
1

ASCENT: An Algorithmic Technique for
Designing Hardware and Software in Tandem

Jules White, Brian Doughtery, and Douglas C. Schmidt
Vanderbilt University, EECS Department, Nashville, TN, USA

Email:{jules, briand, schmidt}@dre.vanderbilt.edu

✦

Abstract —Search-based software engineering is an emerging
paradigm that uses automated search algorithms to help designers
iteratively find solutions to complicated design problems. For example,
when designing a climate monitoring satellite, designers may want
to use the minimal amount of computing hardware to reduce weight
and cost, while supporting the image processing algorithms running
onboard. A key problem in these situations is that the hardware
and software design are locked in a tightly-coupled cost-constrained
producer/consumer relationship that makes it hard to find a good
hardware/software design configuration. Search-based software
engineering can be used to apply algorithmic techniques to automate
the search for hardware/software designs that maximize the image
processing accuracy while respecting cost constraints.

This paper provides the following contributions to research on search-
based software engineering: (1) we show how a cost-constrained
producer/consumer problem can be modeled as a set of two multidi-
mensional multiple-choice knapsack problems (MMKPs), (2) we present
a polynomial-time search-based software engineering technique, called
the Allocation-baSed Configuration Exploration Technique (ASCENT),
for finding near optimal hardware/software co-design solutions, and (3)
we present empirical results showing that ASCENT’s solutions average
95%+ of the optimal solution’s value.

1 INTRODUCTION

Current trends and challenges. Increasing levels of program-
ming abstraction, middleware, and other software advance-
ments have expanded the scale and complexity of software
systems that we can develop. At the same time, the ballooning
scale and complexity have created a problem where systems
are becoming so large that their design and development
can no longer be optimized manually. Current large-scale
systems can contain an exponential number of potential design
configurations and vast numbers of constraints ranging from
security to performance requirements. Systems of this scale
and complexity—coupled with the increasing importance of
non-functional characteristics [8] (such as end-to-end response
time)—are making software design processes increasingly
expensive [25].

Search-based software engineering [15, 14] is an emerging
discipline that aims to decrease the cost of optimizing system
design by using algorithmic search techniques, such as genetic
algorithms or simulated annealing, to automate the design
search. In this paradigm, rather than performing the search
manually, designers iteratively produce a design by using a

search technique to find designs that optimize a specific system
quality while adhering to design constraints. Each time a
new design is produced, designers can use the knowledge
they have gleaned from the new design solution to craft
more precise constraints to guide the next design search.
Search-based software engineering has been applied to the
design of a number of software engineering aspects, ranging
from generating test data [24] to project management and
staffing [5, 3] to software security [9].

A common theme in domains where search-based software
engineering is applied is that the design solution space is so
large and tightly constrained that the time required to find an
optimal solution grows at an exponential rate with the problem
size. These vast and constrained solutions spaces make it hard
for designers to derive good solutions manually. This paper
examines a common problem from the domain of distributed
real-time and embedded (DRE) systems that exhibits these
complexity characteristics. The problem we focus on is the
need to derive a design that maximizes a specific system
capability subject to constraints on cost and the production
and consumption of resources, such as RAM, by the hardware
and software, respectively.

For example, when designing a satellite to earth’s magne-
tosphere [11], the goal may be to maximize the accuracy of
the sensor data processing algorithms on the satellite without
exceeding the development budget and hardware resources.
Ideally, to maximize the capabilities of the system for a
given cost, system software and hardware should be designed
in tandem to produce a design with a precise fit between
hardware capabilities and software resource demands. The
more precise the fit, the less budget is expended on excess
hardware resource capacity.

A key problem in these design scenarios is that they
create a complex cost-constrained producer/consumer problem
involving the software and hardware design. The hardware
design determines the resources, such as processing power
and memory, that are available to the software. Likewise, the
hardware consumes a portion of the project budget and thus
reduces resources remaining for the software (assuming a fixed
budget). The software also consumes a portion of the budget
and the resources produced by the hardware configuration. The
perceived value of system comes from the attributes of the



2

software design,e.g., image processing accuracy in the satellite
example. The intricate dependencies between the hardware and
software’s production and consumption of resources, cost,and
value makes the design solution space so large and complex
that finding an optimal and valid design configuration is hard.

Solution approach → Automated Solution Space Explo-
ration. This paper presents a heuristic search-based software
engineering technique, called theAllocation-baSed Configu-
ration Exploration Technique(ASCENT), for solving cost-
constrained hardware/software producer/consumer co-design
problems. ASCENT models these co-design problems as two
separate knapsack problems [19]. Since knapsack problems are
NP-Hard [10], ASCENT uses heuristics to reduce the solution
space size and iteratively search for near optimal designs by
adjusting the budget allocations to software and hardware.In
addition to outputting the best design found, ASCENT also
generates a data set representing the trends it discovered in
the solution space.

A key attribute of the ASCENT technique is that, in the
process of solving, it generates a large number of optimal
design configurations that present a wide view of the trends
and patterns in a system’s design solution space. This paper
shows how this wide view of trends in the solution space
can be used to iteratively search for near optimal co-design
solutions. Moreover, our empirical results show that ASCENT
produces co-design configurations that average 95%+ optimal
for problems with more than 7 points of variability in each of
the hardware and software design spaces.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 presents a motivating examples
of a satellite hardware/software co-design problem; Section 3
discusses the challenges of solving software/-hardware co-
design problems in the context of this motivating exam-
ple; Section 4 describes the ASCENT heuristic algorithm;
Section 5 analyzes empirical results from experiments we
performed with ASCENT; Section 6 compares ASCENT with
related work; and Section 7 presents concluding remarks and
lessons learned from our work with ASCENT.

2 MOTIVATING EXAMPLE

This section presents a satellite design example to motivate the
need to expand search-based software engineering techniques
to encompass cost-constrained hardware/software producer/-
consumer co-design problems. Designing satellites, such as
the satellite for NASA’s Magnetospheric Multiscale (MMS)
mission [11], requires carefully balancing hardware/software
design subject to tight budgets. Figure 1 shows a satellite with
a number of possible variations in software and hardware
design. For example, the software design has a point of
variability where a designer can select the resolution of the
images that are processed. Processing higher resolution images
improves the accuracy but requires more RAM and CPU
cycles.

Another point of variability in the software design is the
image processing algorithms that can be used to identify char-
acteristics of the images captured by the satellite’s cameras.
The algorithms each provide a distinct level of accuracy, while

Fig. 1. Software/Hardware Design Variability in a Satellite

also consuming different quantities of RAM and CPU cycles.
The underlying hardware has a number of points of variability
that can be used to increase or decrease the RAM and CPU
power to support the resource demands of different image
processing configurations. Each configuration option, suchas
the chosen algorithm or RAM value, has a cost associated
with it that subtracts from the overall budget. A key question
design question for the satellite is:what set of hardware and
software choices will fit a given budget and maximize the
image processing accuracy.

Many similar design problems involving the allocation
of resources subject to a series of design constraints have
been modeled asMultidimensional Multiple-Choice Knapsack
Problems(MMKPs) [18, 20, 1]. A standard knapsack prob-
lem [19] is defined by a set of items with varying sizes and
values. The goal is to find the set of items that fits into a
fixed sized knapsack and that simultaneously maximizes the
value of the items in the knapsack. An MMKP problem is a
variation on a standard knapsack problem where the items are
divided into sets and at most one item from each set may be
placed into the knapsack.

