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Abstract

Software product line (SPL) engineering is a software esgiimg approach to building configurable soft-
ware systems. SPLs commonly use a feature model to captdrdaument the commonalities and vari-
abilities of the underlying software system. A key challerwghen using a feature model to derive a new
SPL configuration is determining how to find an optimized deatselection that minimizes or maximizes
an objective function, such as total cost, subject to resouonstraints. To help address the challenges of
optimizing feature selection in the face of resource camsts, this paper presents GAFES, an artificial intel-
ligence approach, based on genetic algorithms (GAs), fomiged feature selection in SPLs. Our empirical
results show that GAFES can produce solutions with 86-97%h@foptimality of other automated feature
selection algorithms and in 45-99% less time than existkageand heuristic feature selection techniques.

Keywords: Software product lines, Product derivation, Feature nmdeptimization, Genetic algorithm

1. Introduction craft.

Software product line¢SPLs) are a software engi- Developing an SPL comprises two distinct devel-
neering approach for creating configurable softwar@pment processes: tipmain engineeringwhich is
applications that can be adapted to a variety of rethe process of developing the common and variable
quirement sets (Clements & Northrop, 2001). SPL§oftware artifacts of the SPL (Pohl et al., 2005) and
are built around a set of common software compo2) product derivationwhich is the process of config-
nents with points of variability that allow the cus- uring the reusable software artifacts for a customer-
tomization of the product. For example, the Boldor market-specific set of requirements. The core
Stroke SPL (Boeing, 2002), developed by the Boeprinciple behind SPL engineering is that the in-
ing company, comprises a wide range of reusablereased cost of developing a set of reusable and cus-
artifacts, such as a configurable architecture, set é@mizable software artifacts can be amortized across
application components, development processes, afigtlitiple products (Deelstra et al., 2005), such as dif-
development tools, which are used to create Operderent Boeing aircraft.

tional Flight Programs for a variety of Boeing air- pp important component of an SPL is a model or

roadmap that dictates the rules governing how the
*Corresponding author. Tek:86-21-34204415; fax+86-  points of variability can be configured. A widely
21-34204728. used approach for modeling the commonalities and
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(Yinglin Wang) of features (Kang et al., 1990, 1998, 20022atures
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are essential abstractions of product characteristies al., 2008; White et al., 2009), make the feature se-
relevant to customers and are typically increments dection process even more complex anidilt. Pre-
functionality (Kang et al., 2002; Batory et al., 2006).vious research has shown that finding an optimal fea-

Every product derived from a feature-oriented ture selection that conforms to both the feature model
SPL is represented by a unique and valid combinasonstraints and the resource constraints is an NP-
tion of features. The valid combinations of featureshard problem (White et al., 2009). To overcome the
are governed by the SPLfsature modelwhich de- complexity of selecting an optimized feature selec-
fines relationships between the features in an SPItion that meets resource constraints, developers need
As shown in Figure 1, a feature model is a tree-likeools to help automate the process.
structure that defines the relationships among fea- SPL feature selection optimization with resource
tures in a hierarchical manner. The relationships bezonstraints is similar to configuration optimization
tween the features indicate the choices that the cugroblems that have been addressed by other auto-
tomer can make when customizing a product. Fomated feature selection approaches that do not con-
example, in Figure 1, thelternativerelationship be- sider resource constraints (Benavides et al., 2008).
tween the two features “Static” and “Dynamic” in- Many researchers in the SPL community have ap-
dicates that developers can either choose a static plied and extended various Al techniques to solve the
dynamic mechanism for implementing the memorySPL feature selection problem, e.g., using CSP (Be-
allocation (the “MemAlloc” feature) in the database,navides et al., 2005), BDD (Czarnecki & Wasowski,
but not both. The goal of product derivation is to se2007; Mendonca et al., 2009) and SAT solvers (Ba-
lect an optimal combination of features from the featory, 2005), but have not considered resource con-
ture model that meets the stakeholder requirementsstraints in their work. Moreover, these exact tech-

Open Problem = SPL Feature Selection Opti- niques show exponential time complexity and do not
mization with Resource Constraints. Despite the scale to large industrial feature models with hundreds
benefits of SPLs, industrial case studies have showsr thousands of features (White et al., 2009). Other
that product derivation is still “a time-consuming researchers have developed polynomial-time approx-
and expensive activity” (Deelstra et al., 2004, 2005)imation algorithms for selecting highly optimal fea-
Developers face a number of challenges when ature sets (White et al., 2009), but their approaches
tempting to derive an optimized feature selection thastill require significant computing time. In addition,
meets an arbitrary set of requirements. For examplepme visualization techniques (Sellier & Mannion,
developers of the database SPL shown in Figure 2007; Botterweck et al., 2007) have been devised
may need to derive the set of features that meets a det assist developers in feature selection. However,
of functional requirements for a mobile applicationindustrial-sized feature models can have hundreds or
while simultaneously minimizing memory consump-thousands of features (Steger et al., 2004; Loesch
tion (the optimization goal). Some configurations of& Ploedereder, 2007), which makes a manual fea-
the database may reduce memory consumption bture selection process challenging, particularly for
require more disk space than can be supported by tleen NP-hard feature selection problem with resource
mobile platform (a resource constraint). constraints.

Even in a small feature model, feature combina- Solution Approach = Genetic Feature Selec-
torics can produce an exponential number of prodtion Optimization Algorithms. In this paper, we
uct configurations. For example, about 28@ett introduce an Al approach, based on genetic algo-
ent product configurations can be derived from theithms (GAs), to SPL feature selection optimization
relatively simple feature model shown in Figure 1.with resource constraints. A GA is a stochastic and
Moreover, once a feature selection is made, it mugjlobal search heuristic that mimics natural evolution
be verified to conform to the myriad constraints in(Mitchell, 1996). It can quickly scan a vast popu-
the feature model. Additional resource constraints ollation of possible solutions. GAs often work well
non-functional requirements, such as the binary sizdor highly constrained problems, such as the Travel-
performance, or total budget for a product (Siegmunihg Salesman (Muhlenbein, 1989) and Satisfiability
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Figure 1: Example feature model for the FAME-DBMS SPL

problems (De Jong & Spears, 1989). e \We present a repair operator that allows a GA
In this paper, we adapt GAs to the SPL feature  or other evolutionary algorithm to transform an
selection problem, and propose a GA-based Al ap-  arbitrary feature set into a valid feature combi-
proach, calledGAFES GAFES can quickly derive nation that conforms to the feature model con-
an optimized feature selection by evaluatinffet+ straints.
ent configurations that both optimize product capa-
bilities and honor resource limitations. GAFES com-
bines a novel feature selection repair operator and
a penalty function for resource constraints to ob-
tain fast feature selection times. Our empirical re-
sults show that GAFES can produce feature selec-
tions with objective function scores that are within
86-97% of the feature selections produced by prior
Al feature selection techniques, such as FCF (White
et al., 2009) and C3BAT-based approaches (Bena-
vides et al., 2005; Batory, 2005; Czarnecki & Wa-
sowski, 2007), for feature models whose size ranges
from 10 to 10,000 features. Moreover, in our exper-
iments, GAFES derives feature selections 45-99%
faster than these existing heuristic and exact feature
selection optimization techniques.

