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Abstract

Software product line (SPL) engineering is a software engineering approach to building configurable soft-
ware systems. SPLs commonly use a feature model to capture and document the commonalities and vari-
abilities of the underlying software system. A key challenge when using a feature model to derive a new
SPL configuration is determining how to find an optimized feature selection that minimizes or maximizes
an objective function, such as total cost, subject to resource constraints. To help address the challenges of
optimizing feature selection in the face of resource constraints, this paper presents GAFES, an artificial intel-
ligence approach, based on genetic algorithms (GAs), for optimized feature selection in SPLs. Our empirical
results show that GAFES can produce solutions with 86-97% ofthe optimality of other automated feature
selection algorithms and in 45-99% less time than existing exact and heuristic feature selection techniques.
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1. Introduction

Software product lines(SPLs) are a software engi-
neering approach for creating configurable software
applications that can be adapted to a variety of re-
quirement sets (Clements & Northrop, 2001). SPLs
are built around a set of common software compo-
nents with points of variability that allow the cus-
tomization of the product. For example, the Bold
Stroke SPL (Boeing, 2002), developed by the Boe-
ing company, comprises a wide range of reusable
artifacts, such as a configurable architecture, set of
application components, development processes, and
development tools, which are used to create Opera-
tional Flight Programs for a variety of Boeing air-
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craft.

Developing an SPL comprises two distinct devel-
opment processes: 1)domain engineering, which is
the process of developing the common and variable
software artifacts of the SPL (Pohl et al., 2005) and
2) product derivation, which is the process of config-
uring the reusable software artifacts for a customer-
or market-specific set of requirements. The core
principle behind SPL engineering is that the in-
creased cost of developing a set of reusable and cus-
tomizable software artifacts can be amortized across
multiple products (Deelstra et al., 2005), such as dif-
ferent Boeing aircraft.

An important component of an SPL is a model or
roadmap that dictates the rules governing how the
points of variability can be configured. A widely
used approach for modeling the commonalities and
variabilities in an SPL is Feature-Oriented Product
Line Engineering, which captures and represents the
commonalities and variabilities of systems in terms
of features (Kang et al., 1990, 1998, 2002).Features

Preprint submitted to Journal of Systems and Software February 21, 2011



are essential abstractions of product characteristics
relevant to customers and are typically increments of
functionality (Kang et al., 2002; Batory et al., 2006).

Every product derived from a feature-oriented
SPL is represented by a unique and valid combina-
tion of features. The valid combinations of features
are governed by the SPL’sfeature model, which de-
fines relationships between the features in an SPL.
As shown in Figure 1, a feature model is a tree-like
structure that defines the relationships among fea-
tures in a hierarchical manner. The relationships be-
tween the features indicate the choices that the cus-
tomer can make when customizing a product. For
example, in Figure 1, theAlternativerelationship be-
tween the two features “Static” and “Dynamic” in-
dicates that developers can either choose a static or
dynamic mechanism for implementing the memory
allocation (the “MemAlloc” feature) in the database,
but not both. The goal of product derivation is to se-
lect an optimal combination of features from the fea-
ture model that meets the stakeholder requirements.

Open Problem⇒ SPL Feature Selection Opti-
mization with Resource Constraints. Despite the
benefits of SPLs, industrial case studies have shown
that product derivation is still “a time-consuming
and expensive activity” (Deelstra et al., 2004, 2005).
Developers face a number of challenges when at-
tempting to derive an optimized feature selection that
meets an arbitrary set of requirements. For example,
developers of the database SPL shown in Figure 1
may need to derive the set of features that meets a set
of functional requirements for a mobile application
while simultaneously minimizing memory consump-
tion (the optimization goal). Some configurations of
the database may reduce memory consumption but
require more disk space than can be supported by the
mobile platform (a resource constraint).

Even in a small feature model, feature combina-
torics can produce an exponential number of prod-
uct configurations. For example, about 280 differ-
ent product configurations can be derived from the
relatively simple feature model shown in Figure 1.
Moreover, once a feature selection is made, it must
be verified to conform to the myriad constraints in
the feature model. Additional resource constraints or
non-functional requirements, such as the binary size,
performance, or total budget for a product (Siegmund

et al., 2008; White et al., 2009), make the feature se-
lection process even more complex and difficult. Pre-
vious research has shown that finding an optimal fea-
ture selection that conforms to both the feature model
constraints and the resource constraints is an NP-
hard problem (White et al., 2009). To overcome the
complexity of selecting an optimized feature selec-
tion that meets resource constraints, developers need
tools to help automate the process.

SPL feature selection optimization with resource
constraints is similar to configuration optimization
problems that have been addressed by other auto-
mated feature selection approaches that do not con-
sider resource constraints (Benavides et al., 2008).
Many researchers in the SPL community have ap-
plied and extended various AI techniques to solve the
SPL feature selection problem, e.g., using CSP (Be-
navides et al., 2005), BDD (Czarnecki & Wasowski,
2007; Mendonca et al., 2009) and SAT solvers (Ba-
tory, 2005), but have not considered resource con-
straints in their work. Moreover, these exact tech-
niques show exponential time complexity and do not
scale to large industrial feature models with hundreds
or thousands of features (White et al., 2009). Other
researchers have developed polynomial-time approx-
imation algorithms for selecting highly optimal fea-
ture sets (White et al., 2009), but their approaches
still require significant computing time. In addition,
some visualization techniques (Sellier & Mannion,
2007; Botterweck et al., 2007) have been devised
to assist developers in feature selection. However,
industrial-sized feature models can have hundreds or
thousands of features (Steger et al., 2004; Loesch
& Ploedereder, 2007), which makes a manual fea-
ture selection process challenging, particularly for
an NP-hard feature selection problem with resource
constraints.

Solution Approach ⇒ Genetic Feature Selec-
tion Optimization Algorithms. In this paper, we
introduce an AI approach, based on genetic algo-
rithms (GAs), to SPL feature selection optimization
with resource constraints. A GA is a stochastic and
global search heuristic that mimics natural evolution
(Mitchell, 1996). It can quickly scan a vast popu-
lation of possible solutions. GAs often work well
for highly constrained problems, such as the Travel-
ing Salesman (Muhlenbein, 1989) and Satisfiability

2



DB

OS BufferMgr DebugLogging

NutOS Win InMemory

BTree

API

put deleteget

Mandatory feature

Alternative-group

Or-group

And-groupNon-terminal feature

Terminal feature

Optional feature [1..n] Cardinality

Persistent

MemAlloc PageRepl

Static Dynamic LRU LFU

Storage

Indexing

Unindexed

[1..3]

Figure 1: Example feature model for the FAME-DBMS SPL

problems (De Jong & Spears, 1989).
In this paper, we adapt GAs to the SPL feature

selection problem, and propose a GA-based AI ap-
proach, calledGAFES. GAFES can quickly derive
an optimized feature selection by evaluating differ-
ent configurations that both optimize product capa-
bilities and honor resource limitations. GAFES com-
bines a novel feature selection repair operator and
a penalty function for resource constraints to ob-
tain fast feature selection times. Our empirical re-
sults show that GAFES can produce feature selec-
tions with objective function scores that are within
86-97% of the feature selections produced by prior
AI feature selection techniques, such as FCF (White
et al., 2009) and CSP/SAT-based approaches (Bena-
vides et al., 2005; Batory, 2005; Czarnecki & Wa-
sowski, 2007), for feature models whose size ranges
from 10 to 10,000 features. Moreover, in our exper-
iments, GAFES derives feature selections 45-99%
faster than these existing heuristic and exact feature
selection optimization techniques.

