
Model-driven Configuration of Green Cloud Computing
Auto-scaling Infrastructure

Brian Dougherty, Jules White, and Douglas C. Schmidt

Institute for Software Integrated Systems, Vanderbilt University, Campus Box 1829 Station B, Nashville, TN
37235, USA

Abstract

Cloud computing can reduce power consumption by using virtualized computational
resources to provision an application’s computational resources on-demand. Auto-
scaling is an important cloud computing technique that dynamically allocates compu-
tational resources to applications to match their current loads precisely, thereby remov-
ing resources that would otherwise remain idle and waste power. This paper presents a
model-driven engineering approach to optimizing the configuration, energy consump-
tion, and operating cost of cloud auto-scaling infrastructure to create greener comput-
ing enviornments that reduce emissions resulting from superfluous idle resources. The
paper provides four contributions to the study of model-driven configuration of cloud
auto-scaling infrastructure by (1) explaining how virtualmachine configurations can be
captured in feature models, (2) describing how these modelscan be transformed into
constraint satisfaction problems (CSPs) for configurationand energy consumption op-
timization, (3) showing how optimal auto-scaling configurations can be derived from
these CSPs with a constraint solver, and (4) presenting a case-study showing the energy
consumption/cost reduction produced by this model-drivenapproach.

1 Introduction
Current trends and challenges.By 2011, power consumption of computing data

centers is expected to exceed 100,000,000,00 kilowatt-hours(kWh) and generate over
40,568,000 tons of CO2 emissions [1, 2, 3]. Since data centers operate at only 20-
30% utilization, 70-80% of this power consumption is lost due to over-provisioned idle
resources, resulting in roughly 29,000,000 tons of unecessary CO2 emissions [1, 2,
3]. Applying new computing paradigms, such as cloud computing to increase server
utilization and decrease idle time is therefore paramount to creating greener computing
environments with reduced power consumption and emissions[4, 5, 6, 7, 8].

Cloud computing is a computing paradigm that uses virtualized server infrastruc-
ture and auto-scaling to provision virtual OS instances dynamically [9]. Rather than
over-provisioning an application’s infrastructure to meet peak load demands, an appli-
cation canauto-scaleby dynamically acquiring and releasing virtual machine (VM)
instances as load fluctuates. Auto-scaling increases server utilization and decreases
idle time compared with over-provisioned infrastructures, in which superfluous sys-
tem resources remain idle and uneccesarily consume power and emit superfluous CO2.

Preprint submitted to Science of Computer Programming October 31, 2010

Moreover, by allocating VMs to applications on demand, cloud infrastructure users can
pay for servers incrementally rather than investing the large up-front costs to purchase
new servers, reducing up-front operational costs.

Although cloud computing can help reduce idle resources andnegative environem-
ntal impact, running with less instantly available computing capacity can impact quality-
of-service (QoS) as load fluctuates. For example, a prime-time television commercial
advertising a popular new product may cause a ten-fold increase in traffic to the ad-
vertisers website for about 15 minutes. Data centers can useexisting idle resources to
handle this momentary increase in demand and maintain QoS. Without these additional
resources, the website’s QoS would degrade, resulting in anunacceptable user experi-
ence. If this commercial only airs twice a week, however, these additional resources
might be idle during the rest of the week, consuming additional power without being
utilized.

Devising mecahnisms for reducing power consumption and environmental impact
through cloud auto-scaling is hard. Auto-Scaling must ensure that VMs can be pro-
visioned and booted quickly to meet response time requirements as load changes. If
auto-scaling responds to load fluctuations too slowly applications may experience a
period of poor response time awaiting the allocation of additional computational re-
sources. One way to mitigate this risk is to maintain an auto-scaling queue containing
prebooted and preconfigured VM instances that can be allocated rapidly, as shown in
Figure 1.

Figure 1: Auto-scaling in a Cloud Infrastructure

When a cloud application requests a new VM configuration fromthe auto-scaling
infrastructure, the auto-scaling infrastructure first attempts to fulfill the request with a
prebooted VM in the queue. For example, if a VM with Fedora Core 6, JBoss, and
MySQL is requested, the auto-scaling infrastructure will attempt to find a matching
VM in the queue. If no match is found, a new VM must be booted andconfigured to
match the allocation request.