The main contributions of this paper to the study The remainder of this paper is organized as fol-
of Al-based optimized feature selection for SPLs argyys: Section 2 contains a brief introduction to fea-
summarized as follows: ture models; Section 3 presents a motivating exam-

ple; Section 4 formalizes the SPL feature selection
¢ We show how to adapt GAs to the SPL featureproblem; Section 5 discusses the challenges of adapt-
selection optimization with resource constraintang GAs to the SPL feature selection problem; Sec-
and propose a modified GA named GAFES taion 6 details our genetic feature selection optimiza-
derive an optimized feature selection subject tdion algorithm, called GAFES, and analyzes its algo-
the feature model constraints and the resourcethmic complexity; Section 7 introduces our exper-
constraints. iments with feature model generation and test pat-
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e We describe a penalty function, based on the ra-
tio of objective function value to consumed re-
sources, that can improve the search process of
a GA or evolutionary algorithm to that meets re-
source constraints.

e We present empirical results from experiments
on feature models with 10 to 10000 features.
The results show that GAFES can produce fea-
ture selections that are within objective function
scores that are within 86-97% of feature selec-
tions produced by other feature selection tech-
nigues. GAFES, however, derives feature selec-
tions 45-99% faster than existing heuristic and
exact feature selection techniques.



tern generation, and presents our empirical result¢e.g. ‘OS’, ‘BufferMgr’, and ‘Storage’) ooptional
Section 8 compares our work with related work; ande.g. ‘DebuglLogging’). Or-groups and Alternative-
Section 9 presents concluding remarks and lessoggoups have their owrcardinalities (Czarnecki &
learned. Wasowski, 2007). For example, at least 1 and at most
3 API (‘get’, ‘put’ and ‘delete’) must be selected.
Other constraints have been proposed, such as car-
dinality constraints (Czarnecki & Wasowski, 2007),
Figure 1 shows a partial feature model of an embut we focus on the core constraints that are common

bedded database SPL called FAME-DBMS inspiredcross all feature modeling approaches.

from (Rosenmuller et al., 2008; Thum et al., 2009). The rules for selecting features from a feature
A feature model is a tree of features. Every node irnodel can be summarized as follows (Guo & Wang,
the tree has one parent except thet feature(e.g., 2010): if a feature is selected, its parent must also
‘DB’). A terminal feature (e.g., ‘NutOS’) is a leaf be selected. If a feature is selected, all of its manda-
and anon-terminalfeature (e.g., ‘OS’) is an interior tory children participating in an And-group must be

node of a feature diagram (Batory, 2005; Thum eselected. For example, in Figure 1, “Storage” has
al., 2009). Every non-terminal feature represents & mandatory sub-feature “API”, which must also be
composition of features that are its descendants.  selected if “Storage” is selected. If the selected fea-

A feature model is organized hierarchically andture has an Or-group containing children, at least one
is graphically depicted as an AND-ORature di- child must be selected, and in Alternative-groups, ex-
agram (Kang et al., 1990). Cross-tree constraints actly one child is selected. For example, at leat 1 and
are used to represent non-hierarchical compositioat most 3 child features of “API” can be selected. “In-
rules comprising mutual dependencgduire and dexing” requires the selection of either of its “BTree”
mutual exclusion éxclude} relationships (Kang et or “Unindexed” sub-features, but not both.
al., 1990). There are two cross-tree constraints in
Figure 1, “LRU requires BTree” and “LFU requires 3 \otivating Example
BTree”.

New products are derived from a feature model by Figure 2 shows a scenario of a sensor network
finding aconfigurationof terminal features (Thum et that applies FAME-DBMS, which is excerpted from
al., 2009). A feature selection represents a specifiFAME-DBMS, 2002). In this motivating exam-
product satisfying customer requirements. The a®le, sensor nodes measure values for temperature, air
tual resource consumption and the benefits of a progiressure, and luminance in a biological environment
uct can be calculated from the set of terminal feature® monitor the growth conditions of flierent plants.
(White et al., 2009). For example, a feature selectio’ biological scientist can also manually augment the
from the FAME-DBMS feature model can be usedsensor data by entering additional information about
to calculate the amount of memory consumed by théhe plants into a PDA. Scientists can use a PDA to re-
buffer management configuration that is contained itrieve information from the sensor network through
the feature selection. a data access point. All the data is stored in a server

A feature selection isalid if the selection of fea- for further analysis. In every embedded system of
tures is allowed by the constraints described in théhis scenario, such as the sensor nodes and the PDA,
feature model. Connections between a feature arttie FAME-DBMS is used to store and retrieve the
its group of children define the constraints on feadata.
ture selection. The constraints that can be used The key to product derivation is to select a good
to govern the allowable child feature selections ardéeature combination from a feature model according
And-(e.g., ‘OS’, ‘BuferMgr’, ‘DebuglLogging’, and to the requirements of customers and vendors. In
‘Storage’), Or- (e.g., ‘get’, ‘put’ and ‘delete’), and practice, feature selection must consider the trade-
Alternativegroups (e.g., ‘NutOS’ and ‘Win’). The off between the resource consumption and value of
members of And-groups can be eithmiandatory the target product and the limited vendor budget.
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Figure 2: A sample application scenario for the FAME-DBMS

Table 1: Example resource consumption and performance ofget' This budget constraint is a resource limitation,

subset of the FAME-DBMS features e.g., CPU< 40, Memory< 4096, and Cosk 200.
Feature Perf. CPU Mem. Cost Thus the problem is to derive a target product with
gggg\')‘v‘i’rzos : 24 12(?;4,8 1150 the maximum performance subject to the resource

limitations. For feature models with hundreds or
b'B/DebugLogging o 3 256 5o thousands of features and a large number of feature

combinations, choosing an optimized feature selec-
DB/Storag@ndexingBtree 8 4 512 30 tion is hard.
DB/Storag@indexingUnindexed 4 2 128 20