Figure 2 shows an example MMKP problem where two
sets contain items of different sizes and values. At most

Fig. 2. An Example MMKP Problem

one of the items A,B, and C can be put into the knapsack.
Likewies, only one of the items D, E, and F can be put
into the knapsack. The goal is to find the combination of
two items, where one item is chosen from each set, that fits



3

into the knapsack and maximizes the overall value. A number
of resource related problems have been modeled as MMKP
problems where the sets are the points of variability in the
design, the items are the options for each point of variability,
and the knapsack/item sizes are the resources consumed by
different design options [23, 20, 29, 7, 2].

The software and hardware design problems are hard to
solve individually. Each design problem consists of a number
of design variability points that can be implemented by ex-
actly one design option, such as a specific image processing
algorithm. Each design option has an associated resource con-
sumption, such as cost, and value associated with it. Moreover,
the design options cannot be arbitrarily chosen because there
is a limited amount of each resource available to consume.

It is apparent that the description of the software design
problem directly parallels the definition of an MMKP problem.
An MMKP set can be created for each point of variability
(e.g., Image Resolution and Algorithm). Each set can then
be populated with the options for its corresponding point of
variability (e.g., High, Medium, Low for Image Resolution).
The items each have a size (cost) associated with them and
there is a limited size knapsack (budget) that the items can
fit into. Clearly, just selecting the optimal set of software
features subject to a maximum budget is an instance of the
NP-Hard [10] MMKP problem.

For the overall satellite design problem, we must contend
with not one but two individual knapsack problems. One
problem models the software design and the second problem
models the hardware design. We can model the satellite co-
design problem using two MMKP problems. The first of the
two MMKP problems for the satellite design is its software
MMKP problem. The hardware design options are modeled in
a separate MMKP problem with each set containing the po-
tential hardware options. An example mapping of the software
and hardware design problems to MMKP problems is shown
in Figure 3.

We call this combined two problem MMKP model aMMKP
co-design problem. With this MMKP co-design model of the
satellite, a design is reached by choosing one item from each
set (e.g., an Image Resolution, Algorithm, RAM value, and
CPU) for each problem. The correctness of the design can
be validated by ensuring that exactly one item is chosen
from each set and that the items fit into their respective
software and hardware knapsacks. This definition, however,
is still not sufficient to model the cost-constrained hardware/-
software producer/consumer co-design problem since we have
not accounted for the constraint on the total size of the two
knapsacks or the production and consumption of resources by
hardware and software.

A correct solution must also uphold the constraint that the
items chosen for the solution to the software MMKP problem
do not consume more resources, such as RAM, than are
produced by the items selected for the solution to the hardware
MMKP problem. Moreover, the cost of the entire selection of
items must be less than the total development budget. We know
that solving the individual MMKP problems for the optimal
hardware and software design is NP-Hard but we must also
determine how hard solving the combined co-design problem

Fig. 3. Modeling the Satellite Design as Two MMKP
Problems

is.
In this simple satellite example, there are 192 possible

satellite configurations to consider. For real industrial scale
examples, there are a significantly larger number of possibil-
ities. For example, a system with design choices that can be
modeled using 64 MMKP sets, each with 2 items, will have
264 possible configurations. For systems of this scale, manual
solving methods are clearly not feasible, which motives the
need for a search-based software engineering technique.

2.1 MMKP Co-design Complexity

Below, we show that MMKP co-design problems are NP-Hard
and in need of a search-based software engineering technique.
We are not aware of any approximation techniques for solving
MMKP co-design problems in polynomial time. This lack of
approximation algorithms—coupled with the poor scalability
of exact solving techniques—hinders DRE system designers’s
abilities to optimize software and hardware in tandem.

To show that MMKP co-design problems are NP-Hard, we
must build a formal definition of them. We can define an
MMKP co-design problem,CoP , as an 8-tuple:

CoP =< Pr, Co, S1, S2, S, R, Uc(x, k), Up(x, k) >

where:
• Pr is the producer MMKP problem (e.g., the hardware

choices).
• Co is the consumer MMKP problem (e.g., the software

choices).
• S1 is the size of the producer,Pr, knapsack.
• S2 is the size of the consumer,Co, knapsack.
• R is the set of resource types (e.g., RAM, CPU, etc.)

that can be produced and consumed byPr and Co,
respectively.



4

• S is the total allowed combined size of the two knapsacks
for Pr andCo (e.g., total budget).

• Uc(x, k) is a function which calculates the amount of
the resourcek ⊂ R consumed by an itemx ⊂ Co (e.g.,
RAM consumed).

• Up(x, j) is a function which calculates the amount of the
the resourcek ⊂ R produced by an itemx ⊂ Pr (e.g.,
RAM provided).

Let a solution to the MMKP co-design problem be defined
as a 2-tuple,< p, c >, wherep ⊂ Pr is the set of items
chosen from the producer MMKP problem andc ⊂ Co is
the set of items chosen from the consumer MMKP problem.
A visualization of a solution tuple is shown in Figure 4. We

Fig. 4. Structure of an MMKP Co-design Problem

define the value of the solution as the sum of the values of
the elements in the consumer solution:

V =

j∑

0

valueof(cj)

wherej is the total number of items inc, cj is the jth item
in c, andvalueof() is a function that returns the value of an
item in the consumer soution.

We require thatp and c are valid solutions toPr andCo,
respectively. Forp and c to be valid, exactly one item from
each set inPr and Co must have been chosen. Moreover,
the items must fit into the knapsacks forPr and Co. 1This
constraint corresponds to Rule (2) in Figure 4 that each
solution must fit into the budget for its respective knapsack.

The MMKP co-design problem adds two additional con-
straints on the solutionsp andc. First, we require that the items
in c do not consume more of any resource than is produced
by the items inp:

(∀k ⊂ R),

j∑

0

Uc(cj , k) ≤
l∑

0

Up(pl, k)

wherej is the total number of items inc, cj is thejth item in
c, l is the total number of items inp, andpj is the jth item
in p. Visually, this means that the consumer solution can fit

1. A more formal definition of MMKP solution correctness is available
from [1].

into the producer solution’s resources as shown in Rule (1) in
Figure 4.

The second constraint onc andp is an interesting twist on
traditional MMKP problems. For a MMKP co-design problem,
we do not know the exact sizes,S1, S2, of each knapsack. Part
of the problem is determining the sizes as well as the items for
each knapsack. Since we are bound by a total overall budget,
we must ensure that the sizes of the knapsacks do not exceed
this budget:

S1 + S2 ≤ S

This constraint on the overall budget corresponds to Rule (3)
in Figure 4.

To show that solving for an exact answer to the MMKP
problem is NP-Hard, we will show that we can reduce any
instance of the NP-completeknapsack decision problemto
an instance of the MMKP co-design problem. The knapsack
decision problem asks if there is a combination of items
with value at leastV that can fit into the knapsack without
exceeding a cost constraint.

A knapsack problem can easily be converted to a MMKP
problem as described by Akbar et al. [1]. For each item, a set is
created containing the item and the∅ item. The∅ item has no
value and does not take up any space. Using this approach, a
knapsack decision problem,Kdp, can be converted to a MMKP
decision problem,Mdp, where we ask if there is a selection
of items from the sets that has value at leastV .

