
Automating Hardware and Software Evolution Analysis

Brian Dougherty, Jules White, Chris Thompson, and Douglas C. Schmidt
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, TN, USA
{briand,jules,schmidt}@dre.vanderbilt.edu & chris.m.thompson@vanderbilt.edu

Abstract

Cost-effective software evolution is critical to many dis-
tributed real-time and embedded (DRE) systems. Select-
ing the lowest cost set of software components that meet
DRE system resource constraints, such as total memory and
available CPU cycles, is an NP-Hard problem. This paper
provides three contributions to R&D on evolving software-
intensive DRE systems. First, we present the Software Evo-
lution Analysis with Resources (SEAR) technique that trans-
forms component-based DRE system evolution alternatives
into multidimensional multiple-choice knapsack problems.
Second, we compare several techniques for solving these
knapsack problems to determine valid, low-cost design con-
figurations for resource constrained component-based DRE
systems.. Third, we empirically evaluate the techniques to
determine their applicability in the context of common evo-
lution scenarios. Based on these findings, we present a tax-
onomy of the solving techniques and the evolution scenarios
that best suit each technique.

1 Introduction

Current trends and challenges. Evolution accounts for
a significant portion of software life-cycle costs [14]. An
important type of software evolution involves enhancing ex-
isting software to meet new customer and market needs [9].
For example, in the automotive industry, each year the soft-
ware and hardware from the previous year’s model car must
be upgraded to provide new capabilities, such as automated
parking or wireless connectivity.

Software evolution analysisis the process of determin-
ing which software components and hardware components
can be added to a system to implement new functionality
while adhering to multiple resource constraints. This anal-
ysis involves several challenges, including (1) building an
economic model to estimate the return on investment of new
software features, (2) estimating the cost of implementinga
software feature [13], and (3) selecting a new system config-
uration that maximizes the value of the features added while
respecting resource constraints. This paper examines soft-
ware evolution analysis techniques that automatically deter-
mine valid system configurations that support required new

capabilities without violating resource constraints.
In many domains, the cost/benefit analysis for soft-

ware evolution is partially simplified by the availabil-
ity of commercial-off-the-shelf (COTS) software/hardware
components [10]. For example, automotive manufactur-
ers know how much it costs to buy windshield wiper
hardware/software components, as well as electronic con-
trol units (ECUs) with specific memory and process-
ing capabilities/costs. Similar cost/benefit analysis can
also be conducted for custom-developed (i.e., non-COTS)
software/hardware components [3].

Regardless of whether components are COTS or cus-
tom, however, determining the optimal subset of compo-
nents needed to upgrade existing components is an NP-Hard
problem [4]. In the simplest case—where any combination
of the components are compatible—the problem of select-
ing which components to use in an upgrade is an instance of
theknapsack problem, where a knapsack of predefined size
is filled with items of various sizes and values. The goal is
to maximize the sum of the value of items in the sack with-
out exceeding the knapsack size. In this paper, the knapsack
size is defined by the total budget available for the compo-
nent purchase and/or development; the goal is to find the op-
timal subset of the hardware and software components that
do not exceed the budget (i.e., that fit into the knapsack) and
maximize the value of the added capabilities [12].

Moreover, many software evolution problems do not fit
into a relaxed paradigm where any set of components can
be used. For example, purchasing two different infotain-
ment software system implementations does not double the
value of the car since only one system can actually be in-
stalled. In most situations, each new capability that can be
added is a point ofdesign variability, with a number of po-
tential implementations [18] each having their own cost and
performance. The infotainment system is the point of de-
sign variability and the various implementations of the in-
fotainment system are the concrete options for that point of
variability since only one concrete option can be chosen at
one point in time.

Distributed, real-time, and embedded (DRE) systems,
such as automotive and avionics systems, have limited re-
sources and often exhibit tight coupling between hardware
and software decisions [17]. A consequence of this tight-

coupling is that the selected hardware components must
provide sufficient resources to support the decisions made
for the points of software variability. For example, purchas-
ing an infotainment software system that consumes more
memory than is available on its hosting hardware can yield
a flawed configuration. When determining the set of soft-
ware components to upgrade, therefore, careful consider-
ation must be paid to the production and consumption of
resources by hardware and software, respectively. Finding
the set of replacement components that adheres to all re-
source constraints and maximizes total value for an upgrade
is anoptimization problemthat focuses on determining so-
lution(s) that maximizes a single element of the problem.