The main contributions of this paper to the study
of AI-based optimized feature selection for SPLs are
summarized as follows:

• We show how to adapt GAs to the SPL feature
selection optimization with resource constraints
and propose a modified GA named GAFES to
derive an optimized feature selection subject to
the feature model constraints and the resource
constraints.

• We present a repair operator that allows a GA
or other evolutionary algorithm to transform an
arbitrary feature set into a valid feature combi-
nation that conforms to the feature model con-
straints.

• We describe a penalty function, based on the ra-
tio of objective function value to consumed re-
sources, that can improve the search process of
a GA or evolutionary algorithm to that meets re-
source constraints.

• We present empirical results from experiments
on feature models with 10 to 10000 features.
The results show that GAFES can produce fea-
ture selections that are within objective function
scores that are within 86-97% of feature selec-
tions produced by other feature selection tech-
niques. GAFES, however, derives feature selec-
tions 45-99% faster than existing heuristic and
exact feature selection techniques.

The remainder of this paper is organized as fol-
lows: Section 2 contains a brief introduction to fea-
ture models; Section 3 presents a motivating exam-
ple; Section 4 formalizes the SPL feature selection
problem; Section 5 discusses the challenges of adapt-
ing GAs to the SPL feature selection problem; Sec-
tion 6 details our genetic feature selection optimiza-
tion algorithm, called GAFES, and analyzes its algo-
rithmic complexity; Section 7 introduces our exper-
iments with feature model generation and test pat-
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tern generation, and presents our empirical results;
Section 8 compares our work with related work; and
Section 9 presents concluding remarks and lessons
learned.

2. Feature Modeling Background

Figure 1 shows a partial feature model of an em-
bedded database SPL called FAME-DBMS inspired
from (Rosenmuller et al., 2008; Thum et al., 2009).
A feature model is a tree of features. Every node in
the tree has one parent except theroot feature(e.g.,
‘DB’). A terminal feature (e.g., ‘NutOS’) is a leaf
and anon-terminalfeature (e.g., ‘OS’) is an interior
node of a feature diagram (Batory, 2005; Thum et
al., 2009). Every non-terminal feature represents a
composition of features that are its descendants.

A feature model is organized hierarchically and
is graphically depicted as an AND-ORfeature di-
agram (Kang et al., 1990).Cross-tree constraints
are used to represent non-hierarchical composition
rules comprising mutual dependency (requires) and
mutual exclusion (excludes) relationships (Kang et
al., 1990). There are two cross-tree constraints in
Figure 1, “LRU requires BTree” and “LFU requires
BTree”.

New products are derived from a feature model by
finding aconfigurationof terminal features (Thum et
al., 2009). A feature selection represents a specific
product satisfying customer requirements. The ac-
tual resource consumption and the benefits of a prod-
uct can be calculated from the set of terminal features
(White et al., 2009). For example, a feature selection
from the FAME-DBMS feature model can be used
to calculate the amount of memory consumed by the
buffer management configuration that is contained in
the feature selection.

A feature selection isvalid if the selection of fea-
tures is allowed by the constraints described in the
feature model. Connections between a feature and
its group of children define the constraints on fea-
ture selection. The constraints that can be used
to govern the allowable child feature selections are
And-(e.g., ‘OS’, ‘BufferMgr’, ‘DebugLogging’, and
‘Storage’), Or- (e.g., ‘get’, ‘put’ and ‘delete’), and
Alternative-groups (e.g., ‘NutOS’ and ‘Win’). The
members of And-groups can be eithermandatory

(e.g. ‘OS’, ‘BufferMgr’, and ‘Storage’) oroptional
(e.g. ‘DebugLogging’). Or-groups and Alternative-
groups have their owncardinalities (Czarnecki &
Wasowski, 2007). For example, at least 1 and at most
3 API (‘get’, ‘put’ and ‘delete’) must be selected.
Other constraints have been proposed, such as car-
dinality constraints (Czarnecki & Wasowski, 2007),
but we focus on the core constraints that are common
across all feature modeling approaches.

The rules for selecting features from a feature
model can be summarized as follows (Guo & Wang,
2010): if a feature is selected, its parent must also
be selected. If a feature is selected, all of its manda-
tory children participating in an And-group must be
selected. For example, in Figure 1, “Storage” has
a mandatory sub-feature “API”, which must also be
selected if “Storage” is selected. If the selected fea-
ture has an Or-group containing children, at least one
child must be selected, and in Alternative-groups, ex-
actly one child is selected. For example, at leat 1 and
at most 3 child features of “API” can be selected. “In-
dexing” requires the selection of either of its “BTree”
or “Unindexed” sub-features, but not both.

3. Motivating Example

Figure 2 shows a scenario of a sensor network
that applies FAME-DBMS, which is excerpted from
(FAME-DBMS, 2002). In this motivating exam-
ple, sensor nodes measure values for temperature, air
pressure, and luminance in a biological environment
to monitor the growth conditions of different plants.
A biological scientist can also manually augment the
sensor data by entering additional information about
the plants into a PDA. Scientists can use a PDA to re-
trieve information from the sensor network through
a data access point. All the data is stored in a server
for further analysis. In every embedded system of
this scenario, such as the sensor nodes and the PDA,
the FAME-DBMS is used to store and retrieve the
data.

The key to product derivation is to select a good
feature combination from a feature model according
to the requirements of customers and vendors. In
practice, feature selection must consider the trade-
off between the resource consumption and value of
the target product and the limited vendor budget.
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Figure 2: A sample application scenario for the FAME-DBMS

Table 1: Example resource consumption and performance of a
subset of the FAME-DBMS features

Feature Perf. CPU Mem. Cost
DB/OS/NutOS 8 4 2048 10
DB/OS/Win 5 2 1024 15
...
DB/DebugLogging 2 3 256 50
...
DB/Storage/Indexing/Btree 8 4 512 30
DB/Storage/Indexing/Unindexed 4 2 128 20

In the motivating example, the resource consump-
tion comes from the consumption of CPU, memory,
available budget, and development staff time (White
et al., 2009). Regardless of what configuration of the
system is chosen, the resource consumption must not
exceed the available values of the target platform.
For example, the total memory consumed by the
database deployed to the PDA cannot be more than
the memory available on the PDA. Moreover, the
product may need to be optimized for a specific char-
acteristic, such as minimizing the total cost of each
node in the sensor network or maximizing maintain-
ability (Siegmund et al., 2008), performance, stabil-
ity, etc.

Take the feature model shown in Figure 1 for ex-
ample, Table 1 shows example information about the
provided performance and the consumed resources
of a subset of the FAME-DBMS features. Each fea-
ture is identified by the path from the root feature
in the model to it. In this example, customers want
a target product (an embedded database) with maxi-
mum performance, but that fits within a limited bud-

get. This budget constraint is a resource limitation,
e.g., CPU6 40, Memory6 4096, and Cost6 200.
Thus the problem is to derive a target product with
the maximum performance subject to the resource
limitations. For feature models with hundreds or
thousands of features and a large number of feature
combinations, choosing an optimized feature selec-
tion is hard.