4. Feature Selection with Resource Constraints
In the motivating example, the resource consump- pProblem Formalization

tion comes from the consumption of CPU, memory,
available budget, and developmentstane (White More formally, SPL feature selection optimization
et al., 2009). Regardless of what configuration of thevith resource constraints can be defined as follows.
system is chosen, the resource consumption must nbét F = {f;}, 1 < i < ndenote alhfeatures defined in
exceed the available values of the target platforma feature model an@ all the dependency constraints
For example, the total memory consumed by thend cross-tree constraints depicted by the arcs in the
database deployed to the PDA cannot be more thdgature diagram, e.g., in Figure 1, ‘OS’, ‘BarMgr’,
the memory available on the PDA. Moreover, theand ‘Storage’ are required child features of ‘DB’. Ev-
product may need to be optimized for a specific charery featuref, € F has an associated resource con-
acteristic, such as minimizing the total cost of eactsumption,(f;) € Z, and a provided valuey(f;) € Z.
node in the sensor network or maximizing maintainR(F) indicates the set of resources consumed by all
ability (Siegmund et al., 2008), performance, stabilthe features (e.g., columns 3-5 in Table 1) &f(&)
ity, etc. the set of values provided by all the features (e.qg.,
Take the feature model shown in Figure 1 for ex-columns 2 in Table 1)Rcincludes the resource con-
ample, Table 1 shows example information about thetraints, e.g., CP 40, Memory< 4096, and Cost
provided performance and the consumed resources200.
of a subset of the FAME-DBMS features. Each fea- Here, we only consider the resource consumed by
ture is identified by the path from the root featureand the value provided by terminal features because
in the model to it. In this example, customers wanthe actual resource consumption and the benefits of a
a target product (an embedded database) with maxproduct mainly come from terminal features (White
mum performance, but that fits within a limited bud-et al., 2009). That is to say, the resource consumed
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by and the value provided by all the non-terminal fea- One approach to addressing this problem is to use
tures are 0. Thus: an Al technique, such as a GA, to automate the fea-
ture selection process. However, there are a number
Definition 1. Given a feature model with n features of challenges to develop a GA for SPL feature selec-
F = {fi,1 <i < nand a set of constraints C, the tion optimization with resource constraints. In the re-
goal of the feature selection problem is to find a feamainder of this section, we show that there are three
ture subset SC 2" from all valid feature combina- key challenges to developing a GA for optimized fea-

tions defined in the feature model such that ture selection with resource constraints: 1) randomly
generating initial solutions tends to produce invalid

V(S) (i.e, Z v(f;)) is maximized (1) starting points for a GA; 2) traditional GAs for gen-
fies eral feature selection (Yang & Honavar, 1998; Oh

et al., 2004) generate an arbitrary feature set, which

subject to may not conform to the feature model constraints;
S —eontoms oC ) gnd 3) when facing featgre selection problems that
include resource constraints, GAs require some form
and of repair or penalty approach , which is hard to de-
rive.
RES) (e ) r(f)) < Re 3)
fies 5.1. Challenge 1: Randomly Seeding the Initial Pop-

for the resource constraint Re Z+ ulation with Valid Feature Selections

A GAis a stochastic algorithm that mimics natural
5. Challenges of Adapting GAs to SPL Feature evolutiqn. I'ts basic steps anq running m_echanisr_n are

Selection Optimization shown in Figure 3. _The GA flrst_mglr_ltalns an initial

population of solutions (called individuals ehro-

To make well-informed configuration decisions,mosomes A binary encoding is used to represent a
developers need the ability to easily generate anpotential solution as a chromosongeq. string, such
evaluate dterent feature selections that both satisfyas “10010101"). As in the case of biological evolu-
resource limitations and optimize specific production, the evolutionary process begins with an initial
capabilities, e.g., minimizing total cost or requiredpopulation of chromosomes and proceeds over a se-
CPU and memory in the motivating example. Fories of generations. In each generation, every chro-
example, developers of the FAME-DBMS systemmosome in the current population is evaluated by a
might need to compare two fierent SPL configu- fitness function, which is an objective function that
rations that are optimized to minimize memory con-determines the optimality of a chromosome so that
sumption. In one configuration, the developers mighthromosomes can be compared against each other.
opt to slightly relax their budget constraint to deter-The best chromosomes are selected as parents, and
mine what additional performance and storage caindergo genetic operations, such as crossover and
pacity could be obtained for slightly more money. mutation, to generate a newfspring from them.

Generating valid feature selections and evaluatinghe dfspring then replaces a member of the popu-
them is computationally complex and time consumiation in the next generation based on a replacement
ing and thus these types of comparative analysis agolicy. The evolutionary process continues until a
difficult. From Definition 1, we can see that thechromosome satisfying a minimum criteria is found
SPL feature selection optimization problem with re-or a fixed number of generations reaches.
source constraints is a highly constrained problem. To employ a GA for feature selection, a group of
The SPL feature selection optimization with resourcéeature sets must be generated randomly to obtain an
constraints has been proven to be NP-hard and thirstial population. However, since they are gener-
exact algorithms for the problem do not scale wellated randomly, these initial feature sets may not be
(White et al., 2009). valid feature combinations that conform to the fea-
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Figure 3: The running mechanism of GAs

ture model constraints. For example, according tof the feature model and encode the two initial
traditional GAs, a feature s¢¥vin, Dynamic, LRU, solutions into two strings, representing their ge-
API, get, BTree, Unindexgdould be randomly se- netic chromosomes: “1110101011100100010000”
lected from the feature model shown in Figure 1 andnd “1110110101111100100110". Then we per-
be used as an initial population member. Howeverform a uniform crossover operation (presented
this random feature set is not a valid product configin Section 6.6) by a random crossover mask
uration because only one feature from “BTree” and1100111001001110110011". Finally we can get
“Unindexed” can be selected. Thus randomly genera new dfspring “1110101101110100010100" that
ating initial solutions tends to produce a large set oindicates an invalid feature selectiofbB, OS,
invalid starting points, which decreases the probabilBufferMgr, Storage, Win, Persistent, API, Indexing,
ity that a valid or optimized solution will be found. In MemAlloc, get, Unindexed, Dynamiic Section 6.2
order to develop a good GA for feature selection, dedescribes how we address this challenge by introduc-
velopers must devise methods for handling the ranng an algorithm, calledmTransform to transform
dom generation of a set of valid feature selectionghe new generatedispring into a valid feature selec-
Section 6.3 describes how we address this challeng®n that conforms to the feature model constraints.
by applying an algorithm of transforming randomly
generated feature sets into valid feature selections.5.3. Challenge 3: Generating Feature Selections
that Fit Resource Constraints
5.2. Challenge 2: Generating Valid Feature Selec-