This type of hardware/software co-design problem is
NP-Hard [19] since there are an exponential number of pos-
sible evolved configurations, which prohibits the use of ex-
haustive state space exploration even for minor DRE system
software evolution. For example, Consider the evolution
of an automobile braking system with 10 different points
of software variability and 10 implementation options for
each variability point. Likewise, assume there is a single
variable hardware electronic control units (ECU) with 10
different available configurations with varying capabilities.
This problem formulation has10

100 possible evolution con-
figurations that must be considered.

Solution Approach→MMKP-based upgrade analy-
sis. This paper shows how a number of complex
software evolution optimization problems can be recast
as multidimensional multiple-choice knapsack problems
(MMKP) [11]. MMKPs are a specialized version of the
more general knapsack problem where the items are divided
into sets and exactly one item must be chosen from each set.
The goal of the MMKP problem is to maximize the value
of the items placed into the knapsack without violating the
knapsack size or set selection constraints.

By converting the task of determining valid, favorable
software evolution configurations into an instance of an
MMKP, developers can take advantage of powerful ap-
proximation algorithms [6]. While these algorithms do
not guarantee optimal solutions, they frequently find near-
optimal solutions in polynomial-time. Moreover, certain
software evolution analysis problems that involve tightly-
coupled hardware/software decisions can be framed as co-
dependent MMKP problems, in which one problem pro-
duces resources for consumption by the other [19].

Converting software evolution decisions into tractable
instances of MMKP problems is neither obvious nor triv-
ial. This process is exacerbated by DRE systems in which
software architecture decisions may effect the hardware ar-
chitecture and vice versa, thereby complicating the evo-
lution analysis. This paper provides the following four
contributions to the study of techniques that convert vari-
ous software evolution analysis problems into MMKP in-

stances: (1) we describe theSoftware Evolution Analysis
with Resources(SEAR) technique for mapping software
evolution analysis problems of several common software
evolution scenarios to MMKP problems, (2) we show how
these MMKP formulations of software evolution analysis
problems can be solved using MMKP heuristic techniques
and mapped back to upgrade solutions, (3) we present em-
pirical comparisons of the optimality and solve times for
three algorithms that can solve these transformed MMKP
problems for problems of various size, and (4) we used this
data to present a taxonomy that describes which algorithm
is most effective based on the problem type and size.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 presents the automotive evo-
lution example used to showcase the need for—and appli-
cability of—our SEAR technique; Section 3 describes sev-
eral challenge problems to which SEAR can be applied;
Section 4 qualitatively evaluates applying SEAR to these
challenge problems and Section 5 then quantitatively evalu-
ates applying SEAR to these challenge problems; Section 6
compares SEAR with related work; Finally, Section 7 sum-
marizes our findings and presents lessons learned.

2 Motivating Example

It is hard to upgrade the software and hardware in a
DRE system to support new software featuresand adhere
to resource constraints. For example, auto manufacturers
that want to integrate automated parking software into a car
must find a way to upgrade the hardware on the car to pro-
vide sufficient resources for the new software. Each auto-
mated parking software package may need a distinct set of
controllers for movement (such as brake and throttle) and
ECU processing capabilities (such as memory and process-
ing power) [5].

Figure 1 shows a segment of automotive software and
hardware design that we use as a motivating example
throughout the paper. This legacy configuration contains
two software components: a legacy brake controller and a
legacy throttle controller as shown in Figure 1(A). In addi-
tion to an associated value and purchase cost, each compo-
nent consumes memory and processing power to function.
These resources are provided by the hardware component
(i.e., the ECU). This configuration is valid since the ECU
produces more memory and processing resources than the
components collectively require.

Adding an automated parking system to the original de-
sign shown in Figure 1(A) may require software compo-
nents that are more recent, more powerful, or provide more
functionality than the original software components. For
example, to provide automated parking, the throttle con-
troller may need to possess functionality to interface with
laser depth sensors. In this example, the original controller
lacked this functionality and must be upgraded with a more

Figure 1. Software Evolution Progression

advanced implementation. The implementation options for
the throttle controller are shown in Figure 1(B).

Figure 1(B) shows potential controller evolution op-
tions. Two implementations are available for each con-
troller.Developers installing an automated parking system
must upgrade the throttle controller via one of the two avail-
able implementations and can optionally increase the func-
tionality of the system by upgrading the brake controller.

