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Abstract—Late arrival to jobs and meetings is a critical
problem in a number of domains, such as building construction.
Smartphones are a promising platform for detecting late
arrivals and notifying affected parties due to the variety
of sensors they possess, persistent Internet connection, and
access to a user’s calendar data. This paper presents a power-
efficient cyber-physical approach to indoor/outdoor late arrival
detection, called LifeSaver. The paper provides the following
three contributions to the study of late arrival detection and
notification with smartphones: 1) it presents a cyber-physical
approach for using accelerometer data to predict when a
user is moving and make more power efficient localization
decisions; 2) it shows how Bluetooth beacons can be used to
provide a simplified meeting room localization mechanism for
smartphones; and 3) it presents empirical results showing that
the cyber-physical LifeSaver late arrival detection approach
uses 43% less power compared to lateness detection approaches
that rely on standard localization strategies.
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I. I NTRODUCTION

Late arrival to a meeting or job is an important and
prevalent problem in a large number of domains, such as
shipping, disaster response, and construction. Unexpected
late arrivals can increase shipping costs, delay dependent
construction activities, cause customer dissatisfaction[1],
[2], and increase construction costs [3], [4]. Because of
the high cost of being late, an important problem is the
automatic advance detection of a potential late arrival and
notification of affected parties.

Late arrival detection is inherently a cyber-physical com-
puting problem. First, an individual’s physical location must
be determined and compared to the cyber-information dic-
tating a user’s scheduled destinations throughout the day.
If the person’s physical location does not match the cyber-
destination information, then a cyber-physical computation
must be used to determine the time it will take the person to
get from his/her physical location to the destination listed in
the cyber-information. Next, the amount of time the person
needs to get to the destination must be used to determine
if he/she will be late to the start of the job or task at the
destination. If the person is unable to reach the destination
on time, then a cyber-notification, such as a text message to

a person at the destination, providing his/her expected arrival
time is needed so that alternate plans can be made.

In order to perform these cyber-physical steps, a system
must be able to localize a user; have access to geographic
information, such as maps; be able to read calendar infor-
mation for the user’s appointments; and have one or more
mechanisms for notifying affected parties. Smartphones,
such as the iPhone and Android phone, are a promising
platform for for detecting late arrivals and notifying affected
parties because they provide a package of sensors that
travel with their user and measure physical phenomena, have
access to a user’s cyber calendar and contact information,
and have the ability to send cyber-notifications to contacts
through text messaging, email, or other means. Moreover,
smartphone platforms possess a variety of sensors that can
be used for geolocation of a user in the physical world.
For example, the iPhone’s sensors include an accelerometer,
which monitors the phone’s physical acceleration in the x,
y, and z-direction, GPS, which tracks the phone’s location
on the earth, and a Bluetooth adapter, which can be used to
detect other nearby Bluetooth devices or navigation beacons.

Open Problem: Power-efficient Indoor/Outdoor
Smartphone-based Late Arrival Detection and
Notification. Despite the enormous potential for using
smartphones as a cyber-physical late arrival detection
platform, little existing research has investigated approaches
for detecting late arrivals on smartphones. A number
of researchers have investigated approaches for user
localization with smartphones, which is a major component
of detecting late arrivals [5]–[11]. However, none of
these approaches has addressed all of the cyber-physical
challenges related to late arrival detection on smartphones.

There are three key cyber-physical issues that have not
been addressed for late arrival detection on smartphones.
The first issue is that localization sensors on a smartphone,
such as GPS, consume significant power and can exhaust a
smartphone’s battery in only a few hours. The second issue
is that many indoor localization approaches rely on external
hardware, pre-analysis of wireless signals in a building, or
other environment conditioning steps to determine physical
information. These setup steps may not be economical or
possible to perform at all possible locations a user may



travel through. The third issue of late arrival detection is
the requirement for both outdoor and indoor localization,
which requires an approach that can seemlessly transition
between the different localization approaches used in each
environment.

Solution Approach ⇒ A Cyber-physical Approach for
Detecting User Lateness.To fill this gap in research on
smartphone-based cyber-physical late arrival detection,we
have developed a smartphone-based late arrival detection
and notification approach called LifeSaver. LifeSaver uses
a combination of smartphone sensors to determine a user’s
physical context, more intelligently power cycle localization
sensors, and significantly reduce the power required to detect
a late arrival. Moreover, LifeSaver uses a key insight from
the domain of late arrival detection, that indoor localization
only needs to determine if the user is in a meeting room,
to simplify the indoor localization component of late arrival
detection.