: _ v s The SPL feature selection problem becomes more
tions During Feature Selection Evolution

complex when resource constraints, such as CPU
After a GA has generated an initial population, it< 40, Memory< 4096, and Cost 200, must be con-
proceeds to select population members to combingdered. These considerations add further constraints
to produce new solutions. A core tenet of a GAthat the population members may violate. Not only
is that combining two solutions has the potential tanay the randomly generated initial population mem-
yield another good or better solution. When populabers consume more resources that are available but
tion members represent feature selections, howevehe evolutionary combination of chromosomes may
combining two arbitrary solutions without violating yield offspring with excess resource consumption.
feature model constraints is hard. One common approach used in GAs to handle
For example, suppose there are two initial valicsituations where generatedfspring may represent
solutions for the feature model shown in Fig-invalid solutions is to use &epair operatorto fix
ure 1, {DB, OS, BuferMgr, Storage, Win, In- invalid solutions. A repair operator takes an in-
Memory, API, Indexing, get, Unindex¢@nd {DB, valid solution as input and generates a valid solu-
OS, BuferMgr, Storage, NutOs, Persistent, APItion. The key challenge to applying repair operators
Indexing, MemAlloc, PageRepl, get, BTree, Dy-to resource consumption violations is that determin-
namic, LRU. Using the chromosome encodinging how to reach a valid feature selection that satis-
process described in Section 6.1, we perform &es resource constraints from an arbitrary feature se-
breadth-first traversal (a.k.a., level-order traversallection is an NP-hard problem (White et al., 2009).
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Another approach that is commonly employed is to Algorithm 1; GAFES

design the objective function so that invalid solutions |nput: a feature model with F = {fj},1<i<n, C,
always score lower than valid solutions. However, R(F), V(F), and Rc

designing an objective function to balance resource Output: S ¢ 2F.

consumption against desired SPL product capability Initialize population P;

is hard. Section 6.4 describes how we address this repeat

challenge by computing the proportion of the gen-3  select two parent chromosomes pl and p2

erated value to the consumed resource as the fitness ~ from ':"i
function in GAFES. 4 offspring = crossover(pl, p2);
mutation(offspring);

5
6 fmTransform(offspring);
6. GAFES: A GA-based Al Approach to Opti- 7 if R(gfspring)< Rcthen

mized Feature Selection in SPLs 8 replace(P, offspring);

9 until stopping condition

Following the idea of GAs, we designed a GA-10 return S that is the fittest chromosome in P;
based Al approach to automate SPL feature selec-
tion optimization with resource constraints, GAFES, ) _
which is presented in Algorithm 1. In the follow- "Memory, AP, Indexing, get, Unindexgare se-
ing sections, we present a detailed specification dected, !fapreadth.-flrst traversal of the feature model
GAFES. The remainder of this section is structure"oWn in Figure 1 is performed.
as follows: 1) we define a mathematical representg: _ . .
tion for the chromosomes (solutions) (Section 6.1;6'2' tfl:r:;'rsagts fr?;r:éfﬁpmﬁgg:thm for Arbitrary Fea-
2) we present an algorithm, calléd Transformthat i . ) ) ]
can repair a feature selection that violates the fea- AS IS described in Section 5, the key to adapting
ture model constraints (Section 6.2); 3) we describ&AS 10 the SPL feature selection problem is to de-
how GAFES uses a combination of random featur&/€/0P & mechanism to transform an arbitrary (maybe
selection andmTransfornto obtain an initial popu- invqlid) feature s_election into a valid feature combi-
lation (Section 6.3); 4) we define the fitness functionNation. We designed an algorithm, callgdTrans-
present the mechanism of selection and replacemef@rmto achieve the task. As is shown in Algorithm 2,
and give the termination conditions for GAFES (Sech€ inputis a feature model with its featufesind its
tion 6.4); 5) we define the genetic operations includSoNstraintE, and an arbitrary feature sgk. Gener-
ing crossover and mutation (Section 6.6); and 6) w&lly Sr is generated randomly. The output is a valid
discuss how we determine the initial parameter valf€ature combinatioBy transformed frongg accord-
ues for GAFES, including the size of the population,"9 to C. Sg contains all the features that should not

the maximum generation, the crossover probabilit?€ Selected.
and the mutation rate. Algorithm 2 works as follows. For each feature

f e Sg if f ¢ Syandf ¢ Sg, thenf is included in

Sv. Meanwhile, a path passing through the feature

f is extended until one end of the path reaches the
A chromosome in our GAFES represents a featureoot feature and the other reaches a terminal feature.

combination in a feature model. For a feature modeAll the features in the path are also includedSy.

with n features, each chromosome is composed of The above process is repeated until all the features

genes and each gene represents a feature. Hereindésg are traversed. After traversir®g, we traverse

string with n binary digits is used to encode a chro-all the features irSy, find out those features whose

mosome. A binary digit represents a feature, values ¢hildren have not yet been included 8 and put

and 0 meaning selected and unselected. For examptaem intoSg. For each feature i®g, we generate

a chromosome “1110101011100100010000” meanss path from the root feature to a terminal feature

that the featurefDB, OS, ButerMgr, Storage, Win, and then include all the features through the path in

8
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Step | Input feature | Initial operation SV S E
inS R

1 Win Includes(‘Win”) Win, OS, DB, BufferMgr, | NutOS
Storage, API, Indexing

2 Dynamic Includes(‘Dynamic’) | (+) Dynamic, MemAlloc, | (+) Static,
Persistent, PageRepl, InMemory

3 LRU Includes(‘LRU’) (+) LRU (+) LFU

4 API / =) =)

5 get Includes(‘get’) (+) get =)

6 BTree Includes(‘BTree’) (+) BTree (+) Unindexed

7 Unindexed / =) =)

(+) means the current result equals to the result of previous step plus the following elements.
(=) means the current result equals to the result of previous step.

Figure 4: Demonstration of executifig Transform

Algorithm 2: fmTransform(Sg) Algorithm 3: IncludeFeature(f)
Input: F, C, Sg C 2F. if f¢Syandf ¢ SgthenSy « f;
Output: Sy c 2F. if fis notthe root featur¢hen
1 Sy « 0;Sg « 0;Sg « 0; IncludeFeature(the parent feature of f);
2 foreachfeaturef € Sg do if f € an Alternative-groughen
3 if f¢Syandf ¢ Sgthen IncludeFeature(f); ExcludeFeature(all f's brother features in the
4 end same group)

a b~ W N P

5 foreach featuref € Sy do 6 if f's childrene an And-groupthen

6 if every child feature of # Sy then Sg « f; 7 foreach feature f € the group of f’s childrerdo
7 end 8 if f’is mandatorythen IncludeFeature(f’);
8 foreach featuref € Sg do 9 end

9 while f is not a terminal featurelo 10 if f excludes fe Cor f’ excludes fe C then

10 f « randomly select a child feature of f; 11 ExcludeFeature(f’);

11 IncludeFeature(f); 12 if f requires f € C then IncludeFeature(f’);

12 end

13 end

Algorithm 4: ExcludeFeature(f)
1if f ¢ Sy andf ¢ Sg then Sg « f;
Sy, which guarantees the final feature combinatiore foreach feature f € the group of f's childrerdo
complete and valid. ExcludeFeature(f’);

