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Abstract

Cloud computing can reduce power consumption by usingalided computational
resources to provision an application’s computationabueses on-demand. Auto-
scaling is an important cloud computing technique that dyinally allocates compu-
tational resources to applications to match their curi@ad$ precisely, thereby remov-
ing resources that would otherwise remain idle and wasteepdlhis paper presents a
model-driven engineering approach to optimizing the caméition, energy consump-
tion, and operating cost of cloud auto-scaling infrastiteto create greener comput-
ing enviornments that reduce emissions resulting fromluyppeis idle resources. The
paper provides four contributions to the study of modelehiconfiguration of cloud
auto-scaling infrastructure by (1) explaining how virtoachine configurations can be
captured in feature models, (2) describing how these marelde transformed into
constraint satisfaction problems (CSPs) for configuradiot energy consumption op-
timization, (3) showing how optimal auto-scaling configioas can be derived from
these CSPs with a constraint solver, and (4) presentingeastady showing the energy
consumption/cost reduction produced by this model-drajgproach.

1 Introduction

Current trends and challenges.By 2011, power consumption of computing data
centers is expected to exceed 100,000,000,00 kilowattskidwh) and generate over
40,568,000 tons of COemissions [1, 2, 3]. Since data centers operate at only 20-
30% utilization, 70-80% of this power consumption is losedo over-provisioned idle
resources, resulting in roughly 29,000,000 tons of unecgsSQ, emissions [1, 2,
3]. Applying new computing paradigms, such as cloud conmguttd increase server
utilization and decrease idle time is therefore paramauatéating greener computing
environments with reduced power consumption and emis$ihris 6, 7, 8].

Cloud computing is a computing paradigm that uses virtedligerver infrastruc-
ture and auto-scaling to provision virtual OS instancesadyically [9]. Rather than
over-provisioning an application’s infrastructure to mpeak load demands, an appli-
cation canauto-scaleby dynamically acquiring and releasing virtual machine (WM
instances as load fluctuates. Auto-scaling increasesrsetiieation and decreases
idle time compared with over-provisioned infrastructyrneswhich superfluous sys-
tem resources remain idle and uneccesarily consume poweamait superfluous C9
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Moreover, by allocating VMs to applications on demand, dimfrastructure users can
pay for servers incrementally rather than investing thgdam-front costs to purchase
new servers, reducing up-front operational costs.

Although cloud computing can help reduce idle resourcesagdtive environem-
ntal impact, running with less instantly available compgtapacity can impact quality-
of-service (QoS) as load fluctuates. For example, a prime-television commercial
advertising a popular new product may cause a ten-fold @serén traffic to the ad-
vertisers website for about 15 minutes. Data centers caexiseéng idle resources to
handle this momentary increase in demand and maintain QaBodYthese additional
resources, the website’s QoS would degrade, resulting imanceptable user experi-
ence. If this commercial only airs twice a week, howevers¢hadditional resources
might be idle during the rest of the week, consuming additigrower without being
utilized.

Devising mecahnisms for reducing power consumption angd@mwental impact
through cloud auto-scaling is hard. Auto-Scaling must emsliat VMs can be pro-
visioned and booted quickly to meet response time requinésres load changes. |If
auto-scaling responds to load fluctuations too slowly apgibns may experience a
period of poor response time awaiting the allocation of &oidal computational re-
sources. One way to mitigate this risk is to maintain an aetming queue containing
prebooted and preconfigured VM instances that can be adldecapidly, as shown in
Figure 1.
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Figure 1: Auto-scaling in a Cloud Infrastructure

When a cloud application requests a new VM configuration fthenauto-scaling
infrastructure, the auto-scaling infrastructure firsewipts to fulfill the request with a
prebooted VM in the queue. For example, if a VM with FedoraeC®y JBoss, and
MySQL is requested, the auto-scaling infrastructure wiiémpt to find a matching
VM in the queue. If no match is found, a new VM must be booted @mifigured to
match the allocation request.