4. Feature Selection with Resource Constraints
Problem Formalization

More formally, SPL feature selection optimization
with resource constraints can be defined as follows.
Let F = { fi}, 1 6 i 6 ndenote alln features defined in
a feature model andC all the dependency constraints
and cross-tree constraints depicted by the arcs in the
feature diagram, e.g., in Figure 1, ‘OS’, ‘BufferMgr’,
and ‘Storage’ are required child features of ‘DB’. Ev-
ery featurefi ∈ F has an associated resource con-
sumption,r( fi) ∈ Z, and a provided value,v( fi) ∈ Z.
R(F) indicates the set of resources consumed by all
the features (e.g., columns 3-5 in Table 1) andV(F)
the set of values provided by all the features (e.g.,
columns 2 in Table 1).Rc includes the resource con-
straints, e.g., CPU6 40, Memory6 4096, and Cost
6 200.

Here, we only consider the resource consumed by
and the value provided by terminal features because
the actual resource consumption and the benefits of a
product mainly come from terminal features (White
et al., 2009). That is to say, the resource consumed
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by and the value provided by all the non-terminal fea-
tures are 0. Thus:

Definition 1. Given a feature model with n features
F = { fi}, 1 6 i 6 n and a set of constraints C, the
goal of the feature selection problem is to find a fea-
ture subset S⊆ 2F from all valid feature combina-
tions defined in the feature model such that

V(S) (i.e.,
∑

fi∈S

v( fi)) is maximized (1)

subject to

S −→con f orms toC (2)

and

R(S) (i.e.
∑

fi∈S

r( fi)) 6 Rc (3)

for the resource constraint Rc∈ Z+.

5. Challenges of Adapting GAs to SPL Feature
Selection Optimization

To make well-informed configuration decisions,
developers need the ability to easily generate and
evaluate different feature selections that both satisfy
resource limitations and optimize specific product
capabilities, e.g., minimizing total cost or required
CPU and memory in the motivating example. For
example, developers of the FAME-DBMS system
might need to compare two different SPL configu-
rations that are optimized to minimize memory con-
sumption. In one configuration, the developers might
opt to slightly relax their budget constraint to deter-
mine what additional performance and storage ca-
pacity could be obtained for slightly more money.

Generating valid feature selections and evaluating
them is computationally complex and time consum-
ing and thus these types of comparative analysis are
difficult. From Definition 1, we can see that the
SPL feature selection optimization problem with re-
source constraints is a highly constrained problem.
The SPL feature selection optimization with resource
constraints has been proven to be NP-hard and thus
exact algorithms for the problem do not scale well
(White et al., 2009).

One approach to addressing this problem is to use
an AI technique, such as a GA, to automate the fea-
ture selection process. However, there are a number
of challenges to develop a GA for SPL feature selec-
tion optimization with resource constraints. In the re-
mainder of this section, we show that there are three
key challenges to developing a GA for optimized fea-
ture selection with resource constraints: 1) randomly
generating initial solutions tends to produce invalid
starting points for a GA; 2) traditional GAs for gen-
eral feature selection (Yang & Honavar, 1998; Oh
et al., 2004) generate an arbitrary feature set, which
may not conform to the feature model constraints;
and 3) when facing feature selection problems that
include resource constraints, GAs require some form
of repair or penalty approach , which is hard to de-
rive.

5.1. Challenge 1: Randomly Seeding the Initial Pop-
ulation with Valid Feature Selections

A GA is a stochastic algorithm that mimics natural
evolution. Its basic steps and running mechanism are
shown in Figure 3. The GA first maintains an initial
population of solutions (called individuals orchro-
mosomes). A binary encoding is used to represent a
potential solution as a chromosome (e.g.string, such
as “10010101”). As in the case of biological evolu-
tion, the evolutionary process begins with an initial
population of chromosomes and proceeds over a se-
ries of generations. In each generation, every chro-
mosome in the current population is evaluated by a
fitness function, which is an objective function that
determines the optimality of a chromosome so that
chromosomes can be compared against each other.
The best chromosomes are selected as parents, and
undergo genetic operations, such as crossover and
mutation, to generate a new offspring from them.
The offspring then replaces a member of the popu-
lation in the next generation based on a replacement
policy. The evolutionary process continues until a
chromosome satisfying a minimum criteria is found
or a fixed number of generations reaches.

To employ a GA for feature selection, a group of
feature sets must be generated randomly to obtain an
initial population. However, since they are gener-
ated randomly, these initial feature sets may not be
valid feature combinations that conform to the fea-
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ture model constraints. For example, according to
traditional GAs, a feature set{Win, Dynamic, LRU,
API, get, BTree, Unindexed} could be randomly se-
lected from the feature model shown in Figure 1 and
be used as an initial population member. However,
this random feature set is not a valid product config-
uration because only one feature from “BTree” and
“Unindexed” can be selected. Thus randomly gener-
ating initial solutions tends to produce a large set of
invalid starting points, which decreases the probabil-
ity that a valid or optimized solution will be found. In
order to develop a good GA for feature selection, de-
velopers must devise methods for handling the ran-
dom generation of a set of valid feature selections.
Section 6.3 describes how we address this challenge
by applying an algorithm of transforming randomly
generated feature sets into valid feature selections.

5.2. Challenge 2: Generating Valid Feature Selec-
tions During Feature Selection Evolution

After a GA has generated an initial population, it
proceeds to select population members to combine
to produce new solutions. A core tenet of a GA
is that combining two solutions has the potential to
yield another good or better solution. When popula-
tion members represent feature selections, however,
combining two arbitrary solutions without violating
feature model constraints is hard.

For example, suppose there are two initial valid
solutions for the feature model shown in Fig-
ure 1, {DB, OS, BufferMgr, Storage, Win, In-
Memory, API, Indexing, get, Unindexed} and {DB,
OS, BufferMgr, Storage, NutOs, Persistent, API,
Indexing, MemAlloc, PageRepl, get, BTree, Dy-
namic, LRU}. Using the chromosome encoding
process described in Section 6.1, we perform a
breadth-first traversal (a.k.a., level-order traversal)

of the feature model and encode the two initial
solutions into two strings, representing their ge-
netic chromosomes: “1110101011100100010000”
and “1110110101111100100110”. Then we per-
form a uniform crossover operation (presented
in Section 6.6) by a random crossover mask
“1100111001001110110011”. Finally we can get
a new offspring “1110101101110100010100” that
indicates an invalid feature selection{DB, OS,
BufferMgr, Storage, Win, Persistent, API, Indexing,
MemAlloc, get, Unindexed, Dynamic}. Section 6.2
describes how we address this challenge by introduc-
ing an algorithm, calledfmTransform, to transform
the new generated offspring into a valid feature selec-
tion that conforms to the feature model constraints.

5.3. Challenge 3: Generating Feature Selections
that Fit Resource Constraints

The SPL feature selection problem becomes more
complex when resource constraints, such as CPU
6 40, Memory6 4096, and Cost6 200, must be con-
sidered. These considerations add further constraints
that the population members may violate. Not only
may the randomly generated initial population mem-
bers consume more resources that are available but
the evolutionary combination of chromosomes may
yield offspring with excess resource consumption.