Figure 4 demonstrates a sample process of execut-if f € an And-groupand f is mandatorythen
ing fmTransformon the feature model show in Fig- 4  ExcludeFeature(the parent feature of f);
ure 1. The inpuSk is {Win, Dynamic, LRU, API, 5 if f’ requires fe C then ExcludeFeature(f’);
get, BTree, Unindexgd When a feature %y, is in-
put, a set of features required by the input feature
and the feature model constraints is include&®in Algorithm 3 and Algorithm 4 determine whether
and another set of features excluded by the input fea feature should be included ) or be excluded
ture and the constraints is included$a. The final (€ Sg). They works in terms of the following rules.
outputSy is {DB, OS, Win, BuferMgr, Persistent, First, if a feature is included and is not the root fea-
MemAlloc, Dynamic, PageRepl, LRU, Storage, APl ture, then its parent should also be included; if a
get, Indexing, BTreg andSg is {NutOS, Static, In- feature is excluded, then its children should also be
Memory, LFU, Unindexef excluded. Second, for an Alternative-group, if one
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of its member featurd is included, then all off’'s Algorithm 5: Initial population generation
brother features in the same group should be ex; j - 1.

cluded. Third, for an And-group, if its parent feature , repeat

is included, then all of its mandatory feature should; retries= 0

be included; if one of its mandatory feature is ex-4 while retries < 2 x ||P|| do

cluded, then its parent feature should be excludeds foreach geneg in chromosomedo
Fourth, for a constrainA requires B if A is in- 6 if randon(1) < d/ntheng = 1else
cluded, then B should be included; if B is excluded, g=0;

then A should be excluded. Fifth, for a constraint? end

fmTransform(chromosomg;
if R(chromosomg < Rcthen
i + +; break;
else
retries+ +; continue;

A excludes Bwhatever A or B is included, the other 8
one should be excluded. Sixth, for other features
(e.g., the features in an Or-group), if necessary, a 0
feature is selected randomly in order to generate 2
complete feature combination. 13 end

Since a feature model with cross-tree constraint1 end
can encode an arbitrary satisfiability problem, it is15 until i > IPl
not always possible to find a valid feature selection, <ot ail chromosomes in P nonincreasingly in
The fmTransformalgorithm uses a retry counter t0  orms of their fithess:
limit the time spent attempting to repair a feature se- ’
lection. In practice, we have found it rare fom-
Transformto be unable to generate a valid features.4. Feature Selection Fitness Evaluation
selection, but more research is needed to identify fea-

ture model architectures for which it does not per- In order to evaluate Fh? solutions and select the
form well. best one, a fitness metric is needed. For the SPL fea-

ture selection optimization with resource constraints,
the obvious approach is to allow a developer to

i . . supply a domain-specific objective function that de-
The initial population represents a set of initial so-

luti GAFES’ algorithm f i1q the initial scribes the value of a solution. The challenge, how-
utlons.. . ago.rlt m Tor generating t_ € |n|j[|a ever, is that directly employing this type of function
population is shown in Algorithm 5. A string with

. T does not penalize solutions that violate resource con-
n binary digits is randomly generated to representy pints. As we described in Section 5.3, this is a
a chromosome. Each randomly generated chrom(%~I nificant problem
some essentially represents a random feature set in gr '

teature model. B ving the aldorithfmTrans- o0 overcome this challenge, GAFES transforms
fe?”llj ti ° reﬁd Br/na}pptyr 9 te argoth ntr r?fsrmt e objective function, supplied by the developer, in
orm, these random Teature sets are tnen ranstormegyq - 14 penalize solutions which overconsume re-

Lntc;ha sfet (:f valid f?jatlure cotmt_)lrtlatloz\s t_ha'ijconfgt:m ources. The basic heuristic that GAFES uses to
10 the feature model constraints.  AS 1S desClbeq, oform the objective function is that the best so-
in Section 5.1, all the transformed feature combi-

. . . lutions will produce more value per unit of resource
nations must also satisfy the resource constraint . .

) - ) ._consumption. Thus the fitness of a chromosddie
which means that some initial solutions may be in

. . . . is defined as the value of the solution produced b
valid starting points. To prevent the initial population P y

eneration step from running indefinitel GAFES’the domain-specific objective function divided by the
9 ! P unning | INIEEYY, SAFES: et aggregate resource consumption. More formally,
controls the parameteetriesto generate an initial

L - : GAFES’ objective function is defined as:
population in a limited retry time. Moreover GAFES Jective functiont I
controls the parameterto obtain the expected num-

6.3. Initial Population

ber of selected features in every generated chromo- FitnesgCh) = V(Ch)/R(Ch). (4)
some. Here, the functiamndon{1) generates a ran-
dom float number within [(L]. where:
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e Ch - is a chromosome in the population, indi- Parents Crossover Mask  Offspring  Mutation Offspring
cating a feature selection in a feature model. 11001001

10011011
>—> 10001101 ————— 10001001
e V(Ch) - is the value of the solutioh, deter- 00010111 (01010011)

mined by the domain-specific objective function _ _ _ _
provided by the developer. For example, theF|gure 5: An example of uniform crossover and point mutation
value produced by a specific feature selection
indicates the possible performance, cost, mainerossover operation is used to combine bits sampled
tainability, stability, etc. uniformly from the two parents. In this case, the
crossover mask is generated as a random bit string
* R(Ch) - is the sum of the resources consumedyith each bit chosen at random and independent of
by all the features included in the chromosomene others. The point mutation operation produces
Ch. The resources consumed by a specific feagmall random changes to the bit string by choosing a
ture indicates the possible CPU, memory, develsingle it at random, then changing its value. Muta-

opment sté time, etc. tion is performed after crossover.