Open problem → determining green settings, such as the size and properties
of the auto-scaling queue shared by multiple applications with different VM configura-

2

tions [10]. The chosen configurations must meet the configuration requirements of mul-
tiple applications and reduce power consumption wihtout adversely impacting QoS.
For example, a web application may request VM instances configured as database,
middle-tier Enterprise Java Beans (EJB), or front-end web servers. Determining how
to capture and reason about the configurations that comprisethe auto-scaling queue
is hard due to the large number of configuration options (suchas MySQL and SQL
Server databases, Ubuntu Linux and Windows operating systems, and Apache HTTP
and IIS/Asp.Net web hosts) offered by cloud infrastructureproviders.

It is even harder to determine the optimal queue size and types of VM configura-
tions that will ensure VM allocation requests can be serviced quickly enough to meet
a required auto-scaling response time limit. Cost optimization is challenging because
each configuration placed into the queue can have varying costs based on the hardware
resources and software licenses it uses. Energy consumption minimization is also hard
since hardware resources can consume different amounts of power.

Solution approach→ Auto-scaling queue configuration derivation based on
feature models. This paper presents a model-driven engineering (MDE) approach
called theSmart Cloud Optimization for Resource Configuration Handling(SCORCH).
SCORCH captures VM configuration options for a set of cloud applications and derives
an optimal set of virtual machine configurations for an auto-scaling queue to provide
three green computing contributions:

• An MDE technique for transforming feature model representations of cloud VM
configuration options into constraint satisfaction problems (CSPs) [11, 12], where a set
of variables and a set of constraints govern the allowed values of the variables.

• An MDE technique for analyzing application configuration requirements, VM
power consumption, and operating costs to determine what VMinstance configurations
an auto-scaling queue should contain to meet an auto-scaling response time guarantee
while minimizing power consumption.

• Empirical results from a case study using Amazon’s EC2 cloudcomputing in-
frastructure (aws.amazon.com/ec2) that shows how SCORCH minimizes power con-
sumption and operating cost while ensuring that auto-scaling response time require-
ments are met.

2 Challenges of Configuring Virtual Machines in Cloud Environments

Reducing unecessary idle system resources by applying auto-scaling queues can
potentially reduce power consumption and resultingCO2 emissions significantly. QoS
demands, diverse configuration requirements, and other challenges, however, make it
hard to achieve a greener computing environment. This section describes three key
challenges of capturing VM configuration options and using this configuration infor-
mation to optimize the setup of an auto-scaling queue to minimize power consumption.

2.1 Challenge 1: Capturing VM Configuration Options and Constraints
Cloud computing can yield greener computing by reducing power consumption. A

cloud application can request VMs with a wide range of configuration options, such as
type of processor, amount of memory, OS, and installed middleware, all of which con-
sume different amounts of power. For example, the Amazon EC2cloud infrastructure

3

supports 5 different types of processors, 6 different memory configuration options, and
over 9 different OS types, as well as multiple versions of each OS type [13]. The power
consumption of these configurations range from 150 to 610 watts per hour.

The EC2 configuration options cannot be selected arbitrarily and must adhere to
myriad configuration rules. For example, a VM running on Fedora Core 6 OS cannot
run MS SQL Server. Tracking these numerous configuration options and constraints
is hard. Sections 3.1&3.2 describe how SCORCH uses feature models to alleviate the
complexity of capturing and reasoning about configuration rules for VM instances.

2.2 Challenge 2: Selecting VM Configurations to Guarantee Auto-scaling Speed Re-
quirements

While reducing idle resources results in less power consumption and greener com-
puting enviroments, cloud computing applications must also meet stringent QoS de-
mands. A key determinant of auto-scaling performance is thetypes of VM configura-
tions that are kept ready to run. If an application requests aVM configuration and an
exact match is available in the auto-scaling queue, the request can be fulfilled nearly
instantaneously. If the queue does not have an exact match, it may have a running VM
configuration that can be modified to meet the requested configuration faster than pro-
visioning and booting a VM from scratch. For example, a configuration may reside in
the queue that has the correct OS but needs to unzip a custom software package, such
as a pre-configured Java Tomcat Web Application Server, froma shared filesystem
onto the VM. Auto-scaling requests can thus be fulfilled withboth exact configuration
matches and subset configurations that can be modified fasterthan provisioning a VM
from scratch.