To reduce the decision problem to an MMKP co-design
problem, we can use the MMKP decision problem as the
consumer knapsack (Co = Mdp), set the producer knapsack to
an MMKP problem with a single item with zero weight and
value (∅), and let our set of produced and consumed resources,
R, be empty,R = ∅. Next, we can let the total knapsack
size budget be the size of the decision problem’s knapsack,
S = sizeof(Mdp).

The co-design solution, which is the maximization of the
consumer knapsack solution value, will also be the optimal
answer for the decision problem,Mdp. We have thus setup the
co-design problem so that it is solving for a maximal answer
to Mdp without any additional producer/consumer constraints
or knapsack size considerations. Since any instance of the
NP-complete knapsack decision problem can be reduced to
an MMKP co-design problem, the MMKP co-design problem
must be NP-Hard.

3 CHALLENGES OF MMKP CO-DESIGN
PROBLEMS

This section describes two key challenges to building an
approximation algorithm to solve MMKP co-design prob-
lems. The first challenge is that determining how to set
the budget allocations of the software and hardware is not
straightforward since it involves figuring out the precise size
of the software and hardware knapsacks where the hardware
knapsack produces sufficient resources to support the optimal
software knapsack solution (which itself is unknown). The
second challenge is that the tight-coupling between producer
and consumer MMKP problems makes them hard to solve



5

individually, thus motivating the need for a heuristic to de-
couple them.

3.1 Challenge 1: Undefined Producer/Consumer
Knapsack Sizes

One challenge of the MMKP co-design problem is that the
individual knapsack size budget for each of the MMKP
problems is not predetermined,i.e., we do not know how
much of the budget should be allocated to software versus
hardware, as shown in Figure 5. The only constraint is that

Fig. 5. Undefined Knapsack Sizes

the sum of the budgets must be less than or equal to the an
overall total budget. Every pair of budget values for hardware
and software results in two new unique MMKP problems.
Even minor transfers of capital from one problem budget to
the other can therefore completely alter the solution of the
problem, resulting in a new maximum value. Existing MMKP
techniques assume that the exact desired size of the knapsack
is known.

There is currently no information to aid designers in deter-
mining the allocation of the budgets. As a result, many design-
ers may choose the allocation arbitrarily without realizing the
profound impact it may have. For example, a budget allocation
of 75% software and 25% software may result in a solution
that, while valid, provides far less value and costs considerably
more than a solution with a budget allocation of 74% and 26%
percent.

There are, however, trends in the solution optimality that
can be determined by solving instances of the problem with
unique sequential divisions of the total budget. These trends
can give the designer an idea of what budget divisions will
result in favorable system designs. This data can also show
which budget allocations to avoid. A key challenge is figuring
out how to shed light on these nuances in the solution space
and present them to designers. In Section 4.3 we discuss
ASCENT’s solution to this problem and in Section 5 we
present empirical data showing how ASCENT allows design-
ers to uncover these trends in a number of MMKP co-design
problems.

3.2 Challenge 2: Tight-coupling Between the
Producer/Consumer

Another key issue to contend with is how to rank the solutions
to the producer MMKP problem. Per the definition of an
MMKP co-design problem from Section 2.1, the producer
solution does not directly impart any value to the overall
solution. The producer’s benefit to a solution is its ability
to make a good consumer solution viable. MMKP solvers
must have a way of ranking solutions and items. The problem,
however, is that the value of a producer solution or item cannot
be calculated in isolation.

A consumer solution must already exist to calculate the
value of a particular producer solution. For example, whether
or not 1,024 kilobytes of memory are beneficial to the overall
solution can only be ascertained by seeing if 1,024 kilobytes of
memory are needed by the consumer solution. If the consumer
solution does not need this much memory, then the memory
produced by the item is not helpful. If the consumer solutionis
RAM starved, the item is desperately needed. A visualization
of the problem is shown in Figure 6.

Fig. 6. Producer/Consumer MMKP Tight-coupling

The inability to rank producer solutions in isolation of
consumer solutions is problematic because it creates a chicken
and the egg problem. A valid consumer solution cannot be
chosen if we do not know what resources are available
for it to consume. At the same time, we cannot rank the
value of producer solutions without a consumer solution as
a context. This tight-coupling between the producer/consumer
is a challenging problem. We discuss the heuristic ASCENT
uses to solve this problem in Section 4.2.

4 THE ASCENT A LGORITHM

This section presents our polynomial-time approximation algo-
rithm, called theAllocation-baSed Configuration ExploratioN
Technique(ASCENT), for solving MMKP co-design prob-
lems. The pseudo-code for the ASCENT algorithm is shown
in Figure 7 and explained throughout this section.

4.1 Producer/Consumer Knapsack Sizing

The first issue to contend with when solving an MMKP
co-design problem is Challenge 2 from Section 3.1, which
involves determining how to allocate sizes to the individual
knapsacks. ASCENT addresses this problem by dividing the
overall knapsack size budget into increments of sizeD. The



6

MMKPProblem ConsumerMMKP
MMKPProblem ProducerMMKP
int StepSize
int ConsumerBudget = 0
int ProducerBudget = 100
int TotalBudget
Solution BestSolution
Solutions AllSolutions

while(ConsumerBudget <= TotalBudget) (1)
IdealizedSolution = solveMMKPCostOnly(ConsumerMMKP, (2)

ConsumerBudget)
double[] Ratios = calculateResourceRatios(IdealizedSolution) (3)

for each Item in ProducerMMKP (4)
for i = 0, i < Ratios.size, i++

Item.Value += Ratios[i] * Item.ProducedResourceValue[i]

ProducerBudget = TotalBudget - ConsumerBudget
HardwareSolution = (5)

solveMMKPCostOnly(ProducerMMKP,
ProducerBudget)

int[] AvailableResources = (6)
HardwareSolution.ProducedResourceValues.Sum

SoftwareSolution = (7)
solveMMKP(ProducerMMKP,

AvailableResources,
ConsumerBudget)

ConsumerBudget += StepSize (8)

Solution = Tuple<SoftwareSolution,
HardwareSolution>

Solutions.add(Solution) (9)
if(Solution.Value > BestSolution.Value)

BestSolution = Solution

Return BestSolution and Solutions (10)

Fig. 7. The ASCENT Algorithm

size increment is a parameter provided by the user. ASCENT
then iteratively increases the consumer’s budget allocation
(knapsack size) from 0% of the total budget to 100% of the
total budget in steps of sizeD. The incremental expansion
of the producer’s budget can be seen in thewhile loop
in code listing (1) of Figure 7 and the incrementation of
ConsumerBudget in code listing (8).

For example, if there is a total size budget of 100 and
increments of size 10, ASCENT firsts assign 0 to the consumer
and 100 to the producer, 10 and 90, 80 and 20, and so forth
until 100% of the budget is assigned to the consumer. The
allocation process is shown in Figure 8. ASCENT includes

Fig. 8. Iteratively Allocating Budget to the Consumer
Knapsack

both the 0%,100% and 100%,0% budget allocations to handle
cases where the optimal configuration includes producer or
consumer items with zero cost.