_ [_)evelope_rs can adapt the fitness function to OPs 7 Parameters
timize for different measurement like performance, ) o
maintenance, etc. by changiWgCh). R(Ch) can be No systematic parameter optimization process has
seen as a penalty factor of the fitness function, whicRC far been attempted, but we use the following pa-
makes solutions that provide higher value per unit of2Meters in our experiments: population sjif=
resource consumption preferred. When facing mui30, maximum generatioB= 100, crossover proba-
tiple kinds of resourceR(Ch) can be designed as a Pility= 1 (always applied), and mutation rate.1.
multiple-dimensional vector where each dimension . ,
indicates one kind of resource. This approach als§-8- Algorithmic Complexity
permits weighting of resources to reflect importance. We first analyze the algorithmic complexity
of fmTransform As is shown in Algorithm 3
6.5. Selection and Replacement of Feature Selegnd Algorithm 4, both IncludeFeature(f) and
tions ExcludeFeature(ffostO(cmlogn), wheremis the
The chromosome selection process for the nexdverage number of child features for each feature
generation adopts a simple random selection mecland ¢ is the maximum number of cross-tree con-
anism. For each generation, two parent chromostraints (i.e., all theequiresand excludesrelation-
somes are selected randomly in the population. Thehips) in the feature model. Thus, in Algorithm 2,
crossover operation generates a new chromosonséep 2-4 costsO(||Sg|| = (cmlogn)). Step 57 costs
(offspring) out of the two parents, and the mutatiorO(||Sy|| * m). Step 813 costsO(||Sgl| * cmlog? n).
operation slightly perturbs thefspring. Since||Sgll < n, [|Svll < n, and||Sg|]| < n, the
GAFES adopts the replacement mechanism ddetal time of Algorithm 2, T(fmTransforn), is
veloped in (Bui & Moon, 1996). If the gener- O(cmnlogn + mn+ cmnlog®n) = O(cmnlog?®n).
ated dfspring is superior to both parents, it replaces The algorithmic complexity of GAFES shown
the similar parent; if it is in between the two par-in Algorithm 1 can be decomposed as follows.
ents, it replaces the inferior parent; otherwise, th@he first step require®(||P|| = log||P|| + [|P]|* *
most inferior chromosome in the population is re-T(fmTransform)= O(||P||> = T(fmTransforn)
placed. GAFES stops when the number of generaime to generate an initial population, as is shown
tions reaches the predefined maximum generdtion in Algorithm 5. The parents selection operation in
step 3 cost(1), the crossover operation in step
6.6. Crossover and Mutation 4 O(n), the mutation operation in step®(1), the
GAFES uses the standard crossover and mutatiaeplace operation in step &(||P||). Thus, step
operations. As is shown in Figure 5, a uniform2~9 costsO(G = (J|P|| + n + T(fmTransforn))=
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O(G = T(fmTransforn). Step 10 costO(||P|). 7.1.1. Feature Model Generation
Here, ||P||=30 andG=100. Thus, the total time of  The algorithm to randomly generate feature mod-
Algorithm 2 is O(|P|I> = T(fmTransform + G = els of sizen is as follows (Thum et al., 2009): start-
T(fmTransform)= O(|IP|I> = T(fmTransform)=  ing with a singleroot node, runs several iterations of
O(IP|I? = cmnlog?n). If there are no cross-tree the generation process. In each iteration, an exist-
constraints, the complexity is reduced @g||P|[> +  ing node without children is randomly selected, and
mnlog®n). Both algorithmic complexities are poly- between one and ten children are randomly added.
nomial. These child nodes are connected to the parent either
by And- (50% probability), Or- (25% probability) or
. Alternative-group (25% probability). Children in an
7. Empirical Results And-group are optional by a 50% probability. This
iterative process is continued until the feature model
In this section, we present empirical results fromhasn features. All features with children are con-
our experiments and evaluate our approach. As agidered non-terminal. Moreover, we also generate
approximation algorithm, our approach cannot guareross-tree constraintseuires and excludes For
antee that the generated approximation answer is opvery 10 features, one constraint is generated by the
timal. For dfectiveness evaluation, we introducefollowing algorithm: two diferent features are ran-
an important metricpptimality (Approximation An-  domly selected, and then are connected randomly by
sweyOptimal Answer), to measure how close the altequires(50% probability) orexcludeg50% proba-
gorithm can get to the optimal answer. Another im-pility) link. According to Thum’s survey (Thum et
portant consideration is thiéme consumptiorand al., 2009), these parameters are backed up by most
scalabilitybecause we must ensure that our approachf the surveyed feature models and represent a rough
is efficient even if there are hundreds or thousands fverage. Thus, these generated feature models ba-
features. sically reflect the characteristics of realistic feature
models.
The above generated feature models can be easily
translated into propositional formulas (Batory, 2005;
We first adopt Thum’s method (Thum et al., 2009)Thum et al., 2009). We use the SAT sohsat4}
to randomly generate feature models witlffglient to validate these feature models and discard all fea-
characteristics. We also use the test pattern gendtre models that do not have a single valid configu-
ation technique devised by (Akbar et al., 2001) toration (mostly due to poorly chosen cross-tree con-
generate random optimization problem instances fostraints). We repeat the entire process until the ap-
which we knew the optimal answer. Then we parapropriate number of valid feature models is gener-
metrically control the size of feature models for aated.
thorough runtime evaluation. We fixed the following parameters: maximum
Independent parameters in our experiments are tigimber of childrer 10; type of child groug (50%,
number of features in a feature model. The time5%, 25%); optional child 50%; number of cross-
needed to generate an approximation answer arttee constraints 0.1*n; variables in cross-tree con-
the optimality are measured as dependent variablestrains= 2. Again, Thum’s survey (Thum et al,
To reduce the fluctuations in the dependent vari2009) shows that these parameters reflect real feature
ables caused by random generation, we performgfodels.
100 repetitions for each configuration of indepen- .
dent parameters, i.e., we generated 100 random fe4:1-2- Test Pattern Generation o
ture models with the same parameters and each per- 1 "€ optimization problem in product derivation is
formed the same optimization problem. All mea-initialized by the following pseudo random numbers:
surements were performed on the same Windows XP
with Inter Pentium 4 CPU 3.0GHz and 2GB RAM. lhttp://www.sat4j.org

12

7.1. Experimental Setup




resource consumed by each terminal feat(tg) = first performed an experiment on small feature mod-
randon{Ryay, resource consumed by each non-els whose size varies from 10 to 200.
terminal feature(nf) = O; value per unit resource  Hypothesis. Our hypothesis was that GAFES
unitV = randonm(UnitVn,y); value for each termi- would be faster than FGBBBLP because GAFES is
nal featurev(tf) = r(tf) = unitV + randon{(Vnay, an approximation algorithm and FEBBLP an ex-
value for each non-terminal featwén f;) = 0. Here, act one. GAFES would be also faster than FG&F
Rmax UNitVmax andVmax are the upper bound of re- HEU due to general knowledge of traditional GAs.
source requirement, unit price of resource, and thim addition, we believed GAFES could obtain better
extra value of a feature after its consumed resourceptimality than the other two approaches.
price. The value of each item is not directly pro- Experiment 1 Results.Table 2 shows a compari-
portional to the resource consumption. The functioson among FCFBBLP, FCR-M-HEU, and GAFES.
randondi) returns an integer from O to ¢ 1), fol-  Here, the experiment is performed on each feature
lowing the uniform distribution. The total resource model whose sizen varies from 10 to 200, as is
constraintRc = Rpyax * Nre * 0.8 wherenyg is the  listed in column 1. 100 feature models for each size
number of all terminal features in a feature model. are generated randomly with the same parameters,
According to (Akbar et al., 2001), if we want to as is described in section 7.1.1, and we only take the
generate a problem for which an optimal answemean value of their results. We used the constants
is known, the following reinitializations have to be Ryax = 10, UnitVyax = 10, andVyax = 20 for gen-
done. IfS is the set of features selected by an aperation of test cases, as is explained in section 7.1.2.
proximation algorithm, thelR(S) = Y ;.sr(f), i.e, Datais not initialized for a predefined maximum to-
exactly equal to the sum of consumed resources of aihl value for the selected features.
selected features, and the value associated with eachThe columnsTgg.p, Tm_neu, and Tga Show the
selected feature ¥ fi) = r(f;) = unitV + Vmax. Thus time requirement for the FGBBLP, FCFRM-HEU,
V(S) = Yies U(fi) = Xies(r(fi) = unitV+Vnay. This  and GAFES solutions. The coluniyani gives the
reinitializations ensures maximum value per unit retime requirement for the initialization of GAFES.
source for the selected feature. The columnTgamit/ Tea presents the proportion of
the initialization to the whole GAFES in time con-
sumption. We can see that the initialization time oc-
cupies a considerable proportion (about 30-45%) of
We implemented GAFES using Java. For comihe whole time.
parison, we implemented White’s method (White The columnsTggLp— Tea)/Tespa@nd (Tm-neu —
et al., 2009), callecFiltered Cartesian Flattening Tga)/Tm-neu indicate the proportion of the time
(FCF), that can transform the SPL feature selecsaved by GAFES to the whole time consumption
tion optimization with resource constraints into aby FCFBBLP and FCHM-HEU respectively. For
Multi-dimensional Multiple-choice Knapsack Prob- tiny feature models with 10 features, GAFES con-
lem (MMKP). Then we solved the MMKP prob- sumed more time than FGBBLP and FCRM-
lem to generate an optimized feature selection usingfEU. For feature models whose size varies from
two kinds of optimization techniques: the Branch50 to 200, GAFES reduced 94-99% time consump-
and Bound with Linear Programming (BBLP) (Al- tion of FCRBBLP and 92-97% time consumption
suwaiyel, 1999) and the Modified Heuristic (M- of FCF+M-HEU.
HEU) algorithms (Akbar et al., 2001). M-HEU is  The columnVgg,p gives the average value earned
a heuristic technique. It puts an upper limit on thefrom the FCHBBLP solutions. The columns
number of upgrades and downgrades that can be p&rfy_neu/VeesLr and Vea/VeesLp indicate the average
formed (Akbar et al., 2001). BBLP can find an ex-standardized value earned in the two heuristics (i.e.,
act solution. But finding exact solutions is NP-hard FCF+M-HEU and GAFES) with respect to the ex-
which means that it is not feasible to apply BBLPact solutions generated by FEBBLP. FCFM-
to all practical cases (e.gn,> 500). Therefore, we HEU obtains 98-99% optimality while GAFES 87-
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Table 2: Experimental results for small feature models

