameters need not involve writing glue code. Instead, meta-

programming techniques [7] can be applied to generate code

to configure the component in a context-dependent fashion,

due to the decoupling of the properties of components and the

code needed to configure these properties in the components.

In CCM assemblies are defined using XML DTDs, which

provide an implementation-independent mechanism for de-

scribing component properties. With the help of these XML

DTD templates, it is possible to generate default configura-

tions for CCM components. These configurations can preserve

the required QoS properties [8] and establish the necessary

configuration and interconnection among the components.

3.1.5 Resolving Dependencies Automatically

Context: Run-time deployment of distributed applications

built using components as the core software building blocks.

Problem: Any non-trivial software system consists of com-

ponents with various dependencies, such as reliance on spe-

cific other components, order of component initialization, or

domain-specific requirements (e.g., required sensor rate in the

avionics domain [9]). Resolving these dependencies manually

does not scale as the number of components in a system grows.

Likewise, ignoring or underspecifying these dependencies can

result in an unstable system if the system run-time assumes

that components are independent and then instantiates them in

an invalid order. For example, the wheels of a carrier-based

fighter aircraft must open before the aircraft tries to land.

CCM Solution → Deployment application: Define a de-

ployment application that is responsible for managing the de-

pendencies among interdependent components. A deployment

application can ensure that component interconnections are es-

tablished correctly and in the right order by using metadata

that capture these dependencies, along with information about

the interconnections expressed via CCM ports.

3.1.6 Evolving Component Software

Context: Software applications that have been partitioned

into many individual components.

Problem: Although partitioning a system into a collection of

individual components avoids the many problems discussed in

Section 3.1.1, it can be a maintenance problem. For example,

the person-hours needed to evolve complex applications in-

creases considerably as the number of individual components

in a system increases. This problem is exacerbated by the fact

4



that it is hard to determine the relationship between a compo-

nent and its running context solely based on the presence of a

component in a live system.

CCM Solution → Component servers: Define a compo-

nent server abstraction responsible for aggregating the “physi-

cal” (i.e., implementation of component instances) entities into

“logical” (i.e., functional) entities of a system. A component

server is equivalent to a server process in an object model.

3.2 Key Capabilities of CIAO

The Component-Integrated ACE ORB (CIAO) developed at

Washington University, St. Louis extends the CCM. CIAO is

designed to bring the component-oriented development par-

adigm to DRE application developers by abstracting DRE-

critical systemic aspects, such as real-time policies, as instal-

lable/configurable units. Promoting these DRE-critical aspects

as first-class metadata disentangles the code that controls these

systemic aspects from application logic. It also makes is easier

to compose components into DRE applications flexibly. Since

mechanisms to support various DRE-critical systemic aspects

can be validated using tools that analyze and synthesize these

aspects at a higher level of abstraction, CIAO also makes con-

figuring and managing these aspects easier [10].

The CIAO implementation is based on TAO, our open-

source, high-performance, highly configurable Real-time

CORBA ORB that implements key patterns [11] to meet

the demanding QoS requirements of distributed applications.

CIAO enhances TAO to simplify the development of DRE ap-

plications by enabling developers to declaratively provision

QoS policies end-to-end when assembling a system. Figure 2

Component Server

CIAO Deployment &
Configuration
Mechanism

Component Assembly

RT-ORB
QoS

Mechanism
Plug ins

QoS
Adaptation

QoS
Mechanism

Plug ins

QoS Policies

Component Connection
Specifications

Component & Home Impls

Container

CORBA
Component

Component

Home

Real-time POA

QoS Property

Adaptor

QoS Policies

R
e

fl
e

c
t

QoS
Adaptation

Container

CORBA

Component

Component

Home

Real-time POA

QoS Property
Adaptor

QoS Policies

R
e

fl
e

c
t

QoS
Adaptation

Container

CORBA
Component

Component

Home

Real-time POA

QoS Property
Adaptor

QoS Policies

R
e

fl
e

c
t

QoS
Adaptation

Figure 2: Key Elements in CIAO

shows the key extensions to the CCM in CIAO, which include:

Component assembly: CIAO extends the notion of compo-

nent assembly to include server-level QoS provisioning and

implementations for required QoS supporting mechanisms.