4.2 Ranking Producer Solutions

At each allocation iteration, ASCENT has a fixed set of sizes
for the two knapsacks. In each iteration, ASCENT must solve
the coupling problem presented in Section 3.2, which is: how
do we rank producer solutions without a consumer solution.
After the coupling is loosened, ASCENT can solve for a highly
valued solution that fits the given knapsack size restrictions.

To break the tight-coupling between producer and consumer
ordering, ASCENT employs a special heuristic. Once the
knapsack size allocations are fixed, ASCENT solves for a
maximal consumer solution that only considers the current
size constraint of its knapsack and not produced/consumed
resources. This step is shown in code listing (2) of Figure 7.

The methodsolveMMKPCostOnly uses an arbitrary
MMKP approximation algorithm to find a solution that only
considers the consumer’s budget. This approach is similar
to asking “what would the best possible solution look like
if there were unlimited produced/consumed resources.” Once
ASCENT has this idealized consumer solution, it calculatesa
metric for assigning a value to producer solutions.

The metric that ASCENT uses to assign value to producer
items is:how valuable are the resources of a producer item
to the idealized consumer solution. This metric is calculated
by thecalculateResourceRatios method call in code
listing (3) of Figure 7. We calculate the value of a resource
as the amount of the resource consumed by the idealized
consumer solution divided by the sum of the total resources
consumed by the overall solution:

Vr =

∑j

0 Uc(cj , k)
∑k

0

∑j
0 Uc(cj , k)

In code listing (4) of Figure 7, the resource ratios (Vr values)
are known and each item in the producer MMKP problem is
assigned a value by multiplying each of its provided resource
values by the corresponding ratio and summing these values:

valueof(pl) =

k∑

0

(Up(pl, k) ∗ Vk)

The overall solving workflow at each budget allocation ratio
is shown in Figure 9.

Fig. 9. ASCENT Solving Workflow at Each Budget Allo-
cation Step



7

4.3 Solving the Individual MMKP Problems

Once sizes have been set for each knapsack and the valuation
heuristic has been applied to the producer MMKP problem,
existing MMKP solving approaches can be applied. First,
the producer MMKP problem, with its new item values, is
solved for an optimal solution, as shown in code listing (5)
of Figure 7. We use thesolveMMKPCostOnly method to
solve the producer problem since it does not consume any
resources other than budget. In code listing (6), the consumer
MMKP problem is then updated with constraints reflecting the
maximum available amount of each resource produced by the
solution from the producer MMKP problem. The consumer
MMKP problem is then solved for an optimal solution in
code listing (7). The producer and consumer solutions are then
combined into the 2-tuple,< p, c > and saved in code listing
(9).

In each iteration, ASCENT assigns sizes to the producer
and consumer knapsacks and the solving process is repeated.
A collection of the 2-tuple solutions is compiled during the
process. The output of ASCENT, returned in code listing (10)
of Figure 7, is both the 2-tuple with the greatest value and the
collection of 2-tuples. The overall solving approach is shown
in Figure 10.

Fig. 10. ASCENT Solving Approach

The reason that the 2-tuples are saved and returned as part
of the output is that they provide valuable information on the
trends in the solution space of the co-design problem. Each 2-
tuple contains a high-valued solution to the co-design problem
at a particular ratio of knapsack sizes. This data can be usedto
graph and visualize how the overall solution value changes as a
function of the ratio of knapsack sizes. As shown in Section 5,
this information can be used to ascertain a number of useful
solution space characteristics, such as determining how much
it costs to increase the value of a specific system property to
a given level or finding the design with the highest value per
unit of cost.

4.4 Algorithmic Complexity

The overall algorithmic complexity of ASCENT can be broken
down as follows:

1) there areT iterations of ASCENT
2) in each iteration there are 3 invocations to an MMKP

approximation algorithm
3) in each iteration, values of at mostn producer items

must be updated.

This breakdown yields an algorithmic complexity of O(T (n+
MMKP )), where MMKP is the algorithmic complexity of
the chosen MMKP algorithm. With M-HEU (one of the most
accurate MMKP approximation algorithms [1]) the algorith-
mic complexity is O(mn2(l − 1)2), wherem is the number
of resource types,n is the number of sets, andl is maximum
items per set. Our experiments in Section 5 usedT = 100 and
found that it provided excellent results. With our experimental
setup that used M-HEU, the overall algorithmic complexity
was therefore O(100(mn2(l − 1)2 + n)). This algorithmic
complexity is polynomial and thus ASCENT should be able
to scale up to very large problems, such as the co-design of
production satellite hardware and software.

5 ANALYSIS OF EMPIRICAL RESULTS

This section presents empirical data we obtained from exper-
iments using ASCENT to solve MMKP co-design problems.
The empirical results demonstrate that ASCENT provides
near optimal results. The results also show that ASCENT
can not only provide near optimal designs for the co-design
problems, such as the satellite example, but also scale to the
large problem sizes of a production satellite design. Moreover,
we show that the data sets generated by ASCENT—which
contain high valued solutions at each budget allocation—
can be used to perform a number of important search-based
software engineering studies on the co-design solution space.

Each experiment used a total of 100 budget iterations
(T = 100). We also used the M-HEU MMKP approxima-
tion algorithm as our MMKP solver. All experiments were
conducted on an Apple Powerbook with a 2.4 GHz Intel Core
2 Duo processor, 2 gigabyes of RAM, running OS X version
10.4.11, and a 1.5 Java Virtual Machine (JVM) run in client
mode. The JVM was launched with a maximum heap size of
64mb (-Xmx=64m).

5.1 MMKP Co-design Problem Generation

A key capability needed for the experiments was the ability to
randomly generate MMKP co-design problems for test data.
For each problem, we also needed to calculate how good AS-
CENT’s solution was as a percentage of the optimal solution:
valueof(ASCENTSolution)
valueof(OptimalSolution) . For small problems with less than

7 sets per MMKP problem, we were able to use a branch-and-
bound linear programming (LP) [27] technique built on top of
the Java Choco constraint solver (choco-solver.net) to
derive the optimal solution.

For larger scale problems the LP technique was simply
not feasible,e.g., solutions might take years to find. For
larger problems, we developed a technique that randomly
generated MMKP co-design problems with a few carefully
crafted constraints so we knew the exact optimal answer.
Others [1] have used this general approach, though with a
different problem generation technique.

Ideally, we would prefer to generate completely random
problems to test ASCENT. We our confident in the validity
of this technique, however, for two reasons: (1) the trends we
observed from smaller problems with truly random data were
identical to those we saw in the data obtained from solving the



8

generated problems and (2) the generated problems randomly
placed the optimal items and randomly assigned their value
and size so that the problems did not have a structure clearly
amenable to the heuristics used by our MMKP approximation
algorithm. We did not use Akbar’s technique [1] because the
problems it generated were susceptible to a greedy strategy.

Our problem generation technique worked by creating two
MMKP problems for which we knew the exact optimal answer.
First, we will discuss how we generated the individual MMKP
problems. LetS be the set of MMKP sets for the problem,~R

be aK-dimensional vector describing the size of the knapsack,
Iij be the jth item of the ith set, size(Iij , k) be the kth

component ofIij ’s size vector ~Szij , andsize(S, k) be thekth

component of the knapsack size vector, the problem generation
technique for each MMKP problem worked as follows:

1) Randomly populate each set,s ⊂ S, with a number of
items

2) Generate a random size,~R, for the knapsack
3) Randomly choose one item,Iopti ⊂ OptItems from

each set to be the optimal item.Iopti is the optimal
item in theith set.