v R R R e Demgde  vee YR gl g ows oo

10 0.95 0.79 1.03 3.15 0.3270 -2.3158 -2.9873 348.37 0.9868660. 0.878 0.0685 0.0699
50 202.99 160.35 3.64 12.27  0.2967 0.9396 0.9235 1362.05 890.90.874 0.884 0.0540 0.0402
100 1813.74 1217.44 12.39 31.79 0.3897 0.9825 0.9739 2211.0 0.981  0.903 0.920 0.0356  0.0439
200 8800.76 3070.32 45.77 101.53 0.4508 0.9885 0.9669 3A825. 0.976 0.895 0.917 0.0498 0.0582

90%, which did not beat FCF's optimality as ex- The columnsTy_pey and Tga show the time re-
pected. The colum¥iga/Vu_neu Shows that GAFES quirement for the FCFM-HEU and GAFES solu-
produces solutions with 88-92% of the optimalitytions. From the columigani/Tca, We can see
of FCF+M-HEU. In addition,on_nwey andoga are  that the time requirement for GAFES initialization,
the standard deviation of standardized total valu@ganit, accounts for 20-23% of the total time of
achieved in the 100 feature models, given to indicat&AFES. The columnTy_neu—Tea)/ Tm-_neu ShOows

stability. that GAFES reduces 45-94% time consumption of
FCFHM-HEU.
7.3. Experiment 2: Large Feature Models The columnMaxV alueindicates the average value

Erom Table 2. we can see that the time reoluiregenerated by the reinitialization in the test pattern
ments of FCRBBLP solutions increase dramati- 9€Neration technique. TakirgaxValueas the op-

cally with the size of feature models because of thé?mal answer, FCFM-HEU obtains 89-93% op-

exponential computation complexity of exact techlimality while GAFES about 86%. The column
niques. It is impractical to test the performancecA/Vu-reu Shows that GAFES produces solutions

of FCR+BBLP solutions for larger feature mod- With 93-97% of the optimality of FCFM-HEU.

els. Hence, in this experiment, we only performed:rom the COlumnS'\f‘—HEU f'deGA’ we can see that
FCF+M-HEU and GAFES on large feature modelsa” the values, achleved in the 100 _random feature
whose size varies from 500 to 10000. Moreover,mOdels for each size, maintains relatively stable.
due to the lack of the solutions of exact techniques , , o
(i.e., FCF-BBLP), we adopt the test pattern genera-7'4' Discussion of Resulés Threats to Validity
tion technique described in section 7.1.2 to estimate From Table 2 and Table 3, we can conclude that
the optimality achieved by the two heuristics (i.e.,GAFES performs moreficiently than existing exact
FCFM-HEU and GAFES). (i.e., FCRBBLP) and heuristic (i.e., FGAM-HEU)
Hypothesis. Based on the results of Experi- approaches. That is, it produced nearly as optimal
ment 1, our hypothesis for this experiment wagesults (within 86-90%) in 45-99% less time. Only
that GAFES would be faster than FEM-HEU. for tiny feature models with 10 features, GAFES
GAFES would have better scalability than FEV¥-  consumed more time than FEBBLP and FCRM-
HEU. But, based on the first experiment, we exHEU, which is caused by the fixed retry time for
pected GAFES to have slightly lower optimality thangenerating an initial population and the fixed num-
FCFM-HEU. ber of maximum generation defined in GAFES. For
Experiment 2 Results.Table 3 shows a compari- most of the feature models whose size varies from 20
son between FCAM-HEU and GAFES. Like Exper- to 10000, GAFES reduces 45-99% time consump-
iment 1, 100 feature models for each size are genetion of FCFBBLP or FCFM-HEU. Especially for
ated randomly with the same parameters, as is déarge feature models (size 500), GAFES obtains
scribed in section 7.1.1, and we only take the meabetter scalability than FGAM-HEU. As for optimal-
value of their results. We still used the constantsty, GAFES stays well above 86% optimality, which
Rmax = 10, UNiXVimax = 10, andVyhax = 20 for gen-  is with 88-97% optimal of FCFM-HEU. In addi-
eration of test cases, as is explained in section 7.1.8on, the stability of the solution performance is al-
Data is not initialized for a predefined maximum to-most same in both the cases generated by the two
tal value for the selected features. heuristics.
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Table 3: Experimental results for large feature models

n TM-HEU TGAInit TeA TcAnit Tm-HEU-TGA MaxV  YM-HEU VGA Vea

(m9 (mg (mg Tea TM-HEU MaxV Mav  Vy-wey  OM-HEU 0GA
500 6193.43 88.63 384.42 0.2306 0.9379 348.37 0.933 0.863 9250. 0.0530 0.0512
1000 14083.91 354.55 1513.68 0.2342 0.8925 1362.05 0.908620. 0.952 0.0699 0.0539
2000 33270.84 1453.25 6211.57 0.2340 0.8133 2211.03 0.89B610 0.960 0.0780 0.0484
5000 91429.64 6213.59 31358.35 0.1981 0.6570 3825.20 0.80B56 0.962 0.0769 0.0506
10000 194093.20 22486.81 107632.03 0.2089 0.4455 77470.710.887 0.857 0.966 0.0715 0.0523