CIAO’s extended assembly descriptor definition also enables

specification of QoS provisioning to connect components.

QoS-aware containers: CIAO’s QoS-aware containers pro-

vide a centralized interface for managing provisioned compo-

nent QoS policies and interacting with QoS assurance mecha-

nisms required by the QoS policies.

QoS adaptation: CIAO also supports installation of meta-

programming hooks, such as Portable Interceptor and smart

proxies [7], which can be used to perform dynamic QoS pro-

visioning behaviors that provision QoS resources and adapt

applications to changes in system QoS.

Application developers can use CIAO to decouple QoS pro-

visioning from component implementations and assemble a

DRE application by composing and connecting application

components, QoS specifications, and reusable QoS adaptation

behaviors together. Section 4 describes how CIAO addresses

the challenges of assembling and deploying components.

4 Addressing Key Design Challenges

for Composable DRE Applications

As described in Section 3, the CORBA Component

Model (CCM) specifies the core infrastructure needed for

component-based software development. That section also ex-

plains how the CCM provides capabilities that help them de-

velop composable middleware and applications. The capabil-

ities offered by the CCM, however, are targeted towards en-

terprise and desktop applications, which do not possess key

challenges inherent to developing DRE applications.

To address the challenges in developing components for

DRE applications effectively, we have extended the CCM

specification in CIAO to allow specification of component

properties that are critical to support DRE applications with

stringent QoS requirements. Specifically, CIAO enhances the

CCM to support static QoS provisioning, which allocates re-

sources at various levels in a distributed system a priori. This

capability is useful when DRE application components need to

provide hard real-time guarantees or to simplify the specifica-

tion of QoS as part of a large system. In CIAO, specification of

static QoS provisioning is acheived via extensions to metadata

using XML. Through these extensions, key QoS related prop-

erties of the TAO Real-time CORBA ORB are exposed to de-

velopers of DRE components and applications. The remainder

of this section describes how CIAO addresses the challenges

described in Section 1.2.

4.1 Reducing Coupling by Separating meta-

data from Functionality

Context. Developing DRE middleware that have consider-

able amount of systemic metadata.

5



Problem. DRE middleware has traditionally contained con-

siderable metadata, i.e., information that describes systemic

characteristics. As identified in Section 1, these metadata do

not implement application functionality per se. They are nev-

ertheless important to the proper functioning of an application.

There are two common problems with metadata: 1) tangling

of metadata with component implementations leads to exces-

sive coupling between the two and can impede application

evolution, and 2) specifying metadata in an ad hoc manner

prevents interaction with components developed using other

non-compatible metadata specification mechanisms. Together,

these two factors present the challenge that individual compo-

nents may function satisfactorily, but the composition of these

components into higher-level applications may not meet sys-

temic QoS properties such as time and space constraints. This

problem arises from freezing the interoperability options pre-

maturely, i.e., at the end of the component design cycle rather

than during the application integration cycle.

Solution → Use a meta-language, e.g., XML DTD, to de-

scribe metadata. Describe component metadata separately

from the implementation of the component functionality. The

language used to define metadata should be extensible to al-

low the specification of metadata that is open-ended and sub-

ject to change. Designing a language for extensibility [12] in-

volves tradeoffs (such as level of expressibility, ease of adding

new features, and maintaining backward compatibility) that

must be handled carefully. XML-based meta-language is used

to describe DRE application metadata, while avoiding the ef-

fort required to design a full-fledged language. Using XML to

specify component metadata enables designers and integrators

of DRE applications to separate metadata from the component

implementations, while also enabling the integration and com-

position of third-party code.

Applying the solution in CIAO. CIAO uses ACEXML,

which is an open-source C++ library for parsing XML files.