A key attribute of the LifeSaver approach is that it
requires significantly less power to detect late arrivals than is
required if existing localization approaches are relied upon.
In Section V we present empirical data that we gathered
from experiments that tested the operation of LifeSaver and
compared its power consumption to late arrival detection
with existing localization approaches. Our empirical results
show that LifeSaver uses up to 42% less power than late
arrival detection with existing localization approaches.In
addition, our results show that LifeSaver is capable of
seamless indoor/outdoor localization.

This paper provides the following contributions to the
study of user late arrival detection with smartphones:

• We present a novel localization technique for mobile
devices that is capable of determining device location
seamlessly between indoor/outdoor environments with-
out requiring additional preconfigured hardware.

• We provide a formal methodology for using smartphone
sensors to acquire physical data, such as device location
and nearby device IDs, and relating it to cyber model
that contains schedule data, such as appointment time
and location, to detect late arrivals.

• We present empirical results showing the impact of
GPS and Bluetooth localization on the power consump-
tion of mobile devices.

• We show that the Lifesaver technique can delay per-
forming localization based on sensor data, thereby con-
serving device power by reducing GPS and Bluetooth
activity.

The remainder of this paper is organized as follows:
Section II describes a practical scenario clarifying the main
objectives of this research effort, which we use as a motivat-
ing example throughout the paper; Section III discusses the
challenges that we faced when addressing the two issues
from above; Section IV covers our solution to the overall
problem; Section V presents empirical results from the

benchmark experiments we ran; and Section VII presents
concluding remarks and lessons learned.

II. M OTIVATING EXAMPLE

As a motivating example to illustrate the challenges of
late arrival detection, we use a scenario from the construction
industry. One type of construction late arrivals that we focus
on in this paper is late contractor arrivals [12], which can
cause significant delays and cost increases on a job site.

Figure 1. Example Schedule of Dependent Construction Tasks

A critical issue on construction sites is that many construc-
tion tasks directly depend upon the completion of prior tasks.
For example, as seen in Figure II, initial framing of walls is
dependent upon the completion of the foundation. Often,
however, contractors, such as plumbers will arrive late,
delaying work on a construction task and leaving workers
assigned to certain dependent tasks idle.

If it was possible to predict when a contractor was going
to be late, workers could be assigned to alternative tasks that
are not directly dependent upon the late contractor. Studies
have shown that in a sample of 215 completed commercial
and industrial construction projects, 62% of them were
late and 88% of these late projects had late contractors.
A majority of the projects’ timelines to completion were
extended by a month, but in some extreme cases a six-month
extension was needed to finish the project [4]. A one to
six month increase in construction time can add significant
expense to a construction project [4].

III. C HALLENGES OFCYBER-PHYSICAL LATE ARRIVAL

DETECTION

Although smartphones are a promising platform for user
late arrival detection, Smartphone late arrival detectionmust
address challenges related to the limited battery capacityof
smartphones and issues associated with indoor localization.
Because phones are usually only charged at the night when
the user is asleep and many meetings occur indoors, power
efficiency is critical for developing a smartphone late arrival
detection system. Moore’s Law defines the rate of advance-
ment for certain computing attributes, such as processor
speed and storage density. However, battery power density
has not increased nearly as fast as processor speed [13]. The
remainder of this section explores three key challenges of



power efficient indoor/outdoor user late arrival detectionon
smartphones.

A. Challenge 1: Power Efficiency

GPS is the primary mechanism for precise user local-
ization using smartphones. A key challenge of detecting
late arrivals using smartphones is that smartphones have
limited battery capacities that can quickly be exhausted
using smartphone localization sensors, such as GPS. For
example, the iPhone 4, the Droid X and the Nexus One have
1420 mWh, 1570 mWh and 1400 mWh battery capacity,
respectively. A GPS sensor, alone, consumes roughly 140
mW of power when enabled [14], so neglecting all other
power consumption on the phone, the battery is expected to
last 10 - 11 hours for the iPhone, Droid X and Nexus One
when GPS is turned on. In reality, an active GPS sensor also
requires CPU and other power consumptive resources. When
these other supporting resources are considered, battery life
may be as short as 3-4 hours when GPS is enabled. Because
users normally charge their phones at night while they sleep,
running GPS all of the time is not a feasible approach for
localization.

In the context of our construction scenario, described in
Section II, the power consumption challenge becomes an is-
sue when a late arrival detection application on the worker’s
smartphone uses up too much battery power throughout the
day. The average construction worker’s shift is eight hours,
so in order to benefit the construction domain, an algorithm
must not exhaust a smartphone’s battery in less than this
amount of time. Once the battery is depleted, late arrival
detection of the smartphone’s owner comes to a halt until the
battery is recharged. Since most people recharge their phones
at night while sleeping, they are less likely to recharge
their phone during the day at work on a construction site.
Section IV describes how we address this challenge by using
a smartphone’s accelerometer to determine user context an
intelligently enable and disable GPS and other localization
sensors to save power..