Threats to internal validity are influences that caret al., 2005) considered resource constraints in prod-
affect the time requirement of all exact and heuristiaict derivation process and applied Constraint Satis-
solutions that have not been considered. We cannfdction Problems (CSPs) to model and solve feature
guarantee that computation time depends on certagelection problems automatically. Their technique
shapes of a feature model or certain resource comvorks well for small-scale problems where an ap-
straints. However, to avoidiects of certain feature proximation technique is not needed. For large-scale
models, all of input feature models are generated ayproblems, however, their technique is too computa-
tomatically by simulating known feature models andtionally demanding. In contrast, GAFES works well
each measurement is repeated 100 times with freshbn large-scale problems.
generated feature models.

Threats to external validity are conditions that y\1annion (Mannion, 2002), Batory (Batory, 2005)
limit our ability to generalize the results of our eX- 5,4 czarnecki et al. ’(Czarn’ecki & Wasowski 2007’)
periments to industrial practice. We generated fea;pjied propositional logic to automated feature se-
ture models with the described algorithm and parampction.  However. these techniques were not de-

eters, and confirmed that they align well with thosejgned to handle integer resource constraints and thus

known feature models acquired from existing publi-cannot handle the SPL feature selection optimiza-

cations in SPL community. We cannot guarantee thaf,y with resource constraints. Moreover, these tech-
our generated test cases are typical in practice. HOWjiques depend on SAT or BDD solvers that use expo-
ever, to simulate practical situation as far as possiential algorithms. GAFES is a polynomial-time al-

ble, we randomly generate the consumed resoureg, ithm that can handle integer resource constraints
and the provided value for each terminal features, g thus can solve the SPL feature selection op-

Moreover, test data is not initialized for a predefineq; ni-ation with resource constraints even on large-
maximum total value for the selected features. Th%cale problems.

total resource constraint is generated dynamically for

each random feature model.
Zhang et al. (Zhang et al., 2003) poposed a tech-

nique for reasoning about SPL variant quality at-
8. Related Work tributes using Bayesian Belief Networks. Jarzabek
et al. (Jarzabek et al., 2006) developed another tech-
This section compares our work on GAFES to re-hique in this area based on soft goals. However, these
lated work on Al approaches and other approachdschniques is designed for selecting features in situ-
for feature selection optimization, including ex-ations where it is diicult to predict the impact of a
act and heuristic techniques and visualization tecHeature selection. But in GAFES, the exact impact
niques. of each feature selection on the resource consump-
tion of the variant is known. The two techniques are
complementary to each other. If the exact impact of
feature selections on variant quality is not known, the
Many exact techniques in the Al community havetechniques of Zhang or Jarzabek can be used. If the
been applied and extended to solve the SPL featuimpact of feature selection is known, GAFES is ap-
selection optimization. Benavides et al. (Benavidegropriate.

15

8.1. Exact Techniques for SPL Feature Selection



8.2. Heuristics for SPL Feature Selection 8.3. Feature Model Visualization Techniques

_ Some researchers developed special visualization
Although exact algorithms to solve NP-hard prob-gchniques to assist developers in decision mak-

lems have exponential complexity, each NP-hargy quring the product derivation process. Sell-
problem typically has a number of approximation al-je;r and Mannion (Sellier & Mannion, 2007) pro-
gorithms that can be used to solve it with acceptablgosed a visualization metamodel for representing
optimality. Search-based software engineering (Hafnter-dependencies between SPLs and described a
man, 2007) advocates the application of optimizatiofyo| 1o realize these visualizations. Botterweck et
techniques from the operations research and heurig; (Botterweck et al., 2007) presented a metamodel
tic (or metaheuristic) computation research commuat described staged feature configuration and intro-
nities to software engineering. It has already ha@uced a tool that illustrated the advantages of inter-
several successful application domains in softwargctive visualization in managing feature configura-
engineering (Harman, 2007), such as optimizing thgon However, these approaches focus more on func-
search for requirements to form the next releasgong| requirements of a product and their dependen-
(Bagnall et al., 2001) and optimizing test data seleCgjes and less on non-functional requirements or re-
tion and prioritization (Walcott et al., 2006). HOow- gqyrce constraints (Siegmund et al., 2008). More-
ever, to the best of our knowledge, there is only ongyer, industrial-sized feature models with hundreds

work from White et al. (White et al., 2009) provid- o thousands of features make a fully manual feature
ing an approximation algorithm for the SPL featurése|ection process usually impossible.

selection optimization with resource constraints.
White et al. (White et al., 2009) provided a poly-
nomial time approximation algorithm for selecting a
highly optimal set of features that adheres to a set of To quickly derive an optimal product configura-
resource constraints. They proposed the FCF teclion, developers need algorithmic techniques to au-
nique that transforms the optimized feature selectomatically generate a valid feature selection that op-
tion problem into the MMKP problem, and then usetimize desired product properties. However, finding
the M-HEU technique (Akbar et al., 2001) to solvea feature selection with optimal product capability
the MMKP problem. However, their approach still subject to required constraints is an NP-hard prob-
requires significant computing time for large-scalgem. Although there are numerous heuristic tech-
problems. Moreover their approach involves two apniques for many NP-hard problems, they cannot di-
proximation processes, one is in the FCF stage teectly support the SPL feature selection optimization
transform all And- and Or-groups into Alternative- with resource constraints because they are not de-
groups, another is in the M-HEU stage to generate agigned to handle various structural and semantic con-
approximation solution. In addition, their approachstraints defined in the feature model. This lack of
demands a higher resource tightness, which is alggeuristics limits the scale of feature model on which
a common problem for the heuristic techniques thagievelopers can realistically optimize and evaluate a
solve the MMKP problem (Akbar et al., 2001; White large number of possible product configurations.
etal., 2009). This paper presents a GA-based feature selection
GAFES also provides a heuristic solution. Com-approach, GAFES, for automated product derivation
pared with White’s method (FGAV-HEU), it has in SPLs. The key to adapting GAs to the SPL fea-
only one approximation process, i.e, the genetic praure selection optimization successfully is that we
cess of generating an approximation solution. Moredesign an algorithm that can transform an arbitrary
over GAFES avoids the limitation of resource tight-feature set into a valid feature combination conform-
ness because it transforms the SPL feature selectiamy to the feature model constraints. Experiments
optimization into a genetic problem not an MMKP show that GAFES can achieve an average of 86-
problem. Experiments show that GAFES can reduc80% optimality even for large feature models. More-
45-97% time consumption of FGM-HEU. over GAFES can derive a feature selection 45-99%
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