Determining what types of configurations to keep in the auto-scaling queue to en-
sure that VM allocation requests are serviced fast enough tomeet a hard allocation
time constraint is hard. For one set of applications, the best strategy may be to fill
the queue with a common generic configuration that can be adapted quickly to satisfy
requests from each application. For another set of applications, it may be faster to fill
the queue with the virtual machine configurations that take the longest to provision
from scratch. Numerous strategies and combinations of strategies are possible, making
it hard to select configurations to fill the queue that will meet auto-scaling response
time requirements. Section 3.3 show how SCORCH captures cloud configuration op-
tions and requirements as cloud configuration feature models, transforms these models
into a CSP, and creates constraints to ensure that a maximum response time limit on
auto-scaling is met.

2.3 Challenge 3: Optimizing Queue Size and Configurations toMinimize Energy
Consumption and Operating Cost

A further challenge for developers is determining how to configure the auto-scaling
queue to minimize the energy consumption and costs requiredto maintain it. The larger
the queue, the greater the energy consumption and operatingcost. Moreover, each
individual configuration within the queue varies in energy consumption and cost.For
example, a “small” Amazon EC2 VM instance running a Linux-based OS consumes
150W and costs $0.085 per hour while a "Quadruple Extra Large" VM instance with
Windows consumes 630W and costs $2.88 per hour.

4

It is hard for developers to manually navigate tradeoffs between energy consump-
tion, operating costs, and auto-scaling response time of different queue sizes and sets
of VM configurations. Moreover, there are an exponential number of possible queue
sizes and configuration options that complicates deriving the minimal power consump-
tion/operating cost queue configuration that will meet auto-scaling speed requirements.
Section 3.3 describes how SCORCH uses CSP objective functions and constraints to
derive a queue configuration that meets minmizes power consumption and operating
cost.

3 The Structure and Functionality of SCORCH

This section describes how SCORCH resolves the challenges in Section 2 by using
models to capture virtual machine configuration options explicitly, model transforma-
tions to convert these models into CSPs, and constraint solvers to derive the optimal
queue size and contained VM configuration options to minimize energy consumption
and operating cost while meeting auto-scaling response time requirements.

Figure 2: SCORCH Model-Driven Process

The SCORCH MDE process is shown in Figure 2 and described below:
1. Developers use a SCORCHcloud configuration modelto construct a catalog of

configuration options that are available to VM instances.
2. Each application considered in the auto-scaling queue configuration optimization

provides aconfiguration demand modelthat specifies the configuration for each type
of virtual machine instance the application will request during its execution lifecycle.

3. Developers provide aconfiguration adaptation time modelthat specifies the time
required to add/remove a feature from a configuration.

4. Developers provide anenergy modelthat specifies the power consumption re-
quired to run a VM configuration with each feature present in the SCORCH cloud
configuration model.

5. Developers provide acost modelthat specifies the cost to run a VM configuration
with each feature present in the SCORCH cloud configuration model.

5

6. The cloud configuration model, configuration demand models,and load esti-
mation model are transformed into a CSP and a constraint solver is used to derive the
optimal auto-scaling queue setup.

The remainder of this section describes the structure and functionality of each
model defined and used by SCORCH.

3.1 SCORCH Cloud Configuration Models
A key consideration in SCORCH is modeling the catalog of VM configuration

options. Amazon EC2 offers many different options, such as Linux vs. Windows oper-
ating systems, SQL Server vs. MySQL databases, and Apache HTTP vs. IIS/Asp.Net
webhosts. This model provides developers with a blueprint for constructing a request
for a VM instance configuration and checking its correctness. The queue configuration
optimization process also uses this model to ensure that valid configurations are chosen
to fill the queue.

To manage the complexity of representing VM instance configuration options, SCORCH
usesfeature models[12], which describe commonality and variability in a configurable
software platform via an abstraction called afeature. Features can describe both high-
level functional variations in the software,e.g., whether or not the underlying software
can load balance HTTP requests. A feature can also representimplementation-specific
details,e.g., whether or not Ubuntu 9.10 or Fedora is used.

Feature models use a tree structure to define the relationships between the various
features and encode configuration rules into the model,e.g., a VM configuration can
include only a single operating system, such as Ubuntu 9.10 or Fedora. Some features
may require other features to be present to function,e.g., theJBOSS v6 feature cannot
be chosen without also selecting theJBOSS feature.