B. Challenge 2: Indoor Localization to a Specific Room
Without External Hardware

The second challenge of smartphone late arrival detection
is indoor localization without external hardware, such as
Bluetooth beacons, WiFi hotspots and GPS repeaters. Fig-
ure III-B shows the inadequacy of outdoor GPS localization
in an indoor environment due to physical barriers blocking
signals. Indoor localization is the process of monitoring a
person’s location in a building. For late arrival detection,
indoor localization must be accurate enough to determine if
a user is in a specific meeting room.

Many previous indoor localization approaches have relied
upon preconfigured external hardware, such as custom-made
Bluetooth beacons or wireless routers and GPS repeaters,
in order to track a user’s location indoors. Each of these

Figure 2. GPS Signals Blocked in a Construction Environment

approaches requires preconfiguration of the indoor environ-
ment or additional hardware. For example, in WiFi localiza-
tion approaches, the cell signals through the building must
be mapped and the area of overlap between access points
measured. In Bluetooth localization approaches, Bluetooth
beacons are laid about a floor plan requiring custom-made
containers to focus the signal for increased detection range.
In accelerometer-based indoor localization, floor plans are
downloaded to the mobile device and the user specifies
a starting location. Extra hardware increases the cost and
preconfiguration of the environment and may not be prac-
tical due to the lack of robustness and portability to other
environments.

Referring back to our motivating example in Section II,
construction workers already have a great deal of equipment
to use and keep track of, so the introduction of fragile and
expensive headsets or beacons for late arrival detection and
localization would not be ideal in a construction site envi-
ronment. Also, construction sites are dynamically changing
and so approaches that rely on measurements of external
physical phenomena, such as WiFi signals, would have to be
continually recalibrated as the building is built and the signal
propagation properties on the site changed. Section IV-E
describes how we address this challenge by using the smart-
phone’s Bluetooth adapter for indoor localization without
preconfigured external hardware.

C. Challenge 3: Seamless Indoor/Outdoor Localization
Transitions

The third challenge of user late arrival detection is the
difficulty in accomplishing seamless indoor/outdoor local-
ization transitions. Seamless transitions are needed because
they ensure continual location tracking regardless of the



changes in the surrounding environment. While there have
been many research efforts focused on indoor and outdoor
localization, there are very few that seek to accomplish
seamless handoff between the two localization methods.
One solution, called Streamspin, uses a combination of
GPS and WiFi hotspots to achieve seamless indoor/outdoor
localization handoff on a mobile PDA device [15]. Even
though Streamspin accomplished seamless indoor/outdoor
localization transitions, the algorithm depended upon GPS,
required preconfigured WiFi maps and consumed 35% of
the device’s battery per hour, which would exhaust the
battery too quickly for many late arrival detection domains.
We can see that this challenge is not mutually exclusive
from the other two, thus making seamless indoor/outdoor
localization that much more difficult to address. One may
be able to accomplish seamless localization handoff, but the
accomplishment comes at the expense of power consumption
and simplicty in design.

Construction workers may walk in and out of the building
during construction. In order to be able to track the late
arrivals of workers or of specific job-related tasks, it is
necessary to accomplish seamless indoor/outdoor localiza-
tion handoff in a user late arrival detection algorithm. For
example, a plumber is going to work on several construction
projects in the same day. On some sites, he may be doing
plumbing work inside a partially finished structure where
the GPS fix on his location my be periodically lost and
found. At other parts of the day, he may be installing
pipe as part of the foundation for a building and has a
continual GPS signal. A late arrival detection algorithm
with seamless localization would be able to keep track of
where the plumber was at any point of the day in order
to determine if he was running late to a job based upon
his work schedule. Section IV-D describes how we address
this challenge by developing a GPS-based algorithm for
detecting indoor/outdoor localization handoff.

IV. SOLUTION

LifeSaver is a cyber-physical approach to late arrival
detection with smartphones. LifeSaver uses a decision tree
to drive a state-machine using physical events as inputs
for cyber decisions on the smartphone. LifeSaver addresses
the three challenges described in Section III: (1) low
power consumption with an accelerometer-based algorithm
to determine when to start localization, (2) relative indoor
localization without extra preconfigured hardware beyond
what’s available on the smartphone , and (3) seamless
indoor/outdoor localization handoff with a GPS-based algo-
rithm. These challenges are overcome by LifeSaver through
the use of two critical power efficiency and indoor localiza-
tion techniques.