4) Set the sizes of the items inOptItems, so that when
added together they exactly consume all of the space in
the knapsack:

(∀k ⊂ R), (

i∑

0

size(Iopti, k)) = size(S, k)

5) Randomly generate a value,V opti, for the optimal item,
Iopti, in each set

6) Randomly generate a value delta variable,Vd <

min(V opti), where min(V opti) is the optimal item
with the smallest value

7) Randomly set the size and values of the remaining non-
optimal items in the sets so that either:

• The item has a greater value than the optimal item
in its set. In this case, each component of the
item’s size vector, is greater than the correspond-
ing component in the optimal item’s size vector:
(∀k ⊂ R), size(Iopti, k) < size(Iij , k)

• The item has a smaller value than the optimal item’s
value minusVd, valueof(Iij) < V opti − Vd. This
constraint will be important in the next step. In this
case, each component of the item’s size vector is
randomly generated.

At this point, we have a very random MMKP problem. What
we have to do is further constrain the problem so that we
can guarantee the items inOptItems are truly the optimal
selection of items. LetMaxVi be the item with the highest
value in the ith set. We further constrain the problem as
follows:

For each itemMaxVi, we reset the values of the items (if
needed) to ensure that the sum of the differences between the
max valued items in each set and the optimal item are less
thanVd:

i∑

0

(MaxVi − V opti) < Vd

A visualization of this constraint is shown in Figure 11.

Fig. 11. A Visualization of Vd

This new valuation of the items guarantees that the items in
OptItems are the optimal items. We can prove this property
by showing that if it does not hold, there is a contradiction.
Assume that there is some set of items,Ibetter, that fit into
the knapsack and have a higher value. LetV bi be the value
of the better item to choose than the optimal item in theith
set. The sum of the values of the better items from each set
must have a higher value than the optimal items.

The itemsIbi ⊂ Ibetter must fit into the knapsack. We
designed the problem so that the optimal items exactly fit
into the knapsack and that any item with a higher value than
an optimal item is also bigger. This design implies that at
least one of the items inIbetter is smaller and thus also
has a smaller value,V small, than the optimal item in its set
(or Ibetter wouldn’t fit). If there areQ sets in the MMKP
problem, this implies that at mostQ−1 items inIbetter have
a larger value than the optimal item in their set, and thus:

V optQ +

Q−1∑

0

V opti < V small +

Q−1∑

0

V bi

We explicitly revalued the items so that:

i∑

0

(MaxVi − V opti) < Vd

By subtracting the
∑Q−1

0 V opti from both sides, we get:

V optQ < V small +

Q−1∑

0

(V bi − V opti)

the inequality will still hold if we substituteVd in for∑Q−1
0 (V bi − V opti), becauseVd is larger:

V optQ < V small + Vd

V optQ − Vd < V small

which is a contradicton of the rule that we enforced for smaller
items:valueof(Iij) < V opti − Vd

This problem generation technique creates MMKP problems
with some important properties. First, the optimal item in each
set will have a random number of larger and smaller valued
items (or none) in its set. This property guarantees that a
greedy strategy will not necessarily do well on the problems.

Moreover, the optimal item may not have the best ratio of
value/size. For example, an item valued slightly smaller than



9

the optimal item may consume significantly less space because
its size was randomly generated. Many MMKP approximation
algorithms use the value/size heuristic to choose items. Since
there is no guarantee on how good the value/size of the
optimal item is, MMKP approximation algorithms will not
automatically do well on these problems.

To create an MMKP co-design problem where we know the
optimal answer, we generate a single MMKP problem with a
known optimal answer and split it into two MMKP problems
to create the producer and consumer MMKP problems. To
split the problem, two new MMKP problems are created. One
MMKP problem receivesE of the sets from the original
problem and the other problem receives the remaining sets.
The total knapsack size for each problem is set to exactly the
size required by the optimal items from its sets to fit. The sum
of the two knapsack sizes will equal the original knapsack size.
Since the overall knapsack size budget does not change, the
original optimal items remain the overall optimal solution.

Next, we generate a set of produced/consumed resource val-
ues for the two MMKP problems. For the consumer problem,
we randomly assign each item an amount of each produced
resourcek ⊂ R that the item consumes. LetTotalC(k) be the
total amount of the resourcek needed by the optimal consumer
solution andV opt(p) be the optimal value for the producer
MMKP problem. We take the consumer problem and calculate
a resource production ratio,Rp(k), where

Rp(k) =
TotalC(k)

V opt(p)

For each item,Iij , in the producer problem, we assign it
a production value for the resourcek of: Produced(k) =
Rp(k) ∗ valueof(Iij).

The optimal items have the highest feasible total value based
on the given budget and the sum of their values times the
resource production ratios exactly equals the needed valueof
each resourcek:

TotalC(k) =
TotalC(k)

V opt(p)
∗

i∑

0

V opti

Any other set of items must have a smaller total value and
consequently not provide sufficient resources for the optimal
set of consumer items. To complete the co-design problem,
we set the total knapsack size budget to the sum of the sizes
of the two individual knapsacks.

5.2 ASCENT Scalability and Optimality

Experiment 1: Comparing ASCENT scalability to an
exact technique. When designing a satellite it is critical that
designers can gauge the accuracy of their design techniques.
Moreover, designers of a complicated satellite system need
to know how different design techniques scale and which
technique to use for a given problem size. This first set of ex-
periments evalutes these questions for ASCENT and a branch-
and-bound linear programming (LP) co-design technique.

Although LP solvers can find optimal solutions to MMKP
co-design problems they have exponential time complexity.

For large-scale co-design problems (such as designing a com-
plicated climate monitoring satellite) LP solvers thus quickly
become incapable of finding a solution in a reasonable time
frame. We setup an experiment to compare the scalability of
ASCENT to an LP technique. We randomly generated a series
of problems ranging in size from 1 to 7 sets per hardware
and software MMKP problem. Each set had 10 items. We
tracked and compared the solving time for ASCENT and
the LP technique as the number of sets grew. Figure 12
presents the results from the experiment. As shown by the

Fig. 12. Solving Time for ASCENT vs. LP

results, ASCENT scales significantly better than an LP-based
approach.

Experiment 2: Testing ASCENT’s solution optimality.
Clearly, scalability alone is not the only characteristic of a
good approximation algorithm. A good approximation algo-
rithm must also provides very optimal results. We created
an experiment to test the accuracy of ASCENT’s solutions.
We compared the value of ASCENT’s answer to the optimal
answer,

valueof(ASCENTSolution)

valueof(OptimalSolution)

for 50 different MMKP co-design problem sizes with 3 items
per set. For each size co-design problem, we solved 50
different problem instances and averaged the results.

It is often suggested, due to the Central Limit Theorem [17],
to use a sample size of 30 or larger to produce an approx-
imately normal data distribution [13]. We chose a sample
size of 50 to remain well above this recommended minimum
sample size. The largest problems, with 50 sets per MMKP
problem, would be the equivalent of a satellite with 50 points
of software variability and an additional 50 points of hardware
variability.