A configuration of the software platform is defined by a selection of features from
the feature model. The most basic rule of configuration correctness is that every se-
lected feature must also have its parent feature selected. This rule also implies that
every correct feature selection must include the root feature. Moreover, the feature
selection must adhere to the constraints on the parent-child relationships encoded into
the feature model.

Developers use the SCORCH cloud configuration model to express the available
configuration options for VM instances as a feature model. The configuration adap-
tion time model’s information is captured as attributes of the features in the SCORCH
cloud configuration model. Each feature can be annotated with an integer attribute that
specifies the time in milliseconds to add/remove the given feature from a configuration.

The energy model and cost model are also captured using attributes in the SCORCH
cloud configuration model. Each feature impacting the energy consumption or oper-
ating cost of a configuration is annotated with an energy attribute that specifies the
energy consumption per hour and cost attribute that specifies the operating cost per
hour to have a booted VM configuration in the queue with that feature. For example,
these attributes can be used to model the cost of the “Small” vs. “Quadruple Extra
Large” computing node size features of an Amazon EC2 VM configuration.

3.2 SCORCH Configuration Demand Models
Applications are auto-scaled at runtime by dynamically requesting and releasing

VM instances. When a new VM instance is requested, the desired configuration for

6

the instance is provided. SCORCH requires each applicationto provide a model of the
VM instance configurations that it will request over its lifetime.

Developers construct SCORCH configuration demand models todictate what VM
configurations an application will request. The configuration demand models use a
textual domain-specific language to describe each configuration requested as a selec-
tion of features from the SCORCH cloud configuration model. For example, Figure 3
shows a valid configuration demand model that includes one VMconfiguration for a
large JBOSS application server and one configuration for a Jetty server.

Figure 3: SCORCH Textual Configuration Demand Model

3.3 Runtime Model Transformation to CSP and Optimization
Using feature models to capture VM configuration options allows the use of con-

straint solvers to select a group of features to optimize an objective function. In the
context of SCORCH, the cloud configuration model and configuration demand mod-
els are converted into a CSP where a solution is a valid set of configurations for the
VM instances in the auto-scaling queue. The objective function of the CSP attempts
to derive a mix of configurations that minimizes the energy consumption and cost of
maintaining the queue while ensuring that any hard constraints on the time to fulfill
auto-scaling requests are met.

The conversion of feature selection problems into CSPs has been described in prior
work [14, 15]. Feature configuration problems are convertedinto CSPs where the
selection state of each feature is represented as a variablewith domain {0,1}. The
constraints are designed so that a valid labeling of these variables yields a valid feature
selection from the feature model.

A CSP for a feature selection problem can be described as a 3-tuple:

P=< F,C,γ >

where:
• F is a set of variables describing the selection state of each feature. For each

feature,fi ∈ F , if the feature is selected in the derived configuration, then fi = 1. If the
ith feature is not selected, thenfi = 0.

• C captures the rules from the feature model as constraints on the variables inF.
For example, if theith feature requires thejth feature,C would include a constraint:
(fi = 1)⇒ (f j = 1).

7

• γ is an optional objective function that should be maximized or minimized by the
derived configuration.

Building a CSP to derive a set of configurations for an auto-scaling queue uses
a similar methodology. Rather than deriving a single valid configuration, however,
SCORCH tries to simultaneously derive both the size of the auto-scaling queue and a
configuration for each position in the auto-scaling queue. If SCORCH derives a size
for the queue ofK, therefore,K different feature configurations will be derived for the
K VM instances that need to fill the queue.

The CSP for a SCORCH queue configuration optimization process can be described
formally as the 8-tuple

P=< S,Q,C,D,E,L,T,M,γ >

, where:
• S is the auto-scaling queue size, which represents the numberof prebooted VM

instances available in the queue. This variable is derived automatically by SCORCH.
• Q is a set of sets that describes the selection state of each VM instance config-

uration in the queue. The size ofQ is Z if there areZ distinct types of configurations
specified in the configuration demand models. Each set of variables,Qi ∈ Q, describes
the selection state of features for one VM instance in the queue. For each variable,
qi j ∈ Qi , if qi j = 1 in a derived configuration, it indicates that thejth feature is selected
by theith VM instance configuration.