One common approach used in GAs to handle
situations where generated offspring may represent
invalid solutions is to use arepair operator to fix
invalid solutions. A repair operator takes an in-
valid solution as input and generates a valid solu-
tion. The key challenge to applying repair operators
to resource consumption violations is that determin-
ing how to reach a valid feature selection that satis-
fies resource constraints from an arbitrary feature se-
lection is an NP-hard problem (White et al., 2009).
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Another approach that is commonly employed is to
design the objective function so that invalid solutions
always score lower than valid solutions. However,
designing an objective function to balance resource
consumption against desired SPL product capability
is hard. Section 6.4 describes how we address this
challenge by computing the proportion of the gen-
erated value to the consumed resource as the fitness
function in GAFES.

6. GAFES: A GA-based AI Approach to Opti-
mized Feature Selection in SPLs

Following the idea of GAs, we designed a GA-
based AI approach to automate SPL feature selec-
tion optimization with resource constraints, GAFES,
which is presented in Algorithm 1. In the follow-
ing sections, we present a detailed specification of
GAFES. The remainder of this section is structured
as follows: 1) we define a mathematical representa-
tion for the chromosomes (solutions) (Section 6.1);
2) we present an algorithm, calledfmTransform, that
can repair a feature selection that violates the fea-
ture model constraints (Section 6.2); 3) we describe
how GAFES uses a combination of random feature
selection andfmTransformto obtain an initial popu-
lation (Section 6.3); 4) we define the fitness function,
present the mechanism of selection and replacement,
and give the termination conditions for GAFES (Sec-
tion 6.4); 5) we define the genetic operations includ-
ing crossover and mutation (Section 6.6); and 6) we
discuss how we determine the initial parameter val-
ues for GAFES, including the size of the population,
the maximum generation, the crossover probability
and the mutation rate.

6.1. Feature Chromosome Encoding

A chromosome in our GAFES represents a feature
combination in a feature model. For a feature model
with n features, each chromosome is composed ofn
genes and each gene represents a feature. Here, a
string withn binary digits is used to encode a chro-
mosome. A binary digit represents a feature, values 1
and 0 meaning selected and unselected. For example,
a chromosome “1110101011100100010000” means
that the features{DB, OS, BufferMgr, Storage, Win,

Algorithm 1: GAFES
Input : a feature model with F = { fi}, 1 6 i 6 n, C,

R(F), V(F), and Rc.
Output : S ⊆ 2F .
Initialize population P;1

repeat2

select two parent chromosomes p1 and p23

from P;
offspring = crossover(p1, p2);4

mutation(offspring);5

fmTransform(offspring);6

if R(offspring)6 Rc then7

replace(P, offspring);8

until stopping condition;9

return S that is the fittest chromosome in P;10

InMemory, API, Indexing, get, Unindexed} are se-
lected, if a breadth-first traversal of the feature model
shown in Figure 1 is performed.

6.2. fmTransform: An Algorithm for Arbitrary Fea-
ture Set Transformation

As is described in Section 5, the key to adapting
GAs to the SPL feature selection problem is to de-
velop a mechanism to transform an arbitrary (maybe
invalid) feature selection into a valid feature combi-
nation. We designed an algorithm, calledfmTrans-
form to achieve the task. As is shown in Algorithm 2,
the input is a feature model with its featuresF and its
constraintsC, and an arbitrary feature setSR. Gener-
ally SR is generated randomly. The output is a valid
feature combinationSV transformed fromSR accord-
ing toC. SE contains all the features that should not
be selected.

Algorithm 2 works as follows. For each feature
f ∈ SR, if f < SV and f < SE, then f is included in
SV. Meanwhile, a path passing through the feature
f is extended until one end of the path reaches the
root feature and the other reaches a terminal feature.
All the features in the path are also included inSV.
The above process is repeated until all the features
in SR are traversed. After traversingSR, we traverse
all the features inSV, find out those features whose
children have not yet been included inSV and put
them intoSG. For each feature inSG, we generate
its path from the root feature to a terminal feature
and then include all the features through the path in
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(=) means the current result equals to the result of previous step. 

Figure 4: Demonstration of executingfmTransform

Algorithm 2: fmTransform(SR)

Input : F, C, SR ⊆ 2F .
Output : SV ⊆ 2F .
SV ← ∅; SE ← ∅; SG ← ∅;1

foreach feature f ∈ SR do2

if f < SV and f < SE then IncludeFeature( f );3

end4

foreach feature f ∈ SV do5

if every child feature of f< SV then SG ← f ;6

end7

foreach feature f ∈ SG do8

while f is not a terminal featuredo9

f ← randomly select a child feature of f ;10

IncludeFeature( f );11

end12

end13

SV, which guarantees the final feature combination
complete and valid.

Figure 4 demonstrates a sample process of execut-
ing fmTransformon the feature model show in Fig-
ure 1. The inputSR is {Win, Dynamic, LRU, API,
get, BTree, Unindexed}. When a feature inSR is in-
put, a set of features required by the input feature
and the feature model constraints is included inSV,
and another set of features excluded by the input fea-
ture and the constraints is included inSE. The final
outputSV is {DB, OS, Win, BufferMgr, Persistent,
MemAlloc, Dynamic, PageRepl, LRU, Storage, API,
get, Indexing, BTree}, andSE is {NutOS, Static, In-
Memory, LFU, Unindexed}.

Algorithm 3: IncludeFeature( f )

if f < SV and f < SE then SV ← f ;1

if f is not the root featurethen2

IncludeFeature(the parent feature of f );3

if f ∈ an Alternative-groupthen4

ExcludeFeature(all f ’s brother features in the5

same group)
if f ’s children∈ an And-groupthen6

foreach feature f′ ∈ the group of f ’s childrendo7

if f ′ is mandatorythen IncludeFeature( f ′);8

end9

if f excludes f′ ∈ C or f ′ excludes f∈ C then10

ExcludeFeature( f ′);11

if f requires f′ ∈ C then IncludeFeature( f ′);12

Algorithm 4: ExcludeFeature( f )

if f < SV and f < SE then SE ← f ;1

foreach feature f′ ∈ the group of f ’s childrendo2

ExcludeFeature( f ′);
if f ∈ an And-groupand f is mandatorythen3

ExcludeFeature(the parent feature of f );4

if f ′ requires f∈ C then ExcludeFeature( f ′);5

Algorithm 3 and Algorithm 4 determine whether
a feature should be included (∈ SV) or be excluded
(∈ SE). They works in terms of the following rules.
First, if a feature is included and is not the root fea-
ture, then its parent should also be included; if a
feature is excluded, then its children should also be
excluded. Second, for an Alternative-group, if one
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of its member featuref is included, then all off ’s
brother features in the same group should be ex-
cluded. Third, for an And-group, if its parent feature
is included, then all of its mandatory feature should
be included; if one of its mandatory feature is ex-
cluded, then its parent feature should be excluded.
Fourth, for a constraintA requires B, if A is in-
cluded, then B should be included; if B is excluded,
then A should be excluded. Fifth, for a constraint
A excludes B, whatever A or B is included, the other
one should be excluded. Sixth, for other features
(e.g., the features in an Or-group), if necessary, any
feature is selected randomly in order to generate a
complete feature combination.