ACEXML provides an API based on the Simple API for XML

(SAX) [13] to assist in handling XML used for the specifi-

cation of metadata. There are two types of XML APIs: 1)

tree-based APIs, which map an XML document into an in-

ternal tree structure and allow an application to navigate that

tree, and 2) Event-based APIs like SAX, which report parsing

events directly to an application via callbacks but do not usu-

ally build an internal tree. During deployment (Section 4.4)

ACEXML reads the metadata from an assembly and uses it

to validate (Section 4.3) the contents of the assembly. Since

DRE applications often have stringent footprint requirements,

they cannot afford to build the entire tree in memory. This

problem is exacerbated if the amount of metadata becomes

large, such as when metadata is auto-generated by component-

aware IDL compilers. ACEXML is therefore based on SAX,

and does not build the entire tree in memory.

4.2 Context-insensitive Specification of QoS

Properties

Context. Designing component-based DRE applications

that rely on underlying middleware to provide multiple lev-

els of QoS assurance to the application, including mini-

mum/average/maximum latency and throughput guarantees,

supported sensor rates, default number of network packets

queued, maximum size of an allowed packet, and allowed min-

imum/average/maximum deadlines.

Problem. Building complex DRE applications exposes de-

velopers to variations in: 1) the implementation of QoS en-

abling mechanisms, such as scheduling algorithms, thread

pools, connection pooling and caching and event demultiplex-

ing provided by the underlying middleware, and 2) the number

of such alternative QoS enabling mechanisms that are exposed

to the user as configurable values. This variation can encour-

age developers to design applications that depend on some or

all of the QoS enabling mechanisms outlined above to be pro-

vided by the underlying middleware and made available to the

component. Critical QoS requirements may not be met when

components are used in a scenario where such QoS enabling

mechanisms are either unavailable or insufficient to satisfy the

design assumptions. Depending on the criticality of the missed

QoS property, there might be a localized malfunction or a fail-

ure of the entire application.

Solution → Specify QoS properties in a context-insensitive

fashion. Identify properties of a component (i.e., the set of

configurable values) that when set in a particular fashion affect

the state and hence the behavior of the component. Specify the

properties such that the task of manipulating them is separate

from the functionality of the component. Care should be taken

to ensure that the amount of context-dependent assumptions is

limited, and if present, the dependency on such assumptions

are made explicit. It is also important that the specification of

these QoS properties, makes it possible to fully exploit addi-

tional QoS capabilities, present in some but not all implemen-

tations of the underlying middleware.

In general, QoS properties should play a first-class role in

the middleware typesystem and be associated with compo-

nents explicitly. Doing so can also prevent errors during com-

position by recognizing mismatches in provided and required

properties, as explained in Section 4.3. In the long run, stan-

dardizing common QoS properties of underlying middleware,

from different vendors, is important to ensure interoperability,

as well as to enhance the reuse of QoS-aware components.

Applying the solution in CIAO. CIAO extends the CCM

component property file that specifies the QoS properties that

are essential to static QoS provisioning, such as size of the

input buffers to allocate, portion of the network bandwidth to

reserve, and priority of the packets sent out by this component.

6



Developers of components based on CIAO can use and con-

figure these properties of the underlying middleware. They

can also expose them to other components by defining a map-

ping between middleware and component properties.

The component property file is a XML-based vocabulary

that is read at deployment time and used to configure the com-

ponent. By explicitly specifying the properties and separat-

ing them from the component functionality, CIAO allows the

context-insensitive specification of these properties. By re-

moving the specification and manipulation of these properties

from the functional properties of the component, CIAO also

reduces the amount of tedious and error-prone glue-code that

must be written to configure components.

4.3 Validation of Component Configurations

Context. Integrating a complex DRE application from a set

of generic and reusable COTS components.

Problem. Developers of reusable COTS components must

validate that their implementations satisfy the intended func-

tionality and QoS. A common validation procedure is black-

box or whitebox testing [14]. While this validation process

yields readily available and tested components, the task of

integrating these components and configuring them to cus-

tomize an application is hard. In particular, manually inte-

grating COTS components is error-prone since it involves 1)

checking QoS properties of each individual component to en-

sure that the component satisfies local requirements and 2) en-

suring that the overall system composed of these individual

components satisfies the QoS guarantees.