• C captures the rules from the feature model as constraints on the variables in all
setsQi ∈ Q. For example, if the kth feature requires thejth feature,C would include a
constraint:∀Qi ∈ Q, (qik = 1)⇒ (qi j = 1).

• D contains the set of configuration demand models contributedby the applica-
tions. Each demand modelDi ∈ D represents a complete set of selection states for the
features in the feature model. If thejth feature is requested by theith demand model,
thendi j ∈ Di ,di j = 1. The demand models can be augmented with expected load per
configuration, which is a focus of future work.

• E is the cost model that specifies the energy consumption resulting from including
the feature in a running VM instance configuration in the auto-scaling queue. For each
configurationDi ∈D a variableEi ∈E specifies the energy consumption of that feature.
These values are derived from annotations in the SCORCH cloud configuration model.

• L is the cost model that specifies the cost to include the feature in a running
VM instance configuration in the auto-scaling queue. For each configurationDi ∈ D
a variableLi ∈ L specifies the cost of that feature. These values are derived from
annotations in the SCORCH cloud configuration model.

• T is the configuration time model that defines how much time is needed to add/-
remove a feature from a configuration. The configuration timemodel is expressed as a
set of positive decimal coefficients, whereti ∈ T is the time required to add/remove the
ith feature from a configuration. These values are derived from the annotations in the
SCORCH cloud configuration model.

• γ is the cost minimization objective function that is described in terms of the
variables inD, Q, andL.

• M is the maximum allowable response time to fulfill a request toallocate a VM

8

with any requested configuration from the demand models to anapplication.

3.4 Response Time Constraints and CSP Objective Function
SCORCH defines an objective function to attempt to minimize the cost of main-

taining the auto-scaling queue, given a CSP to derive configurations to fill the queue.
Moreover, we can define constraints to ensure that a maximum response time bound is
adhered to by the chosen VM queue configuration mix and queue size that is derived.

We describe the expected response time,Rtx, to fulfill a requestDx from the con-
figuration demand model as:

Rtx = min(CT0 . . .CTn, boot(Dx)) (1)

CTi =

{

∀qi j ∈ Qi , qi j = dx j 0 (a),

∃qi j ∈ Qi , qi j ! = dx j ∑t j(|qi j −dx j|) (b)
(2)

where:

• Rtx is the expected response time to fulfill the request.
• n is the total number of features in the SCORCH cloud configuration model
• CTi is the expected time to fulfill the request if theith VM configuration in the

queue was used to fulfill it.
• boot(Dx) is the time to boot a new VM instance to satisfyDx and not use the

queue to fulfill it.

The expected response time,Rtx is equal to the fastest time available to fulfill the
request, which will either be the time to use a VM instance in the queueCTi or to boot
a completely new VM instance to fulfill the requestboot(Dx). The time to fulfill the
request is zero (or some known constant time) if a configuration exists in the queue
that exactly matches request (a). The time to fulfill the request with that configuration
is equal to the time needed to modify the configuration to match the requested config-
urationDx if a given VM configuration is not an exact match (b). For each featureqi j

in the configuration that does not match what is requested in the configuration,t j is
the time incurred to add/remove the feature. Across theZ distinct types of configura-
tion requests specified in the configuration demand models wecan therefore limit the
maximum allowable response time with the constraint:

∀Dx ∈ D, M ≥ Rtx (3)

With the maximum response time constraint in place, the SCORCH model-to-CSP
transformation process then defines the objective functionto minimize. For each VM
instance configuration,Qi , in the queue we define its energy consumption as:

Energy(Qi) =
n

∑
j=0

qi j E j

. The overall energy consumption minimization objective function,ε, is defined as the
minimization of the variableEnergy, where:

ε = Energy= Energy(Q0)+Energy(Q1)+ · · ·+Energy(Qk)

9

.
Similarly, the cost of each VM instance is defined as:

Cost(Qi) =
n

∑
j=0

qi j L j

. The overall cost minimization objective function,γ, is defined as the minimization of
the variableCost, where:

γ =Cost=Cost(Q0)+Cost(Q1)+ · · ·+Cost(Qk)

.
The final piece of the CSP is defining the constraints attachedto the queue size

variableS. We defineSas the number of virtual machine instance configurations that
have at least one feature selected:

Si =

{

∀qi j ∈ Qi , qi j = 0 0,

∃qi j ∈ Qi , qi j = 1 1
(4)

S=
Z

∑
i=0

Si

Once the CSP is constructed, a standard constraint solver, such as the Java Choco
constraint solver (choco.sourceforge.net), can be used to derive a solution. Sec-
tion 4 presents empirical results from applying SCORCH withJava Choco to a case
study of an ecommerce application running on Amazon’s EC2 cloud computing infras-
tructure.