Given a fixed software budget (e.g., $500), developers
can purchase any combination of controllers. If developers
want to purchase both a new throttle controlleranda new
brake controller, however, they must purchase an additional
ECU to provide the necessary resources. The other option
is to not upgrade the brake controller, thereby sacrificing
additional functionality, but saving money in the process.

Given a fixed total hardware/software budget of $700,
the developers must first divide the budget into a hardware
budget and a software budget. For example, they could di-
vide the budget evenly, allocating $350 to the hardware bud-
get and $350 to the software budget. With this budget devel-
opers can afford to upgrade the throttle controller software
with Implementation B and the brake controller software
with Implementation B. The legacy ECU alone, however,
does not provide enough resources to support these two de-
vices. Developers must therefore purchase an additional
ECU to provide the necessary additional resources. The
new configuration for this segment of the automobile with
upgraded controllers and an additional ECU (with ECU1
Implementation A) can be seen in Figure 1(C).

Our motivating example above focused on 2 points of
software design variability that could be implemented using
4 different new components. Moreover, 4 different poten-
tial hardware components could be purchased to support the
software components. To derive a configuration for the en-
tire automobile, an additional 46 software components and
20 other hardware components must be examined. Each
configuration of these components could be a valid config-

uration, resulting in (50
24) unique potential configurations.

In general, as the quantity of software and hardware options
increase, the number of possible configurations increases
exponentially, thereby rendering manual optimization solu-
tions infeasible in practice.

3 Challenges of Evolution Decision Analysis

Several issues must be addressed when evolving soft-
ware and hardware components. For example, developers
must determine (1) what software and hardware compo-
nents to buy and/or build to implement the new feature, (2)
how much of the total budget to allocate to software and
hardware, respectively, and (3) that the selected hardware
components provide sufficient resources for the chosen soft-
ware components. These issues are related,e.g., developers
can either choose the software and hardware components to
dictate the allocation of budget to software and hardware or
the budget distributions can be fixed and then the compo-
nents chosen. Moreover, developers can either choose the
hardware components and then select software features that
fit the resources provided by the hardware or the software
can be chosen to determine what resource requirements the
hardware must provide. This section describes a number
of challenging upgrade scenarios that require developers to
address the issues outlined above.

3.1 Challenge 1: Evolving Hardware to
Meet New Software Resource De-
mands

This evolution scenario has no variability in implement-
ing new functionality,i.e., the set of software resource re-
quirements is predefined. For example, if an automotive
manufacturer has developed an in-house implementation of
an automated parking system, the manufacturer will know
the new hardware resources needed to support the system
and must determine which hardware components to pur-
chase from vendors to satisfy the new hardware require-

ments. Since the only purchases that must be made are for
hardware, the exact budget available for hardware is known.
The problem is to find the least-cost hardware design that
can provide the resources needed by the software.

The difficulty of this scenario can be shown by assuming
that there are 10 different hardware components that can be
evolved, resulting in 10 points of hardware variability. Each
replaceable hardware component has 5 implementation op-
tions from which the single upgrade can be chosen, thereby
creating 5 options for each variability point.

To determine which set of hardware components yield
the optimum value (i.e., the highest expected return on in-
vestment) or the minimum cost (i.e., minimum financial
budget required to construct the system), 9,765,265 con-
figurations of component implementations must be exam-
ined. Even after each configuration is constructed, devel-
opers must determine if the hardware components provides
sufficient resources to support the chosen software config-
uration. Section 4.1 describes how SEAR addresses this
challenge by using predefined software components and re-
placeable hardware components to form a single MMKP
evolution problem.

3.2 Challenge 2: Evolving Software to In-
crease Overall System Value

This evolution scenario preselects the set of hardware
components and has no variability in the hardware imple-
mentation. Since there is no variability in the hardware, the
amount of each resource available for consumption is fixed.
The software components, however, must be evolved. For
example, a software component on a common model of au-
tomobile has been found to be defective. To avoid the cost
of a recall, the manufacturer can ship new software com-
ponents to local dealerships, who can replace the defective
software components. The dealerships lack the capabilities
required to add hardware components to the automobile.

Since no new hardware is being purchased, the entire
budget can be devoted to software purchases. As long as
the resource consumption of the chosen software compo-
nent configuration does not exceed the resource production
of existing hardware components, the configuration can be
considered valid. The difficulty of this challenge is similar
to the one described in Section 3.1, where 10 different types
of software components with 5 different available selections
per type required the analysis of 9,765,265 configurations.
Section 4.2 describes how SEAR addresses this challenge
by using the predetermined hardware components a and
evolution software components to create a single MMKP
evolution problem.