Solution → Validate component configurations. Validate

component configurations by checking the metadata associ-

ated with a component to ensure that the end-to-end require-

ments of the application match the capabilities offered by its

constituent components. This validation process does not in-

clude mechanisms to check whether the functionality adver-

tised by a component is indeed provided by the component.

The topic of verifying semantics of a component [15] is vast

and merits a detailed discussion [16] of its own.

Validation can be done by using XML-based descriptors,

which contain metadata that describes the systemic properties

of individual components, component packages, or component

assemblies (Section 4.4). The formats of these descriptors are

specified via a set of XML DTDs. Validation of metadata

involves checking for conformance with the rules specified

a priori in the DTD. However, this process is only effective

when automated and not exposed to human errors. If valida-

tion is conducted during deployment (Section 4.4), it can avoid

exception conditions after the application is deployed.

Applying the solution in CIAO. CIAO’s implementation of

the CCM CIDL compiler generates a default configuration for

every component and hence a default descriptor. In many use-

cases, however, a descriptor may need to be modified and ex-

tended by component developers to better suit their require-

ments or to impose certain policies on components. After a

default descriptor generated by the CIDL compiler is modi-

fied or extended by a developer (or if a descriptor is speci-

fied from scratch by a developer), it is essential to check if

the descriptor still conforms to the descriptor’s DTD. Descrip-

tors are validated for conformance with their DTDs using the

ACEXML library presented in Section 4.1, which provides a

general-purpose tool to validate any XML DTD.

4.4 Component Packaging and Deployment

Context. Deploying a DRE application that is built from

reusable COTS components.

Problem. In complex DRE applications, there may be hun-

dreds or even thousands of these components. With so many

components, it is hard to manage the application or to specify

provsioning at the granularity of individual components. Fur-

thermore, some QoS properties cross-cut component bound-

aries, so they must be handled at multiple levels of granular-

ity. Supporting static provisioning of QoS therefore becomes

harder in the presence of a large number of components.

Solution → Use component assemblies . Specify QoS

properties at multiple levels of abstraction to support static

provisioning of QoS in an end-to-end fashion. To support

specification of QoS properties at multiple levels, component

software needs to be packaged in a suitable hierarchical for-

mat. This format should also allow specification of QoS poli-

cies, which assist in overriding a particular property to main-

tain end-to-end guarantees. Policies are specified in conjunc-

tion to the specification of QoS properties. The levels of ab-

straction at which the QoS properties can be specified include:

1) the component software package, which contains one or

more implementations of a component with an associated de-

scriptor, and 2) the component assembly package, which con-

tains a set of inter-dependent components and information that

describes the dependencies between these components.

The use of XML for the descriptors at each level not only

serves as a “glue-language” for composition, but also enables

the development of value-added services, such as graphical

user interface (GUI)- based packaging tools, that are indepen-

dent of the components or the application.

Applying the solution in CIAO. In CIAO, a component

software package is described by a CORBA software descrip-

tor that captures the high-level details of components present

in a software package, such as ownership information along

with a list of implementations of components. Each imple-

mentation in turn describes features, such as type and version

of of the OS and CPU, along with the type(s) of component

present in the implementation.

7



Each type of component within an implementation is de-

scribed by a CORBA component descriptor that captures the

structure of a component, i.e., its supported interfaces, inher-

ited components, and ports. CIAO uses component descriptor

files to facilitate inter-connections between components.

A component assembly descriptor file describes the com-

ponents that make up the assembly, how those components

are partitioned, and how they are inter-connected. The CIAO

deployment mechanism consults the component assembly de-

scriptor file to bootstrap the deployment.

In CIAO, an instance of a daemon process (called

compassd) runs on every host that will participate in the de-

ployment. This daemon acts as the manager for the compo-

nents that are installed on a particular host. A new component

can be installed by specifying the file containing the imple-

mentation along with the hostname and port number where

the component has to installed. If another implementation of

the same component is already running on a particular host

(determined by comparing the UUID of each component im-

plementation), the daemon will ensure it is not installed again.