Open problem — determining green settings such as the size and properties
of the auto-scaling queue shared by multiple applicatiotis different VM configura-



tions [10]. The chosen configurations must meet the configureequirements of mul-

tiple applications and reduce power consumption wihtoweeskly impacting QoS.

For example, a web application may request VM instances g as database,
middle-tier Enterprise Java Beans (EJB), or front-end weekiess. Determining how
to capture and reason about the configurations that comibrésauto-scaling queue
is hard due to the large number of configuration options (/EMySQL and SQL

Server databases, Ubuntu Linux and Windows operatingregstand Apache HTTP
and IIS/Asp.Net web hosts) offered by cloud infrastrucfun@viders.

It is even harder to determine the optimal queue size andstgp¥M configura-
tions that will ensure VM allocation requests can be sed/ipaickly enough to meet
a required auto-scaling response time limit. Cost optitiopas challenging because
each configuration placed into the queue can have varying based on the hardware
resources and software licenses it uses. Energy consummpiiomization is also hard
since hardware resources can consume different amountsvefrp

Solution approach — Auto-scaling queue configuration derivation based on
feature models. This paper presents a model-driven engineering (MDE) aggro
called theSmart Cloud Optimization for Resource Configuration HamgifSCORCH).
SCORCH captures VM configuration options for a set of cloyaliaptions and derives
an optimal set of virtual machine configurations for an agtaling queue to provide
three green computing contributions:

e An MDE technique for transforming feature model represgona of cloud VM
configuration options into constraint satisfaction protdg CSPs) [11, 12], where a set
of variables and a set of constraints govern the allowedegadti the variables.

e An MDE technique for analyzing application configuratiomueéements, VM
power consumption, and operating costs to determine whaingbnce configurations
an auto-scaling queue should contain to meet an auto-ga&l#ponse time guarantee
while minimizing power consumption.

e Empirical results from a case study using Amazon’s EC2 clooatiputing in-
frastructure gws. amazon. coni ec2) that shows how SCORCH minimizes power con-
sumption and operating cost while ensuring that auto{sgaksponse time require-
ments are met.

2 Challenges of Configuring Virtual Machines in Cloud Environments

Reducing unecessary idle system resources by applyingsaatmmg queues can
potentially reduce power consumption and resul@@ emissions significantly. QoS
demands, diverse configuration requirements, and othdleobas, however, make it
hard to achieve a greener computing environment. This@eckescribes three key
challenges of capturing VM configuration options and usinig tonfiguration infor-
mation to optimize the setup of an auto-scaling queue tomi@ power consumption.

2.1 Challenge 1: Capturing VM Configuration Options and Goaiats
Cloud computing can yield greener computing by reducinggraensumption. A

cloud application can request VMs with a wide range of comfigan options, such as
type of processor, amount of memory, OS, and installed reidalte, all of which con-
sume different amounts of power. For example, the Amazon &@#2l infrastructure



supports 5 different types of processors, 6 different mgraonfiguration options, and
over 9 different OS types, as well as multiple versions ohe@8 type [13]. The power
consumption of these configurations range from 150 to 616wt hour.

The EC2 configuration options cannot be selected arbirarid must adhere to
myriad configuration rules. For example, a VM running on Faddore 6 OS cannot
run MS SQL Server. Tracking these numerous configuratiomogtand constraints
is hard. Sections 3.1&3.2 describe how SCORCH uses featadelsito alleviate the
complexity of capturing and reasoning about configuratides for VM instances.

2.2 Challenge 2: Selecting VM Configurations to Guarante®#Agaling Speed Re-

quirements _ _
While reducing idle resources results in less power consiempand greener com-

puting enviroments, cloud computing applications mush afeet stringent QoS de-
mands. A key determinant of auto-scaling performance isythes of VM configura-
tions that are kept ready to run. If an application requeatMaconfiguration and an
exact match is available in the auto-scaling queue, theestqgan be fulfilled nearly
instantaneously. If the queue does not have an exact matohyihave a running VM
configuration that can be modified to meet the requested eoafign faster than pro-
visioning and booting a VM from scratch. For example, a carigion may reside in
the queue that has the correct OS but needs to unzip a custtwausopackage, such
as a pre-configured Java Tomcat Web Application Server, faoshared filesystem
onto the VM. Auto-scaling requests can thus be fulfilled viitith exact configuration
matches and subset configurations that can be modified thatreprovisioning a VM
from scratch.