Since a feature model with cross-tree constraints
can encode an arbitrary satisfiability problem, it is
not always possible to find a valid feature selection.
The fmTransformalgorithm uses a retry counter to
limit the time spent attempting to repair a feature se-
lection. In practice, we have found it rare forfm-
Transformto be unable to generate a valid feature
selection, but more research is needed to identify fea-
ture model architectures for which it does not per-
form well.

6.3. Initial Population

The initial population represents a set of initial so-
lutions. GAFES’ algorithm for generating the initial
population is shown in Algorithm 5. A string with
n binary digits is randomly generated to represent
a chromosome. Each randomly generated chromo-
some essentially represents a random feature set in a
feature model. By applying the algorithmfmTrans-
form, these random feature sets are then transformed
into a set of valid feature combinations that conform
to the feature model constraints. As is described
in Section 5.1, all the transformed feature combi-
nations must also satisfy the resource constraints,
which means that some initial solutions may be in-
valid starting points. To prevent the initial population
generation step from running indefinitely, GAFES’
controls the parameterretries to generate an initial
population in a limited retry time. Moreover GAFES
controls the parameterd to obtain the expected num-
ber of selected features in every generated chromo-
some. Here, the functionrandom(1) generates a ran-
dom float number within [0, 1].

Algorithm 5: Initial population generation

i = 1;1

repeat2

retries= 0;3

while retries< 2 ∗ ||P|| do4

foreach geneg in chromosomei do5

if random(1) < d/n then g = 1 else6

g = 0;
end7

fmTransform(chromosomei );8

if R(chromosomei ) 6 Rc then9

i + +; break;10

else11

retries+ +; continue;12

end13

end14

until i > ||P|| ;15

sort all chromosomes in P nonincreasingly in16

terms of their fitness;

6.4. Feature Selection Fitness Evaluation

In order to evaluate the solutions and select the
best one, a fitness metric is needed. For the SPL fea-
ture selection optimization with resource constraints,
the obvious approach is to allow a developer to
supply a domain-specific objective function that de-
scribes the value of a solution. The challenge, how-
ever, is that directly employing this type of function
does not penalize solutions that violate resource con-
straints. As we described in Section 5.3, this is a
significant problem.

To overcome this challenge, GAFES transforms
the objective function, supplied by the developer, in
order to penalize solutions which overconsume re-
sources. The basic heuristic that GAFES uses to
transform the objective function is that the best so-
lutions will produce more value per unit of resource
consumption. Thus the fitness of a chromosomeCh
is defined as the value of the solution produced by
the domain-specific objective function divided by the
net aggregate resource consumption. More formally,
GAFES’ objective function is defined as:

Fitness(Ch) = V(Ch)/R(Ch). (4)

where:
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• Ch - is a chromosome in the population, indi-
cating a feature selection in a feature model.

• V(Ch) - is the value of the solutionCh, deter-
mined by the domain-specific objective function
provided by the developer. For example, the
value produced by a specific feature selection
indicates the possible performance, cost, main-
tainability, stability, etc.

• R(Ch) - is the sum of the resources consumed
by all the features included in the chromosome
Ch. The resources consumed by a specific fea-
ture indicates the possible CPU, memory, devel-
opment staff time, etc.

Developers can adapt the fitness function to op-
timize for different measurement like performance,
maintenance, etc. by changingV(Ch). R(Ch) can be
seen as a penalty factor of the fitness function, which
makes solutions that provide higher value per unit of
resource consumption preferred. When facing mul-
tiple kinds of resource,R(Ch) can be designed as a
multiple-dimensional vector where each dimension
indicates one kind of resource. This approach also
permits weighting of resources to reflect importance.

6.5. Selection and Replacement of Feature Selec-
tions

The chromosome selection process for the next
generation adopts a simple random selection mech-
anism. For each generation, two parent chromo-
somes are selected randomly in the population. The
crossover operation generates a new chromosome
(offspring) out of the two parents, and the mutation
operation slightly perturbs the offspring.

GAFES adopts the replacement mechanism de-
veloped in (Bui & Moon, 1996). If the gener-
ated offspring is superior to both parents, it replaces
the similar parent; if it is in between the two par-
ents, it replaces the inferior parent; otherwise, the
most inferior chromosome in the population is re-
placed. GAFES stops when the number of genera-
tions reaches the predefined maximum generationG.

6.6. Crossover and Mutation

GAFES uses the standard crossover and mutation
operations. As is shown in Figure 5, a uniform

11001001

00010111

10011011
10001101

(01010011)

10001001

Parents Crossover Mask OffspringMutationOffspring

Figure 5: An example of uniform crossover and point mutation

crossover operation is used to combine bits sampled
uniformly from the two parents. In this case, the
crossover mask is generated as a random bit string
with each bit chosen at random and independent of
the others. The point mutation operation produces
small random changes to the bit string by choosing a
single bit at random, then changing its value. Muta-
tion is performed after crossover.

6.7. Parameters

No systematic parameter optimization process has
so far been attempted, but we use the following pa-
rameters in our experiments: population size||P||=
30, maximum generationG= 100, crossover proba-
bility= 1 (always applied), and mutation rate= 0.1.

6.8. Algorithmic Complexity

We first analyze the algorithmic complexity
of fmTransform. As is shown in Algorithm 3
and Algorithm 4, both IncludeFeature( f ) and
ExcludeFeature( f )costO(cmlogn), wherem is the
average number of child features for each feature
and c is the maximum number of cross-tree con-
straints (i.e., all therequiresandexcludesrelation-
ships) in the feature model. Thus, in Algorithm 2,
step 2∼4 costsO(||SR|| ∗ (cmlogn)). Step 5∼7 costs
O(||SV|| ∗ m). Step 8∼13 costsO(||SG|| ∗ cmlog2 n).
Since ||SR|| < n, ||SV|| < n, and ||SG|| < n, the
total time of Algorithm 2, T( f mTrans f orm), is
O(cmnlogn+mn+ cmnlog2 n) = O(cmnlog2 n).

The algorithmic complexity of GAFES shown
in Algorithm 1 can be decomposed as follows.
The first step requiresO(||P|| ∗ log ||P|| + ||P||2 ∗
T( f mTrans f orm))= O(||P||2 ∗ T( f mTrans f orm))
time to generate an initial population, as is shown
in Algorithm 5. The parents selection operation in
step 3 costsO(1), the crossover operation in step
4 O(n), the mutation operation in step 5O(1), the
replace operation in step 8O(||P||). Thus, step
2∼9 costsO(G ∗ (||P|| + n + T( f mTrans f orm)))=
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O(G ∗ T( f mTrans f orm)). Step 10 costsO(||P||).
Here, ||P||=30 andG=100. Thus, the total time of
Algorithm 2 is O(||P||2 ∗ T( f mTrans f orm) + G ∗
T( f mTrans f orm))= O(||P||2 ∗ T( f mTrans f orm))=
O(||P||2 ∗ cmnlog2 n). If there are no cross-tree
constraints, the complexity is reduced toO(||P||2 ∗
mnlog2 n). Both algorithmic complexities are poly-
nomial.