3.3 Challenge 3: Unrestricted Upgrades
of Software and Hardware in Tandem

Yet another challenge occurs when both hardware com-
ponents and software components can be added, removed,
or replaced. For example, consider an automobile manufac-
turer designing the newest model of its flagship sedan. This
sedan could either be similar to the previous model with
few new software and hardware components or it could be
completely redesigned, with most or all of the software and
hardware components evolved.

Though the total budget is predefined for this scenario,
it is not partitioned into individual hardware and software
budgets, thereby greatly increasing the magnitude of the
problem. Since neither the total provided resources nor to-
tal consumable resources are predefined, the software com-
ponents depend on the hardware decisions and vice versa,
incurring a strong coupling between the two seemingly in-
dependent MMKP problems.

The solution space of this problem is even larger than
that of the challenge presented in Section 3.2. Assuming
there are 10 different types of hardware options with 5 op-
tions per type, there are 9,765,265 possible hardware con-
figurations. In this case, however, every type of software
is eligible instead of just the types that are to be upgraded.
If there are 15 types of software with 5 options per type,
therefore, 30,516,453,125 software variations can be cho-
sen. Each variation must be associated with a hardware
configuration to test validity, resulting in 30,516,453,125 *
9,765,265 tests for each budget allocation.

In these worst case scenarios, the staggering size of the
configuration space prohibits the use of exhaustive search
algorithms for anything other than trivial design problems.
Section 4 describes how SEAR addresses this challenge by
combining all software and hardware components into a
specialized MMKP evolution problem.

4 Evolution Analysis via SEAR

This section describes the procedure for transforming
the evolution scenarios presented in Section 3 into evolu-
tion Multidimensional Multiple-choice Knapsack Problems
(MMKP) [2]. MMKP problems are appropriate for repre-
senting evolution scenarios that comprise a series of points
of design variability that are constrained by multiple re-
source constraints, such as the scenarios described in Sec-
tion 3. In addition, there are several advantages to mapping
the scenarios to MMKP problems.

MMKP problems have been extensively studied. As a
result, there are several polynomial time algorithms that
can be utilized to provide nearly optimal solutions, such as
those described in [15, 7, 2, 8]. This paper uses the M-
HEU approximation algorithm described in [2] for evolu-
tion problems with variability in either hardware or software

but not both. The multidimensional nature of MMKP prob-
lems is ideal for enforcing multiple resource constraints.
The multiple-choice aspect of MMKP problems make them
appropriate for situations (such as those described in Sec-
tion 3.2) where only a single software component imple-
mentation can be chosen for each point of design variabil-
ity.

MMKP problems can be used to represent situations
where multiple options can be chosen for implementation.
Each implementation option consumes various amounts of
resources and has a distinct value. Each option is placed
into a distinct MMKP set with other competing options
and only a single option can be chosen from each set.
A valid configuration results when the combined resource
consumption of the items chosen from the various MMKP
sets does not exceed the resource limits. The value of the
solution is computed as the sum of the values of selected
items.

4.1 Mapping Hardware Evolution Prob-
lems to MMKP

Below we show how we map the hardware evolution
problem described in Section 3.1 to an MMKP problem. In
this case, the scenario can be mapped to a single MMKP
problem representing the points of hardware variability.
The size of the knapsack is defined by the hardware bud-
get. The only additional constraint on the MMKP solution
is that the quantities of resources provided by the hardware
configuration exceeds the predefined consumption needs of
software components.

To create the hardware evolution MMKP problem, each
hardware component is converted to an MMKP item. For
each point of hardware variability, an MMKP set is created.
Each set is then populated with the MMKP items corre-
sponding to the hardware components that are implemen-
tation options for the set’s corresponding point of hardware
variability. Figure 2 shows a mapping of a hardware evolu-
tion problem for an ECU to an MMKP.

In Figure 2 the software does not have any points of vari-
ability that are eligible for evolution. Since there is no vari-
ability in the software, the exact amount of each resource
that will be consumed by the software is known. The M-
HEU approximation algorithm (or an exhaustive search al-
gorithm, such as a linear constraint solver) uses this hard-
ware evolution MMKP problem, the predefined resource
consumption, and the predefined external resource (budget)
requirements to determine which ECUs to purchase and in-
stall. The solution to the MMKP is the hardware com-
ponents that should be chosen to implement each point of
hardware variability.