For problems with less than 7 sets per MMKP problem, we
compared against the optimal answer produced with an LP
solver. We chose a low number of items per set to decrease
the time required by the LP solver and make the experiment
feasible. For problems with more than 7 sets, which could
not be solved in a timely manner with the LP technique, we
used our co-design problem generation technique presented
in Section 5.1. The problem generation technique allowed
us to create random MMKP co-design problems that we
knew the exact optimal answer for and could compare against
ASCENT’s answer.

Figure 13 shows the results of the experiment to test
ASCENT’s solution value verusus the optimal value over
50 MMKP co-design problem sizes. With 5 sets, ASCENT



10

Fig. 13. Solution Optimality vs Number of Sets

produces answers that average 90% optimal. With 7 sets, the
answers average∼95% optimal. Beyond 20 sets, the average
optimality is ∼98% and continues to improve. These results
are similar to MMKP approximation algorithms, such as M-
HEU, that also improve with increasing numbers of sets [1].
We also found that increasing the number of items per set
also increased the optimality, which parallels the resultsfor
our solver M-HEU [1].

Experiment 3: Measuring ASCENT’s solution space
snapshot accuracy. As part of the solving process, ASCENT
not only returns the optimal valued solution for a co-design
problem but it also produces a data set to graph the optimal
answer at each budget allocation. For the satellite example,
the graph would show designers the design with the highest
image processing accuracy for each ratio of budget allocation
to software and hardware. We created an experiment to test
how optimal each data point in this graph was.

For this experiment, we generated 100 co-design problems
with less than 7 sets per MMKP problem and compared
ASCENT’s answer at each budget allocation to the optimal
answer derived using an LP technique (more sets improves
ASCENT’s accuracy). For problems with 7 sets divided into 98
different budget allocations, ASCENT finds the same, optimal
solution as the LP solver more than 85% of the time. Figure 14
shows an example that compares the solution space graph
produced by ASCENT to a solution space graph produced
with an LP technique. The X-axis shows the percentage of the

Fig. 14. Solution Value vs. Budget Allocation

budget allocated to the software (consumer) MMKP problem.
The Y-axis shows the total value of the MMKP co-design
problem solution. The ASCENT solution space graph closely
matches the actual solution space graph produced with the LP
technique.

5.3 Solution Space Snapshot Resolution

Experiment 4: Demonstrating the importance of solution
space snapshot resolution. A complicated challenge of apply-
ing search-based software engineering to hardware/software
co-design problems is that design decisions are rarely as
straightforward as identifying the design configuration that
maximizes a specific property. For example, if one satellite
configuration provides 98% of the accuracy of the most
optimal configuration for 50% less cost, designers are likely to
choose it. If designers have extensive experience in hardware
development, they may favor a solution that is marginally more
expensive but allocates more of the development to hardware,
which they know well. Search-based software engineering
techniques should therefore allow designers to iteratively tease
these desired designs out of the solution space.

ASCENT has a number of capabilities beyond simply
finding the optimal solution for a problem to help designers
find desirable solutions. First, as we describe below, ASCENT
can be adjusted to produce different resolution images of
the solution space by adjusting the granularity of the bud-
get allocation steps (e.g., make smaller and more allocation
changes). ASCENT’s other solution space analysis capabilities
are presented in Section 5.4.

The granularity of the step size greatly impacts the res-
olution or detail that can be seen in the solution space. To
obtain the most accurate and informative solution space image,
a small step size should be used. Figure 15(a) shows a solution
space graph generated through ASCENT using 10 allocation
steps. The X-axis is the percentage of budget allocated to
software, the Y-axis is the total value of the solution. It
appears that any allocation of 30% or more of the budget to
software will produce a satellite with optimal image processing
accuracy.

Figure 15(b), however, shows the graph that results from
solving the same problem with a 20 allocation steps. It is
important to note that while allocating 30% or more of the
budget to software still results in an optimal solution, there is
another point that was absent from the previous graph. It can
clearly be seen that an allocation of 15% of the budget for
software will also result in a near optimal solution, which is
an unanticipated good solution that favors hardware.

The importance of a small step size is further demonstrated
in Figure 15(c), which was produced with 100 allocation steps.
Both previous graphs also suggest that any allocation of greater
than 30% for software would result in an optimal satellite
design. Figure 15(c) shows that there are many pitfalls in the
70% to 99% range that must be avoided. At these precise
budget allocation points, there is not a good combination of
hardware and software that will produce a good solution.

This result may seem counter-intuitive. At these points,
the previous good hardware solution is too expensive, but
a different more expensive software configuration with less
resource consumption to fit on the cheaper available hardware
configurations is also not within budget. If any of these soft-
ware allocation percentages were chosen arbitrarily without
creating a high quality graph of the solution space, the designer
could unknowingly create a system that has 25% of the value



11

(a) Low Resolution Solution Space Snapshot

(b) Medium Resolution Solution Space Snapshot

(c) High Resolution Solution Space Snapshot

Fig. 15. A Solution Space Graph at Varying Resolutions

for the same cost.

5.4 Solution Space Analysis with ASCENT

Although ASCENT’s ability to provide variable resolution
solution space images is important, its greatest value stems
from the variety of questions that can be answered from its
output data. In the following results, we present representative
solution space analyses that can be performed with ASCENT’s
output data.

Design analysis 1: Identifying low-cost viable designs. A
common software engineering scenario is that a design need
not necessarily be optimal as long as it provides a minimum
required value or capability. For example, satellite designers
want to find the cheapest designs that provide the required
level of image processing accuracy. Figure 16(a) shows a graph
that can be produced by taking the output data from ASCENT
and graphing total actual solution cost as a function of budget
allocation, rather than graphing value as a function of budget
allocation. This graph allows designers to ascertain key low
cost designs in the solution space and can be further filtered
to eliminate any solutions that do not meet a minimum value

threshold. The resulting graph allows designers to find the
lowest cost satellite co-design solution with a given image
processing accuracy.

(a) Solution Cost vs. Budget Allocation

(b) Solution Value vs. Budget Allocation

(c) Cost Effectiveness vs. Budget Allocation

(d) Budget Surplus vs. Budget Allocation

Fig. 16. Satellite Design Solution Space Analysis Graphs

Design analysis 2: Determining budget allocation ratios.
An important question to ask when designing a system is
what budget allocations and solutions give the most value per
unit of cost. In terms of the satellite example, the question
would be what design gives the most accuracy for the money.
Figure 16(c) shows another set of ASCENT output data
that has been regraphed to showvalue

cost
as a function of the



12

percentage of the budget allocated to software. It can clearly
be seen that the designs with the best ratio of value to cost
assign more of the value to software. This graph can also easily
be filtered to eliminate designs that do not provide a minimum
level of value.

Design analysis 3: Finding designs that produce budget
surpluses. Designers may wish to know how the resource
slack values, such as how much RAM is unused, with different
satellite designs. Another related question is how much of the
budget will be left-over for designs that provides a specified
minimal level of image processing accuracy. We can use the
same ASCENT output data to graph the budget surplus at a
range of allocation values.