7. Empirical Results

In this section, we present empirical results from
our experiments and evaluate our approach. As an
approximation algorithm, our approach cannot guar-
antee that the generated approximation answer is op-
timal. For effectiveness evaluation, we introduce
an important metric,optimality(Approximation An-
swer/Optimal Answer), to measure how close the al-
gorithm can get to the optimal answer. Another im-
portant consideration is thetime consumptionand
scalabilitybecause we must ensure that our approach
is efficient even if there are hundreds or thousands of
features.

7.1. Experimental Setup

We first adopt Thum’s method (Thum et al., 2009)
to randomly generate feature models with different
characteristics. We also use the test pattern gener-
ation technique devised by (Akbar et al., 2001) to
generate random optimization problem instances for
which we knew the optimal answer. Then we para-
metrically control the size of feature models for a
thorough runtime evaluation.

Independent parameters in our experiments are the
number of features in a feature model. The time
needed to generate an approximation answer and
the optimality are measured as dependent variables.
To reduce the fluctuations in the dependent vari-
ables caused by random generation, we performed
100 repetitions for each configuration of indepen-
dent parameters, i.e., we generated 100 random fea-
ture models with the same parameters and each per-
formed the same optimization problem. All mea-
surements were performed on the same Windows XP
with Inter Pentium 4 CPU 3.0GHz and 2GB RAM.

7.1.1. Feature Model Generation
The algorithm to randomly generate feature mod-

els of sizen is as follows (Thum et al., 2009): start-
ing with a singleroot node, runs several iterations of
the generation process. In each iteration, an exist-
ing node without children is randomly selected, and
between one and ten children are randomly added.
These child nodes are connected to the parent either
by And- (50% probability), Or- (25% probability) or
Alternative-group (25% probability). Children in an
And-group are optional by a 50% probability. This
iterative process is continued until the feature model
hasn features. All features with children are con-
sidered non-terminal. Moreover, we also generate
cross-tree constraints (requiresand excludes). For
every 10 features, one constraint is generated by the
following algorithm: two different features are ran-
domly selected, and then are connected randomly by
requires(50% probability) orexcludes(50% proba-
bility) link. According to Thum’s survey (Thum et
al., 2009), these parameters are backed up by most
of the surveyed feature models and represent a rough
average. Thus, these generated feature models ba-
sically reflect the characteristics of realistic feature
models.

The above generated feature models can be easily
translated into propositional formulas (Batory, 2005;
Thum et al., 2009). We use the SAT solversat4J1

to validate these feature models and discard all fea-
ture models that do not have a single valid configu-
ration (mostly due to poorly chosen cross-tree con-
straints). We repeat the entire process until the ap-
propriate number of valid feature models is gener-
ated.

We fixed the following parameters: maximum
number of children= 10; type of child group= (50%,
25%, 25%); optional child= 50%; number of cross-
tree constraints= 0.1*n; variables in cross-tree con-
strains= 2. Again, Thum’s survey (Thum et al.,
2009) shows that these parameters reflect real feature
models.

7.1.2. Test Pattern Generation
The optimization problem in product derivation is

initialized by the following pseudo random numbers:

1http://www.sat4j.org
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resource consumed by each terminal featurer(t fi) =
random(Rmax), resource consumed by each non-
terminal featurer(n fi) = 0; value per unit resource
unitV = random(UnitVmax); value for each termi-
nal featurev(t fi) = r(t fi) ∗ unitV + random(Vmax),
value for each non-terminal featurev(n fi) = 0. Here,
Rmax, UnitVmax, andVmax are the upper bound of re-
source requirement, unit price of resource, and the
extra value of a feature after its consumed resource
price. The value of each item is not directly pro-
portional to the resource consumption. The function
random(i) returns an integer from 0 to (i − 1), fol-
lowing the uniform distribution. The total resource
constraintRc = Rmax ∗ nT F ∗ 0.8 wherenT F is the
number of all terminal features in a feature model.

According to (Akbar et al., 2001), if we want to
generate a problem for which an optimal answer
is known, the following reinitializations have to be
done. If S is the set of features selected by an ap-
proximation algorithm, thenR(S) =

∑
fi∈S r( fi), i.e,

exactly equal to the sum of consumed resources of all
selected features, and the value associated with each
selected feature isv( fi) = r( fi) ∗ unitV + Vmax. Thus
V(S) =

∑
fi∈S v( fi) =

∑
fi∈S(r( fi)∗unitV+Vmax). This

reinitializations ensures maximum value per unit re-
source for the selected feature.

7.2. Experiment 1: Small Feature Models

We implemented GAFES using Java. For com-
parison, we implemented White’s method (White
et al., 2009), calledFiltered Cartesian Flattening
(FCF), that can transform the SPL feature selec-
tion optimization with resource constraints into a
Multi-dimensional Multiple-choice Knapsack Prob-
lem (MMKP). Then we solved the MMKP prob-
lem to generate an optimized feature selection using
two kinds of optimization techniques: the Branch
and Bound with Linear Programming (BBLP) (Al-
suwaiyel, 1999) and the Modified Heuristic (M-
HEU) algorithms (Akbar et al., 2001). M-HEU is
a heuristic technique. It puts an upper limit on the
number of upgrades and downgrades that can be per-
formed (Akbar et al., 2001). BBLP can find an ex-
act solution. But finding exact solutions is NP-hard,
which means that it is not feasible to apply BBLP
to all practical cases (e.g.,n > 500). Therefore, we

first performed an experiment on small feature mod-
els whose sizen varies from 10 to 200.

Hypothesis. Our hypothesis was that GAFES
would be faster than FCF+BBLP because GAFES is
an approximation algorithm and FCF+BBLP an ex-
act one. GAFES would be also faster than FCF+M-
HEU due to general knowledge of traditional GAs.
In addition, we believed GAFES could obtain better
optimality than the other two approaches.

Experiment 1 Results.Table 2 shows a compari-
son among FCF+BBLP, FCF+M-HEU, and GAFES.
Here, the experiment is performed on each feature
model whose sizen varies from 10 to 200, as is
listed in column 1. 100 feature models for each size
are generated randomly with the same parameters,
as is described in section 7.1.1, and we only take the
mean value of their results. We used the constants
Rmax = 10, UnitVmax = 10, andVmax = 20 for gen-
eration of test cases, as is explained in section 7.1.2.
Data is not initialized for a predefined maximum to-
tal value for the selected features.

The columnsTBBLP, TM−HEU, andTGA show the
time requirement for the FCF+BBLP, FCF+M-HEU,
and GAFES solutions. The columnTGAInit gives the
time requirement for the initialization of GAFES.
The columnTGAInit/TGA presents the proportion of
the initialization to the whole GAFES in time con-
sumption. We can see that the initialization time oc-
cupies a considerable proportion (about 30-45%) of
the whole time.

The columns (TBBLP−TGA)/TBBLP and (TM−HEU −

TGA)/TM−HEU indicate the proportion of the time
saved by GAFES to the whole time consumption
by FCF+BBLP and FCF+M-HEU respectively. For
tiny feature models with 10 features, GAFES con-
sumed more time than FCF+BBLP and FCF+M-
HEU. For feature models whose size varies from
50 to 200, GAFES reduced 94-99% time consump-
tion of FCF+BBLP and 92-97% time consumption
of FCF+M-HEU.