Context-based Power Cycling.As described in Sec-
tion III-A, power efficiency is a major challenge in
smartphone-based late arrival detection. In order to conserve

battery power, LifeSaver uses a context-based approach to
power GPS and Bluetooth sensors on and off.

Indoor Localization Approach. Indoor meetings require
a smartphone to localize a user to a specific room to deter-
mine if the user has entered the meeting room. However,
when a user is inside the building containing a meeting
room, it is typically not necessary to know exactly which
room they are in. Once a user is in the building where a
meeting is taking place, knowing whether the user is in the
designated meeting room or not is sufficient. In most cases,
the travel time within a building is insignificant.

Because it is not necessary to know exactly where a
user is within the building of a meeting location, LifeSaver
uses a simple Bluetooth rendez-vous beacon to determine
when a user has reached a meeting room. When the first
participant in a meeting reaches the designated meeting
room, they activate a Bluetooth beacon that broadcasts a
unique ID assigned to each meeting. When the devices
of other participants in the meeting receive the Bluetooth
broadcast, they automatically assume that they have reached
the meeting room. This localization approach is similar to
prior Bluetooth-based indoor localization approaches, but
does not require the installation of external hardware. The
approach relies on the short range of Bluetooth communi-
cations to determine if a user has reached a meeting room.

Figure 3. LifeSaver’s State-machine and Decision Tree



A. Formal Model of LifeSaver’s Cyber-physical Late Arrival
Detection Algorithm

Late arrival detection requires the processing of physical
stimulus data from a smartphone’s sensors, estimation of a
user’s location/context, and determination of whether a user
will reach a meeting location by its start time. LifeSaver’s
late arrival detection algorithm is based on a 6-tuple state
representation that encodes physical stimulus data and loca-
tion/context estimation:

Lsk =< tk, D(tk), C(ti), φ(ti), ρ(ti), σ(ti) > (1)

where:

• tk ⊂ T is the time of the future scheduled meetingMk,
from the user’s calendar. The set of all future meeting
times isT .

• D(tk) is the latitude and longitude of the meeting,Mk,
at time tk.

• C(ti) is the last known latitude and longitude of the
device at timeti, whereti < tk.

• φ(ti) is a flag indicating whether or not the device is
believed to be indoors or outdoors at timeti. If the
device is indoors,φ(ti) = 1.

• ρ(ti) is a flag indicating whether or not the device
is believed to be currently moving. If the device is
believed to be moving,ρ(ti) = 1.

• σ(ti) is a flag indicating whether or not the device has
received a Bluetooth beacon signal from the device of
a user who has arrived at the meeting location. If the
signal has been received,σ(ti) = 1.

Late arrival detection is modeled as a function,Late(Ls),
where the determination of whether or not a user is late is
based on the device’s current location, the estimated time
to reach a future meeting location, and whether or not a
Bluetooth beacon signal has been received for the given
meeting:

L(Mk) =































ti +∆(D(tk), C(ti)) ≤ tk + ζ ∧ α = 0 0 (a),

ti +∆(D(tk), C(ti)) + ǫ ≤ tk + ζ 0 (b),

σ(ti) = 1 0 (c)

ti +∆(D(tk), C(ti)) + ζ > tk 1 (d),

otherwise 1 (e)
(2)

where:

• Mk is a future meeting.
• ti is the current time on the user’s device.
• ∆(D(tk), C(ti)) that estimates the travel time from

the user’s current last known location to the meeting
location.

• ζ is a lateness threshold factor that determines how
many minutes past a meeting’s start time the user can
arrive without being considered late. This factor can

be varied based on meeting importance, local customs,
and other factors.

• α is a flag that indicates whether or not arriving at the
meeting destination is sufficient to have arrived at the
meeting or if the attendance requires reaching a specific
room.

• ǫ is a time allowance to walk from the entrance of a
building to a meeting room. We use a fixed value forǫ.
In practice,ǫ will vary based on the building, however
we assume that in most casesǫ is negligible and will
not make a substantial impact. If needed, this value
could be dynamically assigned based on the building
and room that the meeting is scheduled in.

The LifeSaver late arrival detection algorithm considers
a user to be on-time in three primary cases. In case (a),
the meeting is not taking place indoors or within a specific
room (α = 0) and the current time plus the travel time
from the user’s current location to the meeting location is
less than the meeting start time of the meeting (tk). Case
(b) focuses on situations in which the user has not reached
the destination location yet and the meeting is occurring in
a specific room. In this situation, if the user can reach the
destination location and walk to the room before the meeting
start time, the user is considered on-time. The final on-time
case, case (c), marks the user as being on-time because a
Bluetooth beacon signal for the meeting has been received
from another attendant’s smartphone. In all other cases, the
user is expected to arrive late to the meeting.