Figure 16(d) shows the budget surplus from choosing var-
ious designs. The graph has been filtered to adhere to a
requirement that the solution provide a value of at least 1600.
Any data point with a value of less than 1600 has had its
surplus set to 0. Looking at the graph, we can see that the
cheapest design that provides a value of at least 1,600 is found
with a budget allocation of 80% software and 20% hardware.
This design has a value of 1,600 and produces budget savings
of 37%.

Design analysis 4: Evaluating design upgrade/-
downgrade cost. In some situations, designers may have a
given solution and want to know how much it will cost or
save to upgrade or downgrade the solution to a different image
processing accuracy. For example, designers may be asked to
provide a range of satellite options for their superiors that show
what level of image processing accuracy they can provide at a
number of price points. Figure 17 depicts another view of the
ASCENT data that shows how cost varies in relation to the
minimum required solution value. This graph shows that 5 cost

Fig. 17. Cost of Increasing Solution Value

units can finance a design with a value up to 900, but a design
of a value of 1,000 units will cost at least 124 cost units. This
information graph demonstrates the increased financial burden
of requiring a slightly higher valued design. Alternatively, if
the necessary value of the system is near the left edge of one
of these plateaus, designers can make an informed decision on
whether the increased value justifies the significantly increased
cost.

5.5 Summary of Empirical Results

The following is a summary of the empirical results presented
above.

• ASCENT Produces Answers that are 98% Optimal:
As seen from the results in Figure 13, ASCENT generates
answers that average 98% optimal for problems with a large
number of sets in each MMKP problem. This result implies
that ASCENT will perform well on large-scale MMKP co-
design problems, such as the design of a large and complex
satellite. Moreover, the larger the problem, the more accurate
ASCENT’s results. Systems of this scale would be nearly
impossible to optimize without the search-based software
engineering method provided by ASCENT.
• High Resolution Solution Space Snapshots Can Iden-

tify Near-optimal Alternative Solutions: Another important
result is that we demonstrated that by capturing a high resolu-
tion solution space snapshot we can identify unanticipatednear
optimal designs. These unanticipated nearly optimal designs
correspond to peaks in the solution space graph at local
maxima. In future work, we plan to develop algorithms that
automatically increase the solution space snapshot resolution
at and around these local maxima. Solving the large numbers
of problems to produce a highly detailed solution space
snapshot is too time-consuming and error-prone to perform
manually.
• ASCENT Output Data Can Answer Numerous Cost-

based Design Questions to Iteratively Improve Solution
Design: Since many design criteria cannot be completely
formalized for a search solver, search-based software engi-
neering should allow desigeners to iteratively hone in on the
solutions they desire. The results demonstrated that each run
of ASCENT allowed designers to answer key questions related
to the allocation of budget to hardware and software. For ex-
ample, designers of a satellite could answer questions suchas
what allocation of budget to hardware and software produces
the highest valued solution. Designers can also answer other
previously difficult questions related to how expensive it is to
produce a solution with a given optimality.

6 RELATED WORK

Search-based software engineering has a large number of
facets ranging from the design of general approximation algo-
rithms to the construction of search-based software engineer-
ing methods for specific problems. This section compares and
contrasts ASCENT to search-based software engineering tech-
niques related to (1) approximation algorithms for solvingsim-
ilar problems to the MMKP co-design problem, (2) methods
for using search-based techniques to solve hardware/software
partitioning problems, (3) methods for using approximation
techniques for solving hardware/software scheduling prob-
lems, and (4) search-based software engineering techniques
for determining project staffing.

MMKP approximation. Many problems similar to the
hardware/software co-design problem presented in this paper
have been solved with MMKP techniques. In multimedia
systems, determining the quality settings that maximize the
value of a series of data streams has been modeled as an
MMKP problem [23, 20]. Other usages of MMKP include
meta-scheduling for grid applications [28], optimally selecting



13

design features for software product-lines [29], and book-
ahead request scheduling [7]. A number of excellent heuris-
tic approximation algorithms, such as M-HEU [2] and C-
HEU [2], with near optimal results have been devised.

These existing MMKP algorithms and techniques, however,
cannot be directly applied to the MMKP-codesign problem
described in this paper. First, as described in Section 3.1,the
existing techniques assume that there are predefined individual
knapsack sizes, which is not the case in the MMKP co-design
scenario. Second, as described in Section 3.2, producer MMKP
items cannot be valued separately from a consumer MMKP
problem, causing a coupling problem. Existing MMKP ap-
proaches are not designed to handle this type of coupling
problem. In contrast, ASCENT addresses these issues and
provides high-quality solutions to MMKP co-design problems.

Hardware/software partitioning. A number of co-design
techniques [6, 22, 26]—that can be viewed as search-based
software engineering techniques—examine the problem of
partitioning system functionality into hardware and software.
These approaches use a number of search techniques ranging
from binary constraint search to dynamic programming. In
the partitioning problem, a system’s required operations are
grouped into tasks or functions, which are then implementedin
either hardware or software. The goal is to correctly partition
the tasks into hardware and software to meet a predefined
performance goal. Some tasks may operate with higher perfor-
mance if the functionality is placed on the hardware rather than
on software. The performance of the system is thus determined
by the location and placement of tasks in hardware versus
software.

The MMKP co-design problem, which ASCENT focuses
on, is complementary to this research. In particular, these
related approaches do not deal with maximizing a measure
of system value subject to producer/consumer resources and
cost. Similarly, ASCENT does not examine the impact of the
placement of tasks on the hardware and software. Each ap-
proach fills an important, although distinct, role in the search-
based software engineering landscape for hardware/software
co-design.

Hardware/software scheduling with resource con-
straints. Another related problem in hardware/software co-
design is the scheduling of hardware/software tasks subject
to resource constraints. This type of co-design problem tries
to determine the optimal ordering of a series of tasks im-
plemented in both hardware and software. Scheduling with
resource constraints is a challenging problem that has led to
the development of large number of co-design search and
design exploration techniques [16, 21, 12]. This co-design
technique is attacking a different facet of software/-hardware
co-design that does not deal with how to select a software
and hardware design that maximizes system value subject to
producer/consumer and cost constraints. ASCENT, however,is
focuses directly on this maximization of system value subject
to these constraints.

Project management and staff allocation. Accurate plan-
ning of large projects are essential to estimate project cost,
determine the formation of employee project teams, and to
assign these teams to tasks in a manner that gives the largest

probability for successful completion. The placement of each
individual employee can change the profile of the entire project
plan, resulting in an exponential number of possible configu-
rations [4]. Moreover, parameters of a project are dynamic and
may change several times before project completion, requiring
that multiple staffing solutions be calculated. This research is
related to MMKP co-design problems in that it deals with two
tightly-coupled activites–the ordering and staffing of project
parts subject to resource constraints. Although the work is
related, it cannot be used to solve MMKP co-design problems.
In contrast, ASCENT is specifically designed for solving
MMKP co-design problems.

7 CONCLUDING REMARKS

Designing hardware and software in tandem to maximize a
system capability can be an NP-hard activity. Search-based
software engineering is a promising approach that can be used
to leverage algorithmic techniques during system co-design.
This paper presented a polynomial-time search-based software
engineering technique, calledAllocation-baSed Configuration
Exploration Technique(ASCENT), for finding near optimal
hardware/software co-design solutions.