4 Empirical Results

This section presents a comparison of SCORCH with two other approaches for
provisioning VMs to ensure that load fluctuations can be met without degradation of
QoS. We compare the energy efficiency and cost effectivenessof each approach when
provisioning an infrastructure that supports a set of ecommerce applications. We se-
lected ecommerce applications due to the high fluctuations in workload that occur due
to the varying seasonal shopping habits of users. To comparethe energy efficiency and
cost effectiveness of these approaches, we chose the pricing model and available VM
instance types associated with Amazon EC2.

We investigated three-tiered ecommerce applications consisting of web front end,
middleware, and database layers. The applications required 10 different distinct VM
configurations. For example, one VM required JBOSS, MySql, and IIS/Asp.Net while
another required Tomcat, HSQL, and Apache HTTP. These applications also utilize a
variety of computing instance types from EC2, such as high-memory, high-CPU, and
standard instances.

To model the traffic fluctuations of ecommerce sites accurately we extracted traffic
information from Alexa (www.alexa.com) for newegg.com (newegg.com), which is
an extremely popular online retailer. Traffic data for this retailer showed a spike of

10

(a) Monthly Power Consumption (b) Monthly Cost

Figure 4: Monthly Power Consumption & Cost

three times the normal traffic during the November-Decemberholiday season. During
this period of high load, the site required 54 VM instances. Using the pricing model
provided by Amazon EC2, each server requires 515W of power and costs $1.44 an
hour to support the heightened demand (aws.amazon.com/economics).

4.1 Experiment: VM Provisioning Techniques
Static provisioning. The first approach provisions a computing infrastructure equipped

to handle worst-case demand at all times. In this approach, all 54 servers run continu-
ously to maintain response time. This technique is similar to computing environments
that permit no auto-scaling. Since the infrastructure can always support the worst-case
load, we refer to this technique asstatic provisioning.

Non-optimized auto-scaling queue. The second approach augments the auto-
scaling capabilities of a cloud computing environment withan auto-scaling queue. In
this approach, auto-scaling is used to adapt the number of resources to meet the current
load that the application is experiencing. Since additional resources can be allocated as
demand increases, we need not run all 54 servers continuously. Instead, an auto-scaling
queue with a VM instance for each of ten different application configurations must be
allocated on demand. We refer to this technique asnon-optimized auto-scaling queue
since the auto-scaling queue is not optimized.

SCORCH. The third approach uses SCORCH to minimize the number of VM
instances needed in the auto-scaling queue, while ensuringthat response time is met.
By optimizing the auto-scaling queue with SCORCH, the size of the queue can be
reduced by 80% to two VM instances.

4.2 Power Consumption & Cost Comparison of Techniques
The maximum load for the 6 month period occurred in November and required 54

VM instances to support the increased demand, decreasing to26 servers in december
and finally 18 servers for the final four months. The monthly energy consumption and
operational costs of applying each response time minimization technique can be seen
in Figure 4a and 4b respectively.

Since the maximum demand of the ecommerce applications required 54 VM in-
stances, the static provisioning technique consumed the most power and was the most
expensive, with 54 VM instances prebooted and run continuously. The non-optimized
auto-scaling queue only required ten pre-booted VM instances and therefore reduced
power consumption and cost. Applying SCORCH yielded the most energy efficient

11

(a) Total Power Consumption (b) Total Cost

Figure 5: Monthly Power Consumption & Cost

(a) Power Consumption/Cost Percent Reduc-
tion

(b) CO2 Emissions

Figure 6: Environmental Impact of Techniques

and lowest cost infrastructure by requiring only two VM instances in the auto-scaling
queue.