B. LifeSaver’s State-based Sensor Activation Model

The first high-level component of LifeSaver is the state-
machine, which is represented by the blue rectangles in
Figure IV. The red diamonds are the decisions made by the
decision tree which we will discuss later. The state-machine
has five states: (1) appointment setup/application sleep,
(2) accelerometer enabled, (3) GPS enabled, (4) Bluetooth
enabled and (5) destination reached.

State 1a: Appointment setup. State 1a involves the
start up of the application and the user scheduling an
appointment in the phone by use of a time widget, such
as the prototype time widget used for our experiments and
shown in Figure IV-C. Once the user selects the time of
the appointment, the meeting data is stored for later use
by the decision tree in the cyber model. Extraction of
geolocation data from natural language was not a component
of the research presented in this paper. We assume that
appointments with GPS coordinates are available from a
service, such as Google Calendar. In our experiments, we
used a destination specification widget to capture location
data for appointments.

State 1b: Sleep.Transitioning to State 1b is determined
by the decision tree in Decision 1 as seen in Figure IV. If
the decision tree determines that the application must sleep,
then the main thread goes to sleep until the current time is



within γ minutes of the appointment time selected in State
1a. For example, if the user scheduled an appointment for
11:30 AM, γ = 5min, and the current time is 11:05 AM,
then the application would sleep for twenty minutes and then
wake back up at 11:25 AM. In our experiments, a buffer time
of five minutes was shown to effectively detect late arrivals
in most cases without excessively consuming battery power.

State 2: Accelerometer on.An important energy saving
step of LifeSaver is that it attempts to only localize the user if
movement is detected. The LifeSaver formal model captures
perceived motion inρ(ti). A smartphone’s accelerometer is
used to calculateρ(ti).

In State 2, the application is woken up and the smart-
phone’s accelerometer is enabled to record physical ac-
celeration experienced by the phone caused by the user’s
movement. For example, if the user is carrying the phone
as he/she walks around, the accelerometer will record the
changes in acceleration in the x, y, and z-direction. This
physical data is used by the decision tree to enable the
localization sensors. LifeSaver uses a threshold function
based on the total movement recorded over a configurable
duration,β. If the recorded motion exceeds a threshold, the
smartphone is considered to be in motion andρ(ti) = 1.
Otherwise,ρ(ti) = 0.

State 3: Accelerometer off/GPS on.At regular intervals,
LifeSaver must attempt to determine the device’s current
location and updateC(ti). LifeSaver uses a smartphone’s
GPS sensor to derive a location forC(ti). GPS is also used
to make a determination of whether or not the device is
indoors and assignφ(ti).

In State 3, the accelerometer is disabled and acceleration
data is no longer recorded since the decision tree has decided
that the user is walking around. GPS is enabled on the
smartphone to establish an initial outdoor location fix. Once
a location fix is established, location updates are sent to
the smartphone periodically as the user walks to update
C(ti). When a new location update is sent to the phone,
a background count down timer is reset and initiated by the
decision tree. If this timer reaches zero, then the decision
tree determines that the user is no longer outside and has
entered a building (φ(ti) = 1).

State 4: GPS off/Bluetooth on. For indoor meeting
locations, a Bluetooth rendez-vous scheme is used to detect
when a user has reached the meeting location. The first
meeting participant to enter the meeting location enables
a Bluetooth beacon on their device that broadcasts the
unique ID of the meeting. When other devices discover this
Bluetooth beacon, they updateσ(ti) to 1. The functionσ(ti)
serves as an indicator that the user has been localized to the
meeting room.

State 4 begins the Bluetooth discovery process to update
σ(ti). This state is reached when the phone no longer
receives location updates causing the count down timer from
State 3 to reach zero. The smartphone’s GPS is disabled and

the Bluetooth adapter is turned on. The adapter is put into
discovery mode to detect the meeting’s Bluetooth beacon.

State 5: Devices found.In State 5, if the correct Bluetooth
broadcast is discovered, then the user is at the destination.

C. Address Challenge 1: Conserving Power with Motion-
based Sensor Power Cycling

Figure 4. Main Screen of the LifeSaver Implementation

Rather than immediately turning on the GPS to attempt
to acquire a location fix, we took a more power conser-
vative approach. When the application is sleeping, power
consumption is at a minimum. Once the application wakes
up, the accelerometer is activated to determine if the user
is moving before the GPS is turned on to begin outdoor
localization. The accelerometer provides data on the changes
in the phone’s acceleration, and we equated roughly twenty
seconds of continual accelerometer updates as evidence of
the user walking around, assuming that he/she is heading
towards the destination by exiting the building. Once the
accelerometer detects these physical changes, the data is
stored in the cyber application so that the decision tree can
turn off the accelerometer and then enable GPS to establish
an initial outdoor location fix.