Figure 2. MMKP Representation of Hardware
Evolution Problem

4.2 Mapping Software Evolution Prob-
lems to MMKP

We now show how to map the software evolution prob-
lem described in Section 3.2 to an MMKP problem. In
this case, the hardware configuration cannot be altered, as
shown in Figure 3. The hardware thus produces a predeter-

Figure 3. MMKP Representation of Software
Evolution Problem

mined amount of each resource. Similar to Section 4.1, the
fiscal budget available for software purchases is also pre-
determined. Only the software evolution MMKP problem
must therefore be solved to determine an optimal solution.

As shown in thesoftware problemportion of Figure 3,
each point of software variability becomes a set that con-
tains the corresponding controller implementations. For
each set there are multiple implementations that can serve
as the controller. This software evolution problem—along

with the software budget and the resources available for
consumption as defined by the hardware configuration—
can be used by an MMKP algorithm to determine a valid
selection of throttle and brake controllers.

4.3 Hardware/Software Co-Design with
ASCENT

Several approximation algorithms can be applied to
solve single MMKP problems, as described in Sections 4.1
and 4.2. These algorithms, however, cannot solve cases in
which there are points of variability in both hardware and
software that have eligible evolution options. In this sit-
uation, the variability in the production of resources from
hardware and the consumption of resources by software re-
quires solving two MMKP problems simultaneously, rather
than one. In prior work we developed theAllocation-baSed
Configuration Exploration Technique(ASCENT) technique
to determine valid, low-cost solutions for these types of dual
MMKP problems [19].

ASCENT is a search-based, hardware/software co-
design approximation algorithm that maximizes the soft-
ware value of systems while ensuring that the resources
produced by the hardware MMKP solution are sufficient to
support the software MMKP solution [19]. The algorithm
can be applied to system design problems in which there
are multiple producer/consumer resource constraints. In ad-
dition, ASCENT can enforce external resource constraints,
such as adherence to a predefined budget.

The software and hardware evolution problem described
in Section 3.3 must be mapped to two MMKP problems so
ASCENT can solve them. The hardware and software evo-
lution MMKP problems are prepared as shown in Figure 4.
This evolution differs from the problems described in Sec-

Figure 4. MMKP Representation of Unlimited
Evolution Problem

tion 4.1, since all software implementations are now eligible

for evolution, thereby dramatically increasing the amount
of variability. These two problems—along with the total
budget—are passed to ASCENT, which then searches the
configuration space at various budget allocations to deter-
mine a configuration that optimizes a linear function com-
puted over the software MMKP solution. Since ASCENT
utilizes an approximation algorithm, the total time to de-
termine a valid solution is usually small. In addition, the
solutions it produces average over 90% of optimal [19].

5 Empirical Results

This section presents empirical data obtained from using
three different algorithmic techniques to determine valid,
high-value, evolution configurations for the scenarios de-
scribed in Section 3. These results demonstrate that each
algorithm is effective for certain types of MMKP problems.
Moreover, if the correct technique is used, a near-optimal
solution can be found. Each set represents a point of design
variability and problems with more sets have more variabil-
ity. Moreover, the ASCENT and M-HEU algorithms can
be used to determine solutions for large-scale problems that
cannot be solved in a feasible amount of time with exhaus-
tive search algorithms.

5.1 Experimental Platform

All algorithms were implemented in Java and all ex-
periments were conducted on an Apple MacbookPro with
a 2.4 GHz Intel Core 2 Duo processor, 2 gigabytes of
RAM, running OS X version 10.5.5, and a 1.6 Java Vir-
tual Machine (JVM) run in client mode. For our exhaustive
MMKP solving technique—which we call the linear con-
straint solver (LCS)—we used a branch and bound solver
built on top of the Java Choco Constraint Solver (choco.
sourceforge.net). The M-HEU heuristic solver was
a custom implementation that we developed with Java. The
ASCENT algorithm was also based on a custom implemen-
tation with Java.

5.2 Hardware Evolution with Predefined
Resource Consumption

This experiment investigates the use of a linear constraint
solver and the use of the M-HEU algorithm to solve the
challenge described in Section 3.1, where the software com-
ponents are fixed. First, we test for the total time needed
for each algorithm to run to completion. We then examine
the optimality of the solutions generated by each algorithm.
We run these tests for several problems with increasing set
counts, thus showing how each algorithm performs with in-
creased design variability.