The columnVBBLP gives the average value earned
from the FCF+BBLP solutions. The columns
VM−HEU/VBBLP andVGA/VBBLP indicate the average
standardized value earned in the two heuristics (i.e.,
FCF+M-HEU and GAFES) with respect to the ex-
act solutions generated by FCF+BBLP. FCF+M-
HEU obtains 98-99% optimality while GAFES 87-
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Table 2: Experimental results for small feature models

n TBBLP
(ms)

TM−HEU
(ms)

TGAInit
(ms)

TGA
(ms)

TGAInit
TGA

TBBLP−TGA
TBBLP

TM−HEU−TGA
TM−HEU

VBBLP
VM−HEU
VBBLP

VGA
VBBLP

VGA
VM−HEU

σM−HEU σGA

10 0.95 0.79 1.03 3.15 0.3270 -2.3158 -2.9873 348.37 0.986 0.866 0.878 0.0685 0.0699
50 202.99 160.35 3.64 12.27 0.2967 0.9396 0.9235 1362.05 0.989 0.874 0.884 0.0540 0.0402

100 1813.74 1217.44 12.39 31.79 0.3897 0.9825 0.9739 2211.03 0.981 0.903 0.920 0.0356 0.0439
200 8800.76 3070.32 45.77 101.53 0.4508 0.9885 0.9669 3825.20 0.976 0.895 0.917 0.0498 0.0582

90%, which did not beat FCF’s optimality as ex-
pected. The columnVGA/VM−HEU shows that GAFES
produces solutions with 88-92% of the optimality
of FCF+M-HEU. In addition,σM−HEU andσGA are
the standard deviation of standardized total value
achieved in the 100 feature models, given to indicate
stability.

7.3. Experiment 2: Large Feature Models

From Table 2, we can see that the time require-
ments of FCF+BBLP solutions increase dramati-
cally with the size of feature models because of the
exponential computation complexity of exact tech-
niques. It is impractical to test the performance
of FCF+BBLP solutions for larger feature mod-
els. Hence, in this experiment, we only performed
FCF+M-HEU and GAFES on large feature models
whose size varies from 500 to 10000. Moreover,
due to the lack of the solutions of exact techniques
(i.e., FCF+BBLP), we adopt the test pattern genera-
tion technique described in section 7.1.2 to estimate
the optimality achieved by the two heuristics (i.e.,
FCF+M-HEU and GAFES).

Hypothesis. Based on the results of Experi-
ment 1, our hypothesis for this experiment was
that GAFES would be faster than FCF+M-HEU.
GAFES would have better scalability than FCF+M-
HEU. But, based on the first experiment, we ex-
pected GAFES to have slightly lower optimality than
FCF+M-HEU.

Experiment 2 Results.Table 3 shows a compari-
son between FCF+M-HEU and GAFES. Like Exper-
iment 1, 100 feature models for each size are gener-
ated randomly with the same parameters, as is de-
scribed in section 7.1.1, and we only take the mean
value of their results. We still used the constants
Rmax = 10, UnixVmax = 10, andVmax = 20 for gen-
eration of test cases, as is explained in section 7.1.2.
Data is not initialized for a predefined maximum to-
tal value for the selected features.

The columnsTM−HEU andTGA show the time re-
quirement for the FCF+M-HEU and GAFES solu-
tions. From the columnTGAInit/TGA, we can see
that the time requirement for GAFES initialization,
TGAInit, accounts for 20-23% of the total time of
GAFES. The column (TM−HEU−TGA)/TM−HEU shows
that GAFES reduces 45-94% time consumption of
FCF+M-HEU.

The columnMaxValueindicates the average value
generated by the reinitialization in the test pattern
generation technique. TakingMaxValueas the op-
timal answer, FCF+M-HEU obtains 89-93% op-
timality while GAFES about 86%. The column
VGA/VM−HEU shows that GAFES produces solutions
with 93-97% of the optimality of FCF+M-HEU.
From the columnsσM−HEU andσGA, we can see that
all the values, achieved in the 100 random feature
models for each size, maintains relatively stable.

7.4. Discussion of Results& Threats to Validity

From Table 2 and Table 3, we can conclude that
GAFES performs more efficiently than existing exact
(i.e., FCF+BBLP) and heuristic (i.e., FCF+M-HEU)
approaches. That is, it produced nearly as optimal
results (within 86-90%) in 45-99% less time. Only
for tiny feature models with 10 features, GAFES
consumed more time than FCF+BBLP and FCF+M-
HEU, which is caused by the fixed retry time for
generating an initial population and the fixed num-
ber of maximum generation defined in GAFES. For
most of the feature models whose size varies from 20
to 10000, GAFES reduces 45-99% time consump-
tion of FCF+BBLP or FCF+M-HEU. Especially for
large feature models (size> 500), GAFES obtains
better scalability than FCF+M-HEU. As for optimal-
ity, GAFES stays well above 86% optimality, which
is with 88-97% optimal of FCF+M-HEU. In addi-
tion, the stability of the solution performance is al-
most same in both the cases generated by the two
heuristics.
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Table 3: Experimental results for large feature models

n TM−HEU
(ms)

TGAInit
(ms)

TGA
(ms)

TGAInit
TGA

TM−HEU−TGA
TM−HEU

MaxV VM−HEU
MaxV

VGA
MaxV

VGA
VM−HEU

σM−HEU σGA

500 6193.43 88.63 384.42 0.2306 0.9379 348.37 0.933 0.863 0.925 0.0530 0.0512
1000 14083.91 354.55 1513.68 0.2342 0.8925 1362.05 0.905 0.862 0.952 0.0699 0.0539
2000 33270.84 1453.25 6211.57 0.2340 0.8133 2211.03 0.897 0.861 0.960 0.0780 0.0484
5000 91429.64 6213.59 31358.35 0.1981 0.6570 3825.20 0.8900.856 0.962 0.0769 0.0506

10000 194093.20 22486.81 107632.03 0.2089 0.4455 77470.710.887 0.857 0.966 0.0715 0.0523

Threats to internal validity are influences that can
affect the time requirement of all exact and heuristic
solutions that have not been considered. We cannot
guarantee that computation time depends on certain
shapes of a feature model or certain resource con-
straints. However, to avoid effects of certain feature
models, all of input feature models are generated au-
tomatically by simulating known feature models and
each measurement is repeated 100 times with freshly
generated feature models.

Threats to external validity are conditions that
limit our ability to generalize the results of our ex-
periments to industrial practice. We generated fea-
ture models with the described algorithm and param-
eters, and confirmed that they align well with those
known feature models acquired from existing publi-
cations in SPL community. We cannot guarantee that
our generated test cases are typical in practice. How-
ever, to simulate practical situation as far as possi-
ble, we randomly generate the consumed resource
and the provided value for each terminal features.
Moreover, test data is not initialized for a predefined
maximum total value for the selected features. The
total resource constraint is generated dynamically for
each random feature model.

8. Related Work

This section compares our work on GAFES to re-
lated work on AI approaches and other approaches
for feature selection optimization, including ex-
act and heuristic techniques and visualization tech-
niques.