We used the accelerometer in this manner to shorten the
time we needed the GPS to establish an initial location fix.
By default, the GPS on the smartphone does not have a
timeout, meaning, if the phone’s GPS is on and the phone
is sitting on a desk somewhere inside a building, the phone
will continually attempt to connect to a satellite to establish a
location fix. Since this operation is costly in terms of power



consumption, delaying activation of the physical sensors,
such as GPS and accelerometers, until the current time is
within five minutes of the appointment time stored in the
cyber model, can substantially reduce power consumption.

The user confirms the appointment by pressing the con-
firm button which then transitions the state machine to State
2 to put the application to sleep.

D. Addressing Challenge 2: User Arrival Detection with
Bluetooth

second challenge described in Section III-B. The second
challenge involves the difficulty in providing accurate indoor
localization down to a specific room without using precon-
figured, external hardware. We used the Bluetooth adapter
already built into the smartphone to achieve relative indoor
localization of the user. By discovering recognized Bluetooth
devices in the nearby area based upon device name and
MAC address, we’re alleviated from the need of precise
localization, which is hard to do without costly additional
hardware. When the adapter sees other Bluetooth devices,
the decision tree determines if they are friends/co-workers

E. Addressing Challenge 3: Detecting Outdoor-to-Indoor
Transition

Previously, in Section III-C we discussed the challenge of
seamless indoor/outdoor localization. The decision tree tran-
sitions the state-machine to State 3 by enabling the smart-
phone’s GPS after roughly twenty seconds of movement
captured by the accelerometer. GPS serves two purposes
once it is activated. First, GPS can effectively localize targets
when outdoors. Again, we assume that the user has to walk
outside in order to reach the destination, so once he/she
steps outside, GPS can establish a position lock and provide
position updates periodically.

The second function of the GPS is to provide the decision
tree with the point in time when the user leaves the outdoors
and enters the destination building. We accomplishted this
by using a timeout counter, which is reset every time the
smartphone receives a position update from the satellite. The
two scenarios of when the phone would cease to receive
these notifications is either when the phone is no longer
outside or if the user stops walking.

In both of these events, the timeout counter would reach
zero, thus signaling the decision tree to disable GPS and
transition to State 4 by enabling the Bluetooth adapter,
as seen in Figure IV. This scheme provides a seamless
transition from outdoor localization to indoor localization
without any manual input from the user and without the
user even knowing.

V. RESULTS

A. Experimental Platform

We tested the functionality of LifeSaver by running real-
world tests with the application. We were interested in two

things: (1) how well LifeSaver provided a solution to the
three challenges described in Section III, and (2) how much
power could be saved in comparison to two other localization
solutions.

Before conducting our experiments, we made three as-
sumptions about our testing schedule. The first assumption
was that the user starts inside a building once the application
is started. Even though the application will work if the user
starts outside, we kept this constant through the tests.

The next assumption we made was that the user would
walk around outside at some point. LifeSaver’s current
algorithm needs an initial GPS location lock since acquiring
the first location update is an important step for the decision
tree to drive the state-machine, seen in Figure IV. Our
last assumption was that the user’s destination is another
building so that we could test the seamless indoor/outdoor
localization.

With these assumptions in place, we began real-world
tests with the application installed on a Droid smartphone
with Android version 2.2.2. The testing schedule was set up
to parallel the state transitions described in Section IV.

The user begins by sitting in an office and selects a time
for the next appointment from the main activity screen.
Figure IV-C is a screenshot of the main activity screen.
Once the user selects the appointment time, a secondary
activity is initialized and awaits for user confirmation of the
scheduled appointment. Note that all the state informationis
provided on the screen keeping the user updated of any state
transitions if he/she so chooses to watch the application.

The application sleeps until the current time is within five
minutes of the appointment time, then the accelerometer is
turned on. The accelerometer-based algorithm for turning on
localization sensors was successful in activating the phone’s
GPS after the user walked from indoors to outdoors. This
algorithm is also a contributor LiveSaver’s relatively low
power consumption.

We tested LifeSaver’s seamless localization hand-off fea-
ture by monitoring how the GPS-based algorithm handled
the lost location fix when the user moves from outdoors
to indoors. When the user was walking around outside, the
phone received periodic location updates from a satellite.
When the user moved from outside to inside, GPS was
disabled and Bluetooth was then immediately enabled as
desired.

We tested LifeSaver’s relative indoor localization feature
by placing other Bluetooth devices in an indoor environment
and had the user walk around with the phone in Bluetooth
discovery mode as described in State 4 in Section IV. The
application was able to detect all the physical Bluetooth
devices and then confirm the user’s arrival at the destination
by comparing the device names and MAC addresses to those
already recognized by the phone.