Figure 5 shows the time required to generate a hardware
configuration if the software configuration is predefined.1

1Time is plotted on a logarithmic scale for all figures that show solve
time.

Since only a single MMKP problem must be solved, we

Figure 5. Solve Time vs Number of Sets

use the M-HEU algorithm. As set size increases, the time
required for the linear constraint solver increases rapidly.
If the problem consists of more sets, the time required for
the linear constraint solver becomes prohibitive. The M-
HEU approximation algorithm, however, scaled much bet-
ter, finding a solution for a problem with 1,000 sets in∼15
seconds.

Figure 6 shows that both algorithms generated solutions
with 100% optimality for problems with 5 or less sets.
Regardless of the number of sets, the M-HEU algorithm

Figure 6. Solution Optimality vs Number of
Sets

completed faster than the linear constraint solver without
sacrificing optimality.

5.3 Software Evolution with Predefined
Resource Production

This experiment examines the use of a linear constraint
solver and the M-HEU algorithm to solve evolution sce-
narios in which the hardware components are fixed, as de-
scribed in Section 3.2. We test for the total time each algo-
rithm needs to run to completion and examine the optimality
of solutions generated by each algorithm.

Figure 7 shows the time required to generate a software
configuration generated if the hardware configuration is pre-
determined. As with Challenge 2, the M-HEU algorithm is

Figure 7. Solve Time vs Number of Sets

used since only a single MMKP problem must be solved.
Once again, LCS’s limited scalability is demonstrated since
the required solve time makes its use prohibitive for prob-
lems with more than five sets. The M-HEU solver scales
considerably better and can solve a problem with 1,000 sets
in less than 16 seconds, which is fastest for all problems.

Figure 8 shows the optimality provided by each solver.
In this case, the M-HEU solver is only 80% optimal for

Figure 8. Solution Optimality vs Number of
Sets

problems with 4 sets. Fortunately, the optimality improves
with each increase in set count with a solution for a problem
with 7 sets being 100% optimal.

5.4 Unrestricted Software Evolution with
Additional Hardware

This experiment examines the use of a linear constraint
solver and the ASCENT algorithm to solve the challenge
described in Section 3.3, in which no hardware or software
components are fixed. We first test for the total time needed
for each algorithm to run to completion and then examine
the optimality of the solutions generated by each algorithm.
Unrestricted evolution of software and hardware compo-
nents has similar solve times to the previous experiments.

Figure 9 shows that regardless of the set count for the
MMKP problems, the ASCENT solver derived a solution
much faster than LCS. This figure also shows that the re-

Figure 9. Solve Time vs Number of Sets

quired solve time to determine a solution with LCS in-
creases rapidly,e.g., problems that have more than five sets
require an extremely long solve time. The ASCENT al-
gorithm once again scales considerably better and can even
solve problems with 1,000 or more sets. In this case, the op-
timality of the solutions found by ASCENT is low for prob-
lems with 5 sets, as shown in Figure 10. Fortunately, the

Figure 10. Solution Optimality vs Number of
Sets

time required to solve with LCS is not prohibitive in these
cases, so it is still possible to find a solution with 100% op-
timality in a reasonable amount of time.

5.5 Comparison of Algorithmic Tech-
niques

this experiment compared the performance of LCS to the
performance of the M-HEU and ASCENT algorithms for all
challenges in Section 3. As shown in Figure 11, the charac-
teristics of the problem(s) being solved has a large impact
on solving duration.

Each challenge has more points of variability than the
previous challenge. The solving time for LCS thus in-
creases as the number of the points of variability increases.
For all cases, the LCS algorithm requires an exorbitant
amount of time for problems with more than five sets. In
contrast, the M-HEU and ASCENT algorithms show no dis-
cernable correlation between the amount of variability and

Figure 11. LCS Solve Times vs Number of
Sets

the solve time. In some cases, problems with more sets re-
quire more time to solve than problems with less sets, as
shown in Figure 12.