8.1. Exact Techniques for SPL Feature Selection

Many exact techniques in the AI community have
been applied and extended to solve the SPL feature
selection optimization. Benavides et al. (Benavides

et al., 2005) considered resource constraints in prod-
uct derivation process and applied Constraint Satis-
faction Problems (CSPs) to model and solve feature
selection problems automatically. Their technique
works well for small-scale problems where an ap-
proximation technique is not needed. For large-scale
problems, however, their technique is too computa-
tionally demanding. In contrast, GAFES works well
on large-scale problems.

Mannion (Mannion, 2002), Batory (Batory, 2005),
and Czarnecki et al. (Czarnecki & Wasowski, 2007)
applied propositional logic to automated feature se-
lection. However, these techniques were not de-
signed to handle integer resource constraints and thus
cannot handle the SPL feature selection optimiza-
tion with resource constraints. Moreover, these tech-
niques depend on SAT or BDD solvers that use expo-
nential algorithms. GAFES is a polynomial-time al-
gorithm that can handle integer resource constraints
and thus can solve the SPL feature selection op-
timization with resource constraints even on large-
scale problems.

Zhang et al. (Zhang et al., 2003) poposed a tech-
nique for reasoning about SPL variant quality at-
tributes using Bayesian Belief Networks. Jarzabek
et al. (Jarzabek et al., 2006) developed another tech-
nique in this area based on soft goals. However, these
techniques is designed for selecting features in situ-
ations where it is difficult to predict the impact of a
feature selection. But in GAFES, the exact impact
of each feature selection on the resource consump-
tion of the variant is known. The two techniques are
complementary to each other. If the exact impact of
feature selections on variant quality is not known, the
techniques of Zhang or Jarzabek can be used. If the
impact of feature selection is known, GAFES is ap-
propriate.
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8.2. Heuristics for SPL Feature Selection

Although exact algorithms to solve NP-hard prob-
lems have exponential complexity, each NP-hard
problem typically has a number of approximation al-
gorithms that can be used to solve it with acceptable
optimality. Search-based software engineering (Har-
man, 2007) advocates the application of optimization
techniques from the operations research and heuris-
tic (or metaheuristic) computation research commu-
nities to software engineering. It has already had
several successful application domains in software
engineering (Harman, 2007), such as optimizing the
search for requirements to form the next release
(Bagnall et al., 2001) and optimizing test data selec-
tion and prioritization (Walcott et al., 2006). How-
ever, to the best of our knowledge, there is only one
work from White et al. (White et al., 2009) provid-
ing an approximation algorithm for the SPL feature
selection optimization with resource constraints.

White et al. (White et al., 2009) provided a poly-
nomial time approximation algorithm for selecting a
highly optimal set of features that adheres to a set of
resource constraints. They proposed the FCF tech-
nique that transforms the optimized feature selec-
tion problem into the MMKP problem, and then use
the M-HEU technique (Akbar et al., 2001) to solve
the MMKP problem. However, their approach still
requires significant computing time for large-scale
problems. Moreover their approach involves two ap-
proximation processes, one is in the FCF stage to
transform all And- and Or-groups into Alternative-
groups, another is in the M-HEU stage to generate an
approximation solution. In addition, their approach
demands a higher resource tightness, which is also
a common problem for the heuristic techniques that
solve the MMKP problem (Akbar et al., 2001; White
et al., 2009).

GAFES also provides a heuristic solution. Com-
pared with White’s method (FCF+M-HEU), it has
only one approximation process, i.e, the genetic pro-
cess of generating an approximation solution. More-
over GAFES avoids the limitation of resource tight-
ness because it transforms the SPL feature selection
optimization into a genetic problem not an MMKP
problem. Experiments show that GAFES can reduce
45-97% time consumption of FCF+M-HEU.

8.3. Feature Model Visualization Techniques

Some researchers developed special visualization
techniques to assist developers in decision mak-
ing during the product derivation process. Sell-
ier and Mannion (Sellier & Mannion, 2007) pro-
posed a visualization metamodel for representing
inter-dependencies between SPLs and described a
tool to realize these visualizations. Botterweck et
al. (Botterweck et al., 2007) presented a metamodel
that described staged feature configuration and intro-
duced a tool that illustrated the advantages of inter-
active visualization in managing feature configura-
tion. However, these approaches focus more on func-
tional requirements of a product and their dependen-
cies and less on non-functional requirements or re-
source constraints (Siegmund et al., 2008). More-
over, industrial-sized feature models with hundreds
or thousands of features make a fully manual feature
selection process usually impossible.

9. Concluding Remarks & Lessons Learned

To quickly derive an optimal product configura-
tion, developers need algorithmic techniques to au-
tomatically generate a valid feature selection that op-
timize desired product properties. However, finding
a feature selection with optimal product capability
subject to required constraints is an NP-hard prob-
lem. Although there are numerous heuristic tech-
niques for many NP-hard problems, they cannot di-
rectly support the SPL feature selection optimization
with resource constraints because they are not de-
signed to handle various structural and semantic con-
straints defined in the feature model. This lack of
heuristics limits the scale of feature model on which
developers can realistically optimize and evaluate a
large number of possible product configurations.

This paper presents a GA-based feature selection
approach, GAFES, for automated product derivation
in SPLs. The key to adapting GAs to the SPL fea-
ture selection optimization successfully is that we
design an algorithm that can transform an arbitrary
feature set into a valid feature combination conform-
ing to the feature model constraints. Experiments
show that GAFES can achieve an average of 86-
90% optimality even for large feature models. More-
over GAFES can derive a feature selection 45-99%
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faster than existing heuristic and exact feature selec-
tion techniques.

From our research on GAFES, we learned the fol-
lowing important lessons:

1. For large-scale feature models, exact techniques
suffer from exponential algorithmic complex-
ity and typically require days, months, or more,
to solve the SPL feature selection optimization
with resource constraints. In general, heuris-
tic techniques have a polynomial algorithmic
complexity. GAFES is heuristic and achieves
45-97% faster than existing heuristics (e.g.,
FCF+M-HEU) for the SPL feature selection
problem.

2. GAFES produces solutions with 86-97% opti-
mal of prior feature selection techniques. How-
ever, prior feature selection techniques, such
as FCF+BBLP and FCF+M-HEU, obtain bet-
ter optimality at the cost of longer solving time,
which is caused by traversing larger solution
space. In addition, the optimality gained by
GAFES maintains relatively stable for different
size of feature models.

3. GAFES is most applicable to domains, such
as distributed real-time and embedded systems
where the precise impact of feature selections
on the performance and resource consumption
of the product is known.

4. A key component of GAFES is the algorithm
fmTransformthat can, in most cases, trans-
form an arbitrary feature set into a valid fea-
ture combination in a feature model. Since
many stochastic heuristics, such as GAs and
Ant Colony Optimization techniques, work on a
range of randomly generated feature sets and fi-
nally generate an arbitrary feature selection, the
algorithmfmTransformcan be seen as a trigger
for applying these stochastic heuristics to the
SPL feature selection problem.

In future work, we plan to adapt more heuristics,
such as ant colony optimization (Al-Ani, 2005) and
particle swarm optimization (Lin et al., 2008), to
the SPL feature selection optimization with resource
constraints.
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