5 Concluding Remarks

Composable middleware for distributed real-time and embed-

ded (DRE) applications can provide benefits to developers of

both DRE middleware and applications, as well as DRE appli-

cation integrators. This paper describes how our work on the

Component-Integrated ACE ORB (CIAO) addresses key chal-

lenges that arise when applying state-of-the-practice compo-

nent model technology to DRE applications. We also describe

the CORBA Component Model (CCM) specification and then

describe enhancements to the CCM we have implemented

in CIAO. By applying the solutions described in this paper,

we are decoupling various aspects of DRE software applica-

tions, thereby enabling application developers, system engi-

neers, and end-users to select components that can be com-

posed to build complete DRE applications with a shorter time-

to-market. Our long-term goal is to provide the same benefits

available to developers of desktop and enterprise applications

to the much more challenging domain of DRE applications.
The long-term goal of the work described in this pa-

per is to enable reflective ORB behavior and expose these
ORB features so that they can be monitored and controlled
effectively by higher-level tools and management applica-
tions. ACEXML used in the deployment framework of
CIAO is available from the ACE CVS repository available at
http://cvs.doc.wustl.edu/viewcvs.cgi/ACEXML/.

References

[1] Object Management Group, CORBA 3.0 New Components Chapters,
OMG TC Document ptc/2001-11-03 ed., Nov. 2001.

[2] Microsoft Corporation, “Microsoft .NET Development.”
msdn.microsoft.com/net/, 2002.

[3] Sun Microsystems, “Enterprise JavaBeans Specification.”
java.sun.com/products/ejb/docs.html, Aug. 2001.

[4] N. Wang, K. Balasubramanian, and C. Gill, “Towards a real-time corba
component model,” in OMG Workshop On Embedded & Real-Time

Distributed Object Systems, (Washington, D.C.), Object Management
Group, July 2002.

[5] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” in Proceedings of

OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, Oct. 1997.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds), “Extensible
Markup Language (XML) 1.0 (2nd Edition).” W3C Recommendation,
2000.

[7] N. Wang, D. C. Schmidt, O. Othman, and K. Parameswaran, “Evaluat-
ing Meta-Programming Mechanisms for ORB Middleware,” IEEE Com-

munication Magazine, special issue on Evolving Communications Soft-
ware: Techniques and Technologies, vol. 39, pp. 102–113, Oct. 2001.

[8] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill, B. Natarajan, C. Ro-
drigues, J. P. Loyall, and R. E. Schantz, “Total Quality of Service Provi-
sioning in Middleware and Applications,” The Journal of Microproces-
sors and Microsystems, vol. 27, pp. 45–54, mar 2003.

[9] B. S. Doerr and D. C. Sharp, “Freeing Product Line Architectures from
Execution Dependencies,” in Proceedings of the 11th Annual Software

Technology Conference, Apr. 1999.

[10] A. Gokhale, D. C. Schmidt, B. Natarajan, and N. Wang, “Applying
Model-Integrated Computing to Component Middleware and Enterprise
Applications,” The Communications of the ACM Special Issue on Enter-

prise Components, Service and Business Rules, vol. 45, Oct. 2002.

[11] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked

Objects, Volume 2. New York: Wiley & Sons, 2000.

[12] J. Guy L. Steele, “Growing a language,” Journal of Higher-Order and

Symbolic Computation, vol. 12, pp. 221–236, Oct. 1999.

[13] SAX Project, “Simple API for XML.” www.saxproject.org, 2002.

[14] G. J. Myers, The Art of Software Testing. John Wiley and Sons, 1979.

[15] S. Horwitz, “Identifying the semantic and textual differences between
two versions of a program,” in Proceedings of the ACM SIGPLAN ’90

Conference on Programming Language Design and Implementation,
(White Plains, NY), pp. 234–245, June 1990.

[16] S. Easterbrook and J. Callahan, “Formal methods for verification and
validation of partial specifications: A case study,” The Journal of Sys-

tems and Software, vol. 40, pp. 199–??, March 1998.

8