We showed how ASCENT’s heuristic-based solutions to
hardware/software co-design problems average over 95% opti-
mal when there are more than seven points of variability in the
hardware and software design. Moreover, ASCENT’s output
(which is a data set showing the optimal design configurations
at each ratio of budget allocation to hardware and software)
can be used to search for and answer important software
engineering questions, such as how much more it will cost
for increasing the value of system capability.

From our experience with ASCENT, we have learned the
following lessons pertaining to search-based software engi-
neering:

• ASCENT is amenable to parallelization. Search-based
software engineering techniques require analyzing vast
solution spaces. Although the algorithms used have poly-
nomial time-complexity, it is desirable to be able to use
the latest advances in multicore processors and falling
hardware prices to improve solving speec. ASCENT is
highly parallelizable and amenable to multi-core archi-
tectures. Any number of budget allocation iterations can
be run in parallel, allowing ASCENT to scale nearly
linearly with the number of underlying computational
units allocated to it.

• Solution space snapshot resolution is critical. AS-
CENT’s step size should be carefully considered when
using the algorithm to visualize the design solution space.
Using too large of a step size results in poor resolution
images, as shown in Figure 15(a).

• LP techniques should be used for small problems
and ASCENT for large problems. For smaller scale
problems, ASCENT produces less optimal solutions. lin-
ear programming (LP) techniques, however, work well at
these small problem scales. In our experiments, roughly 7
points of variability in the hardware and software design
was the cross-over point where ASCENT should be used



14

rather than an LP approach. In future work, we plan to
further refine our understand the situations in which each
technique should be applied.

• Some problems cannot be modeled with a single
Producer/Consumer relationship. Some problems have
more than a single producer/consumer relationship. For
example, when trying to simultaneously determine the
configuration of an application, the underlying middle-
ware, and the hardware there is more than one producer/-
consumer relationship. For these situations, ASCENT
requires breaking the problem in two and solving in
phases, which is not ideal. Our future work will therefore
investigate how to extend ASCENT to operate onN

MMKP problems with an arbitrary number of producer/-
consumer relationships.

An implementation of ASCENT is available as part
of the open-source GEMS Model Intelligence project
sf.net/projects/gems.

REFERENCES

[1] M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic
Solutions for the Multiple-Choice Multi-Dimension Knapsack
Problem. International Conference on Computational Science,
pages 659–668, May 2001.

[2] M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic
Solutions for the Multiple-Choice Multi-Dimension Knapsack
Problem. pages 659–668. Springer, May 2001.

[3] E. Alba and J. Francisco Chicano. Software project
management with GAs.Information Sciences,
177(11):2380–2401, 2007.

[4] G. Antoniol, M. Di Penta, and M. Harman. A robust
search-based approach to project management in the presence
of abandonment, rework, error and uncertainty.Software
Metrics, 2004. Proceedings. 10th International Symposiumon,
pages 172–183, 2004.

[5] A. Barreto, M. Barros, and C. Werner. Staffing a software
project: A constraint satisfaction and optimization-based
approach.Computers and Operations Research,
35(10):3073–3089, 2008.

[6] E. Barros, C. Universitaria-Recife-PE, W. Rosenstiel,and
X. Xiong. A Method for Partitioning UNITY Language in
Hardware and Software.Euro-DAC’94 with Euro-VHDL’94:
Proceedings, September 19-23, 1994, Grenoble, France, 1994.

[7] P. Chiu, Y. Chen, and K. Lee. A request scheduling algorithm
to support flexible resource reservations in advance.Electrical
and Computer Engineering, 2004. Canadian Conference on, 4,
2004.

[8] L. Chung. Non-Functional Requirements in Software
Engineering. Springer, 2000.

[9] J. Clark and J. Jacob. Protocols are programs too: the
meta-heuristic search for security protocols.Information and
Software Technology, 43(14):891–904, 2001.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. MIT, 1990.

[11] S. Curtis. The Magnetospheric Multiscale Mission...Resolving
Fundamental Processes in Space Plasmas.NASA STI/Recon
Technical Report N, pages 48257–+, Dec. 1999.

[12] C. Gebotys and M. Elmasry.Optimal VLSI architectural
synthesis: area, performance and testability. Kluwer
Academic Publishers Norwell, MA, USA, 1992.

[13] J. Gosling.Introductory Statistics. Pascal Press, 1995.
[14] M. Harman. The Current State and Future of Search Based

Software Engineering.International Conference on Software
Engineering, pages 342–357, 2007.

[15] M. Harman and B. Jones. Search-based software engineering.
Information and Software Technology, 43(14):833–839, 2001.

[16] P.-A. Hsiung, P.-H. Lu, and C.-W. Liu. Energy efficient
co-scheduling in dynamically reconfigurable systems. In
CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesign and
system synthesis, pages 87–92, New York, NY, USA, 2007.
ACM.

[17] P. Huber, J. Wiley, and W. InterScience.Robust statistics.
Wiley New York, 1981.

[18] T. Ibaraki, T. Hasegawa, K. Teranaka, and J. Iwase. The
Multiple Choice Knapsack Problem.J. Oper. Res. Soc. Japan,
21:59–94, 1978.

[19] O. Ibarra and C. Kim. Fast Approximation Algorithms forthe
Knapsack and Sum of Subset Problems.Journal of the ACM
(JACM), 22(4):463–468, 1975.

[20] M. Islam, M. Akbar, H. Hossain, and E. Manning. Admission
control of multimedia sessions to a set of multimedia servers
connected by an enterprise network.Communications,
Computers and signal Processing, 2005. PACRIM. 2005 IEEE
Pacific Rim Conference on, pages 157–160, 2005.

[21] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian.
Design space exploration of real-time multi-media mpsocs
with heterogeneous scheduling policies. InCODES+ISSS ’06:
Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis, pages
16–21, New York, NY, USA, 2006. ACM.

[22] E. Lagnese and D. Thomas. Architectural Partitioning for
System Level Design.Design Automation, 1989. 26th
Conference on, pages 62–67, 1989.

[23] A. Lawabni and A. Tewfik. Resource Management and
Quality Adaptation in Distributed Multimedia Networks.
Proceedings of the 10th IEEE Symposium on Computers and
Communications (ISCC’05)-Volume 00, pages 604–610, 2005.

[24] P. McMinn. Search-based software test data generation: a
survey. Software Testing, Verification & Reliability,
14(2):105–156, 2004.

[25] L. Northrop, P. Feiler, B. Pollak, and D. Pipitone.
Ultra-large-scale Systems: The Software Challenge of the
Future. Software Engineering Institute, Carnegie Mellon
University, 2006.

[26] F. Vahid, D. Gajski, and J. Gong. A binary-constraint search
algorithm for minimizing hardware during hardware/software
partitioning. Proceedings of the conference on European
design automation, pages 214–219, 1994.

[27] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint
satisfaction using constraint logic programming.
Constraint-Based Reasoning, 1994.

[28] D. Vanderster, N. Dimopoulos, and R. Sobie. Metascheduling
Multiple Resource Types using the MMKP.Grid Computing,
7th IEEE/ACM International Conference on, pages 231–237,
2006.

[29] J. White, B. Dougherty, and D. Schmidt. Filtered Cartesian
Flattening.Workshop on Analysis of Software Product-Lines
at the International Conference on Software Product-lines,
October 2008.