Figure?? compares the total power consumption and operating cost of applying
each of the VM provisioning techniques for a six month period. The non-optimized
auto-scaling queue and SCORCH techniques reduced the powerrequirements and price
of utilizing an auto-scaling queue to maintain response time in comparison to the static
provisioning technique. Figure 6a compares the savings of using a non-optimized auto-
scaling queue versus an auto-scaling queue generated with SCORCH. While both tech-
niques reduced cost by more than 35%, deriving an auto-scaling queue configuration
with SCORCH yielded a 50% reduction of cost compared to utilizing the static pro-
visioning technique. This result reduced costs by over $165,000 for supporting the
ecommerce applications for 6 months.

More importantly than reducing cost, however, applying SCORCH also reduced
CO2 emissions by 50%, as shown in Figure 6b. According to recent studies, a power
plant using pulverized coal as its power source emits 1.753 pounds of CO2 per each
kilowatt hour of power produced [2]. Not using an auto-scaling queue therefore results
in an emission of 208.5 tons of CO2 per year, as shown in Figure 6b. Applying the
SCORCH optimized auto-scaling queue, however, cuts emmisions by 50% resulting in
an emission reduction of 104.25 tons per year.

12

5 Related Work

This section compares SCORCH with related work.
VM forking handles increased workloads by replicating VM instances onto new

hosts in negligible time, while maintaining the configuration options and state of the
original VM instance. Cavilla et al. [16] describe SnowFlock, which uses virtual ma-
chine forking to generate replicas that run on hundreds of other hosts in a less than
a second. This replication method maintains both the configuration and state of the
cloned machine. Since SnowFlock was designed to instantiate replicas on multiple
physical machines, it is ideal for handling increased workload in a cloud computing
environment where large amounts of additional hardware is available.

SnowFlock is effective for cloning VM instances so that the new instances have the
same configuration and state of the original instance. As a result, the configuration and
boot time of a VM instance replica can be almost entirely bypassed. This technique,
however, requires that at least a single virtual machine instance matching the configu-
ration requirements of the requesting application is booted. In contrast, SCORCH uses
prebooted VM instances that are more likely to match the configuration requirements
of arriving applications.

Automated feature derivation. To maintain the service-level agreements provided
by cloud computing environments, it is critical that techniques for deriving VM in-
stance configurations are automated since manual techniques cannot support the dy-
namic scalability that makes cloud computing environmentsattractive. Many tech-
niques [17, 18, 19, 20] exist to automatically derive feature sets from feature models.
These techniques convert feature models to CSPs that can be solved using commercial
CSP solvers. By representing the configuration options of VMinstances as feature
models, these techniques can be applied to yield feature sets that meet the configura-
tion requirements of an application. Existing techniques,however, focus on meeting
configuration requirements of one application at a time. These techniques could there-
fore be effective for determining an exact configuration match for a single application.
In contrast, SCORCH analyzes CSP representations of feature models to determine
feature sets that satisfy some or all of feature requirements of multiple applications.

6 Concluding Remarks

Auto-scaling cloud computing environments helps minimizeresponse time during
periods of high demand, while reducing cost during periods of light demand. The time
to boot and configure additional VM instances to support applications during periods of
high demand, however, can negatively impact response time.This paper describes how
theSmart Cloud Optimization of Resource Configuration Handling (SCORCH) MDE
tool uses feature models to (1) represent the configuration requirements of multiple
software applications and the power consumption/operational costs of utilizing differ-
ent VM configurations, (2) transform these representationsinto CSP problems, and (3)
analyze them to determine a set of VM instances that maximizes auto-scaling queue
hit rate. These VM instances are then placed in an auto-scaling queue so that response
time requirements are met while minimizing power consumption and operational cost.

13

The following are lessons learned from using SCORCH to construct auto-scaling
queues that create greener computing enviornments by reducing emissions resulting
from superfluous idle resources:

• Auto-scaling queue optimization effects power consumption and operating
cost.Using an optimized auto-scaling queue greatly reduces the total power consump-
tion and operational cost compared to using a statically provisioned queue or non-
optimized auto-scaling queue. SCORCH reduced power consumption and operating
cost by 50% or better.

• Dynamic pricing options should be investigated.Cloud infrastructures may
change the price of procuring VM instances based on current overall cloud demand at
a given moment. We are therefore extending SCORCH to incorporate a monitoring
system that considers such price drops when appropriate.

• Predictive load analysis should be integrated.The workload of a demand
model can effect application resource requirements drastically. We are therefore ex-
tending SCORCH to use predictive load analysis so auto-scaling queues can cater to
specific application workload characteristics.