Figure 12. M-HEU & ASCENT Solve Times vs
Number of Sets

Figure 13 compares the scalability of the three algo-
rithms. This figure shows that LCS requires the most solv-

Figure 13. Comparison of Solve Times for All
Experiments

ing time in all cases. Likewise, the ASCENT and M-HEU
algorithms scale at approximately the same rate for all prob-
lems and are far superior to the LCS algorithm. The op-

timality of the ASCENT and M-HEU algorithms is near-
optimal only for problems with five or more sets, as shown
in Figure 14. The exception to this trend occurs if there

Figure 14. Comparison of Optimalities for All
Experiments

are few points of variability,e.g., when there are few sets
and the software is predetermined. These findings moti-
vate the taxonomy shown in Figure 15 that describes which
algorithm is most appropriate, based on problem size and
variability.

Figure 15. Taxonomy of Techniques

6 Related Work

This section compares/contrasts the strategy used by
SEAR for evolution analysis with the use of (1) architecture
reconfigurations to satisfy multiple resource constraintsand
(2) resource planning in enterprise organizations to facili-
tate upgrades.

Architectual considerations of embedded systems.
Many hardware/software co-design techniques can be used
to analyze the effectiveness of embedded system architec-
tures. Slomka et al [16] discuss the development life cycle
of designing embedded systems. In their approach, vari-
ous partitionings of software onto hardware devices are pro-
posed and analyzed to determine if predefined performance
requirements can be met. If the performance goals are not
attained, the architecture of the system will be modified by
altering the placement of certain devices in the architecture.
Even if a valid configuration is determined, it may still be
possible to optimize the performance by moving devices.

While optimization is an integral application of SEAR, it
is not achieved by altering the system architecture. The only
choices that can affect the system performance and value is

the choice of which type of hardware and/or software com-
ponent to perform the functionality defined in the architec-
tural design. Moreover, architectural hardware/softwareco-
design decisions traditionally do not consider comparative
resource constraints or financial cost optimization.

Maintenance models for enterprise organizations.
The difficulty of software evolution is a common and sig-
nificant obstacle in business organizations. Ng et al [13]
discuss the impact of vendor choice and hardware con-
sumption to show the sizable financial and functional im-
pact that results from installingenterprise resource plan-
ning (ERP) software. Other factors related to calculating
evolution costs include vendor technical support, the diffi-
culty of replacing the previous version of the software, and
annual maintenance costs. Maintenance models are used to
predict and plan the effect of purchasing and utilizing var-
ious software options on overall system value. Steps for
the creating maintenance models with increased accuracy
for describing the ramifications of an ERP decision are also
presented.

Currently, maintenance models require a substantial
amount of effort to calculate the overall impact of installing
a single software package, much of which can not be done
through computation. SEAR analyzes the plausibility and
impact of deploying many software components onto mul-
tiple hardware devices. While maintenance models can be
used to assess the value of the functionality and durability
added by a certain software package, they have not been
used to explore the hardware/software co-design space to
determine valid configurations from large sets of potential
hardware devices and software components. Instead, they
are used to define a process for analyzing and calculating
the value of predefined upgrades. SEAR is used to solve the
complex problem of determining determine valid evolution
configurations. Only after the discovery of these configura-
tions can ERPs be used to predict the overall impact of their
installation.

7 Concluding Remarks

Determining valid evolution configurations for
software/hardware configurations that increase system
value is hard. The exponential number of possible con-
figurations that stem from the massive variability in these
problems prohibit the use of exhaustive search algorithms
for non-trivial problems. This paper presented theSoftware
Evolution Analysis with Resources(SEAR) technique,
which converts common evolution problems intomulti-
dimensional multiple-choice knapsack problems(MMKP).
We also empirically evaluated three different algorithms
for solving these problems to compare their effectiveness
in providing valid, high-value evolution configurations.

From these experiments, we learned the following
lessons pertaining to determine valid evolution configura-

tions for hardware/software co-design systems:
• Approximation algorithms scale better than ex-

haustive algorithms. Exhaustive search techniques, such
as the linear constraint solver algorithm, cannot be applied
to non-trivial problems. The determining factor in the effec-
tiveness of these algorithms is the number of problem sets.
To solve problems with realistic set counts in feasible time,
approximation algorithms, such as the M-HEU algorithm or
the ASCENT algorithm must be used. These techniques can
solve even large problems in seconds, with minimal impact
on optimality.

• Extremely small or large problems yield near-
optimal solutions. For non-trivial problems, the ASCENT
algorithm and M-HEU algorithm can be used to determine
near-optimal evolution configurations. For tiny problems,
the LCS algorithm can be used to determine optimal solu-
tions. Given that these tiny problems have few points of
variability, this can be done rapidly.