Once we confirmed that the application worked properly,
we prepared quantitative experiments to compare the power



consumption of our application to that of single-sensor
localization approaches the use a single sensor or adapter
for the same duration of time it took our state-machine to
reach the last state.

The two sensors in consideration were also used in
our application: GPS and Bluetooth. The GPS application
continuously displayed position updates to the screen every
second and the Bluetooth application kept the smartphone in
discovery mode and displayed all discovered devices to the
screen. For both of these applications, we ran them for the
same amount of time it took for LifeSaver to go from start
to finish. We describe the results from these experiments
below.

B. Experiment 1: Pure GPS Late Arrival Detection vs.
LifeSaver

The first experiment was designed to compare the battery
usage on the smartphone of our application versus that of
one with just the GPS activated. We wrote code that enables
the smartphone’s GPS and continuously displays the GPS
coordinates of the user to the screen. To monitor battery
consumption, we used a battery monitoring widget available
on the Android market that shows the battery consumption
of each running process as a percentage. Typical processes
that contribute to battery usage of the smartphone include
the backlight for the display, call standby and WiFi.

Before running our application and the GPS application,
we rebooted the phone to clear all battery usage history to
establish a common starting point. We ran our application for
six minutes, which was the typical amount of time needed
to go from start to finish. We reset the system to clear the
battery history and then ran the GPS application for the same
amount of time.

Hypothesis: Motion-based Power Cycling is More
Power-efficient than Continually Using GPS.Our hypoth-
esis was that running GPS outside would have a higher
battery usage percentage than LifeSaver and running GPS
without acquiring an initial position lock by staying indoors
would yield an even higher percentage than both outdoor
GPS and LifeSaver. We assumed that the constant overhead
in attempting to establish a lock would consume more power
than walking around outside with valid position updates.
When GPS cannot establish an initial position lock, it
continues to do so without any timeout.

Experiment 1 Results: Pure GPS Late Arrival Detec-
tion vs. LifeSaver Power Consumption.

As seen in Figure V-B, keeping GPS active during the six-
minute test consumed more power than LifeSaver. Running
the GPS without an initial position lock constituted 68% of
the smartphone’s battery use and GPS with position lock was
slightly lower at 62%. These figures are more than double
the 30% battery usage level of LifeSaver.

Figure 5. Battery Usage of LifeSaver vs. Pure GPS Late Arrival Detection

C. Experiment 2: Pure Bluetooth Late Arrival Detection vs.
LifeSaver

This experiment was designed to determine whether keep-
ing the Bluetooth adapter on the smartphone in discovery
mode consumes more power than LifeSaver. When the
adapter is put into discovery mode, it sends out discovery
requests for roughly twelve seconds to find nearby Bluetooth
devices that the requesting smartphone can pair and connect
with. The twelve second duration for discovery is the default
amount, but our test application kept the phone in discovery
mode for a full six minutes.

Hypothesis: Bluetooth Consumes More Power than
Power Cycling GPS and Bluetooth Based on Movement.
Our hypothesis was that Bluetooth would consume more bat-
tery than LifeSaver. We expected to see Bluetooth’s power
consumption even higher than that of the GPS solution
because of the comparatively more overhead involved in
Bluetooth discovery.

Experiment 2 results: Pure Bluetooth Late Arrival
Detection vs. LifeSaver Power Consumption.

Figure 6. Battery use of LifeSaver vs. Pure Bluetooth Late Arrival
Detection.

As seen in Figure V-C, running the smartphone’s Blue-
tooth adapter in discovery mode for six minutes consumed
even more battery usage than both the GPS application we
wrote and LifeSaver.



D. Analysis of Results

Considering all the power consumption experiment re-
sults, LifeSaver’s power consumption is sufficiently less than
the other localization approaches. Our solution contributed
to 30% of the phone’s battery use during the six-minute du-
ration of keeping the application running. We saw dramatic
increases in battery use by the GPS application when the
user was walking around outside with a position lock and
even more when the user was walking around inside without
any initial position lock.

Even though GPS is a useful hardware tool for local-
ization, using GPS for long durations of time on a mobile
device consumes a considerable amount of power and short-
ens the life of the phone. With LifeSaver, we trim down
the impact of GPS by implementing the accelerometer-based
algorithm for enabling GPS discussed in Section IV.

The Bluetooth test application required the most battery
power to discover other Bluetooth devices in the area. Walk-
ing around with the phone continually discovering devices
does consumes a great amount of power, but LifeSaver
uses this feature sparingly to determine user arrival to the
destination.