SCORCH is part of the ASCENT Design Studio and is available inopen-soure
format fromcode.google.com/p/ascent-design-studio.

[1] Computer center powernap plan could save 75 percent of data center energy,http:
//www.sciencedaily.com/releases/2009/03/090305164353.htm, accessed October
20, 2010 (2009).

[2] E. Rubin, A. Rao, C. Chen, Comparative assessments of fossil fuel power plants with CO2
capture and storage, in: Proceedings of 7th International Conference on Greenhouse Gas
Control Technologies, Vol. 1, 2005, pp. 285–294.

[3] C. Cassar, Electric power monthly,http://www.eia.doe.gov/cneaf/electricity/
epm/epm_sum.html, accessed October 20, 2010.

[4] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Dang, K. Pentikousis,
Energy-efficient cloud computing, The Computer Journal 53 (7) (2010) 1045.

[5] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang, Y. Chen, GreenCloud: a new architecture
for green data center, in: Proceedings of the 6th international conference industry session
on Autonomic computing and communications industry session, ACM, 2009, pp. 29–38.

[6] A. Bateman, M. Wood, Cloud computing, Bioinformatics 25(12) (2009) 1475.

[7] A. Beloglazov, R. Buyya, Energy efficient allocation of virtual machines in cloud data cen-
ters, in: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, IEEE, 2010, pp. 577–578.

[8] R. Buyya, A. Beloglazov, J. Abawajy, Energy-Efficient management of data center re-
sources for cloud computing: A vision, architectural elements, and open challenges, in:
Proceedings of the 2010 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12, Vol. 15, 2010.

[9] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorod-
nov, The eucalyptus open-source cloud-computing system, in: Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computingand the Grid-Volume 00,
IEEE Computer Society, 2009, pp. 124–131.

14

[10] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Obbink, K. Pohl, Variability issues in
software product lines, Lecture Notes in Computer Science (2002) 13–21.

[11] V. Kumar, Algorithms for constraint-satisfaction problems: A survey, AI magazine 13 (1)
(1992) 32.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-oriented domain analysis
(FODA) feasibility study (1990).

[13] S. Hazelhurst, Scientific computing using virtual high-performance computing: a case
study using the Amazon elastic computing cloud, in: Proceedings of the 2008 annual re-
search conference of the South African Institute of Computer Scientists and Information
Technologists on IT research in developing countries: riding the wave of technology, ACM
New York, NY, USA, 2008, pp. 94–103.

[14] D. Benavides, P. Trinidad, A. Ruiz-Cortes, Automated Reasoning on Feature Models,
in: Proceedings of the 17th Conference on Advanced Information Systems Engineering,
ACM/IFIP/USENIX, Porto, Portugal, 2005.

[15] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, A. Ruiz-Cortez, Automated Diagnosis
of Product-line Configuration Errors in Feature Models, in:Proceedings of the Software
Product Lines Conference (SPLC), Limerick, Ireland, 2008.

[16] H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin,S. Rumble, E. de Lara, M. Brudno,
M. Satyanarayanan, SnowFlock: rapid virtual machine cloning for cloud computing, in:
Proceedings of the fourth ACM european conference on Computer systems, ACM, 2009,
pp. 1–12.

[17] D. Benavides, P. Trinidad, A. Ruiz-Cortés, Automated reasoning on feature models,
in: LNCS, Advanced Information Systems Engineering: 17th International Conference,
CAiSE 2005, Vol. 3520, Springer, 2005, pp. 491–503.

[18] J. White, B. Dougherty, D. Schmidt, Selecting highly optimal architectural feature sets with
Filtered Cartesian Flattening, The Journal of Systems & Software 82 (8) (2009) 1268–1284.

[19] J. White, D. Benavides, B. Dougherty, D. Schmidt, Automated Reasoning for Multi-
step Configuration Problems, in: Proceedings of the Software Product Lines Conference
(SPLC), San Francisco, USA, 2009.

[20] J. White, D. Schmidt, D. Benavides, P. Trinidad, A. Ruiz-Cortés, Automated diagnosis
of product-line configuration errors in feature models, in:Proceedings of the Software
Product Lines Conference (SPLC), Citeseer, 2008, pp. 225–234.

15