• Problem size should determine which algorithm to
apply. Based on problem characteristics, it can be highly
advantageous to use one algorithmic technique versus an-
other, which can result in faster solving times or higher op-
timality. Figure 15 shows the problem attributes that should
be examined when deciding which algorithm to apply. It
also relates the algorithm that is best suited for solving these
evolution problems based on the number of sets present.

• No algorithm is universally superior. Based on the
analysis of empirical results, we determined that all threeal-
gorithms are superior for different types of evolution prob-
lems. We have not, however, discovered an algorithm that
performs well for every problem type. To determine if other
existing algorithms perform better for one or all types of
evolution problems, further experimentation and analysis
is necessary. Our future work will examine other approx-
imation algorithms, such as genetic algorithms and particle
swarm techniques, to determine if a single superior algo-
rithm exists.

The current version of ASCENT with example code
that utilizes SEAR is available in open-source form at
ascent-design-studio.googlecode.com.

References

[1] M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic
Solutions for the Multiple-Choice Multi-dimension
Knapsack Problem.LECTURE NOTES IN COMPUTER
SCIENCE, pages 659–668, 2001.

[2] B. Boehm, B. Clark, E. Horowitz, C. Westland,
R. Madachy, and R. Selby. Cost models for future software
life cycle processes: COCOMO 2.0.Annals of Software
Engineering, 1(1):57–94, 1995.

[3] X. Gu, P. Yu, and K. Nahrstedt. Optimal Component
Composition for Scalable Stream Processing. In
Distributed Computing Systems, 2005. ICDCS 2005.

Proceedings. 25th IEEE International Conference on,
pages 773–782, 2005.

[4] J. Her, S. Choi, D. Cheun, J. Bae, and S. Kim. A
Component-Based Process for Developing Automotive
ECU Software.LECTURE NOTES IN COMPUTER
SCIENCE, 4589:358, 2007.

[5] M. Hifi, M. Michrafy, and A. Sbihi. Heuristic algorithms
for the multiple-choice multidimensional knapsack
problem.Journal of the Operational Research Society,
55(12):1323–1332, 2004.

[6] M. Hifi, M. Michrafy, and A. Sbihi. A Reactive Local
Search-Based Algorithm for the Multiple-Choice
Multi-Dimensional Knapsack Problem.Computational
Optimization and Applications, 33(2):271–285, 2006.

[7] C. Hiremath and R. Hill. New greedy heuristics for the
Multiple-choice Multi-dimensional Knapsack Problem.
International Journal of Operational Research,
2(4):495–512, 2007.

[8] A. Jost and A. Franke. Residual Value Analysis. 2005.
[9] G. Leen and D. Heffernan. Expanding Automotive

Electronic Systems.Computer, 35(1):88–93, 2002.
[10] E. Lin. A Biblographical Survey on Some Wellknown

Non-Standard Knapsack Problems.INFOR-OTTAWA-,
36:280–283, 1998.

[11] S. Martello and P. Toth.Knapsack problems: algorithms
and computer implementations. 1990.

[12] C. Ng and G. Chan. An ERP maintenance model. In
System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, page 10, 2003.

[13] S. Schach.Classical and Object-Oriented Software
Engineering. McGraw-Hill Professional, 1995.

[14] A. Shahriar, M. Akbar, M. Rahman, and M. Newton. A
multiprocessor based heuristic for multi-dimensional
multiple-choice knapsack problem.The Journal of
Supercomputing, 43(3):257–280, 2008.

[15] F. Slomka, M. Dorfel, R. Munzenberger, and R. Hofmann.
Hardware/software codesign and rapid prototyping of
embeddedsystems.Design & Test of Computers, IEEE,
17(2):28–38, 2000.

[16] S. Srinivasan and N. Jha. Hardware-software co-synthesis
of fault-tolerant real-time distributed embedded systems. In
European Design Automation Conference: Proceedings of
the conference on European design automation, volume 18,
pages 334–339, 1995.

[17] N. Ulfat-Bunyadi, E. Kamsties, and K. Pohl. Considering
Variability in a System Familys Architecture During COTS
Evaluation. InProceedings ofthe 4th International
Conference on COTS-Based Software Systems (ICCBSS
2005), Bilbao, Spain. Springer.

[18] J. White, B. Dougherty, and D. C. Schmidt. Ascent: An
algorithmic technique for designing hardware and software
in tandem. Technical Report ISIS-08-907, ISIS-Vanderbilt
University, August 2008.