This data is important because it sets the bar for op-
timizing our application even further in the future. Some
optimizations we are interested in implementing involve
making our approach more robust to accommodate even
more late arrival scenarios, which we will discuss later. We
designed some baseline benchmark experiments to rate the
performance of our application with the metric of power
consumption and our LifeSaver yielded favorable results.

VI. RELATED WORK

Accurate methods of indoor and outdoor localization
comprise a significant portion of the issues in detecting
late arrivals. This section provides a taxonomy of related
work. Related works are divided into four categories: indoor
WiFi localization, indoor accelerometer with floor plan lo-
calization, indoor Bluetooth localization and outdoor GPS
localization.

Indoor WiFi Localization. Indoor WiFi localization is
the use of WiFi hotspots and WLAN mapping to achieve
indoor location tracking down to a relatively small distance,
such as between offices in a building. One of the solutions
that uses indoor WiFi localization is Streamspin, which is
a mobile localization application used on PDAs [15]. The
application compares the signal strengths of the wireless
routers in the building to a precompiled database of signal
strength-distance pairs stored for each wireless point. As
the user walks around, the application on the PDA takes
readings of the emitting WiFi signal and does a comparison
with the data in the database. LifeSaver, however, does not
require additional preconfigured hardware to accomplish in-
door localization. Our solution uses the Bluetooth adapterto

discover other nearby recognized smartphones to determine
if the user is in the correct location.

Lifetag is another WiFi-based localization solution that is
very similar to Streamspin [8]. Instead of a PDA, the user
carries a WiFi sensing device that only collects access point
IDs and signal strength at the moment of collection and then
compares these pairs to those in a precompiled database
to map where the user is at in an urban environment or
academic building, for example. LifeSaver does not need
a map of the indoor environment to accomplish indoor
localization, but rather uses the Bluetooth information of
nearby smartphones to establish localization.

Indoor Bluetooth Localization. Similar to LifeSaver’s
use of Bluetooth as a means of location tracking, Cheung
et al. accomplish Bluetooth location tracking using beacons
and a smartphone. [7]. Custom-made short-range Bluetooth
beacons were constructed and all set to discovery mode so
that the smartphone navigating through the maze of beacons
could keep track of its current location.

Indoor Accerlerometer with Floor Plan Localization.
Some researchers have even explored the possibility of using
an accelerometer as a means of indoor localization. Using an
accelerometer in this fashion does require a floor plan of the
area being navigated to cross reference in order to have some
level of accuracy [16]. SmartSLAM is an indoor localization
solution that uses the smartphone’s accelerometer and floor
plan in combination with WiFi mapping. The approach uses
high-level statistics to process the accelerometer data to
match the floor plan and synchronize with the WiFi mapping
monitored by the phone. LifeSaver does not utilize the
accelerometer or maps for indoor localization. Again, Life-
Saver only depends upon the discovery of other smartphones
to determine if the user is in the right location. LifeSaver,
though, does use the accelerometer to determine when to
enable the localization sensors on the phone.

Outdoor GPS Localization There has been extensive
research on the power consumption and accuracy of GPS
showing the mobile GPS is both expensive in terms of power
consumption and inaccurate in urban areas. Also, GPS is
virtually useless in indoor settings because of the signal at-
tenuation caused by physical barriers. These are the reasons
for research efforts attempting to find other means of indoor
and outdoor localization in combination with GPS that we
have previously discussed [8], [15]. LifeSaver does use
GPS for outdoor localization, but the solution implements
a power-saving accelerometer-based algorithm to decrease
the time that GPS is enabled for outdoor localization.

VII. C ONCLUDING REMARKS & L ESSONSLEARNED

Late arrivals at meetings and jobs can have a number of
substantial negative impacts. For example, on a construction
site, construction activities are typically dependent upon one
another and the late arrival of a contractor can leave workers
idle and lead to cost increases. Some of this negative impact



can be mitigated, however, if late arrivals can be predicted
in advanced and affected parties notified.

Smartphones are a promising platform for detecting late
arrivals since they are nearly always carried by their users,
have access to a user’s calendar data, and have a variety
of sensors, such as GPS, that can be used to aid in local-
ization. A key challenge, however, is that localization ap-
proaches require significant power and can quickly exhaust
a smartphone’s battery. This paper presented an approach,
called LifeSaver, that intelligently power cycles localization
sensors based on motion data and utilizes Bluetooth beacons
as a lightweight indoor localization mechanism for detecting
arrivals in meeting rooms. Our empirical results show that
this combination of approaches consumes roughly 43% less
power than late arrival detection with existing approaches.

An implementation of LifeSaver is available in open-
source form from http://code.google.com/clearmobile.
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