Determining what types of configurations to keep in the ataling queue to en-
sure that VM allocation requests are serviced fast enougheet a hard allocation
time constraint is hard. For one set of applications, the bieategy may be to fill
the queue with a common generic configuration that can betedajpickly to satisfy
requests from each application. For another set of apfitsitit may be faster to fill
the queue with the virtual machine configurations that tddesldbngest to provision
from scratch. Numerous strategies and combinations degjiess are possible, making
it hard to select configurations to fill the queue that will maeto-scaling response
time requirements. Section 3.3 show how SCORCH capturesidonfiguration op-
tions and requirements as cloud configuration feature nspttahsforms these models
into a CSP, and creates constraints to ensure that a maxiespomnse time limit on
auto-scaling is met.

2.3 Challenge 3: Optimizing Queue Size and Configuration§litimize Energy

Consumption and Operating Cost
A further challenge for developers is determining how tofigure the auto-scaling

queue to minimize the energy consumption and costs requamadintain it. The larger
the queue, the greater the energy consumption and opexaistig Moreover, each
individual configuration within the queue varies in energnsumption and cost.For
example, a “small” Amazon EC2 VM instance running a Linwsé&a OS consumes
150W and costs $0.085 per hour while a "Quadruple Extra L'av§kinstance with
Windows consumes 630W and costs $2.88 per hour.



It is hard for developers to manually navigate tradeoffsveen energy consump-
tion, operating costs, and auto-scaling response timeffefreint queue sizes and sets
of VM configurations. Moreover, there are an exponential berof possible queue
sizes and configuration options that complicates deriiegninimal power consump-
tion/operating cost queue configuration that will meet aadaling speed requirements.
Section 3.3 describes how SCORCH uses CSP objective funscsind constraints to
derive a queue configuration that meets minmizes power coptson and operating
cost.

3 The Structure and Functionality of SCORCH

This section describes how SCORCH resolves the challend&sdtion 2 by using
models to capture virtual machine configuration optiondieitly, model transforma-
tions to convert these models into CSPs, and constrainesote derive the optimal
queue size and contained VM configuration options to mingneimergy consumption
and operating cost while meeting auto-scaling responserguirements.
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Figure 2: SCORCH Model-Driven Process

The SCORCH MDE process is shown in Figure 2 and describedavbelo

1. Developers use a SCORGHDbud configuration modeb construct a catalog of
configuration options that are available to VM instances.

2. Each application considered in the auto-scaling queuegunafiion optimization
provides aconfiguration demand mod#iat specifies the configuration for each type
of virtual machine instance the application will requestidg its execution lifecycle.

3. Developers provide eonfiguration adaptation time modilat specifies the time
required to add/remove a feature from a configuration.

4. Developers provide aanergy modethat specifies the power consumption re-
quired to run a VM configuration with each feature presenthiea 8CORCH cloud
configuration model.

5. Developers provide eost modethat specifies the cost to run a VM configuration
with each feature present in the SCORCH cloud configuratiodeh



6. The cloud configuration model, configuration demand modwis, load esti-
mation model are transformed into a CSP and a constraingisidwsed to derive the
optimal auto-scaling queue setup.

The remainder of this section describes the structure andtiinality of each
model defined and used by SCORCH.

3.1 SCORCH Cloud Configuration Models ) .
A key consideration in SCORCH is modeling the catalog of VMfiguration

options. Amazon EC2 offers many different options, suchiaax.vs. Windows oper-
ating systems, SQL Server vs. MySQL databases, and Apache M3. [IS/Asp.Net
webhosts. This model provides developers with a bluepointdnstructing a request
for a VM instance configuration and checking its correctn&bg queue configuration
optimization process also uses this model to ensure thdta@hfigurations are chosen
to fill the queue.

To manage the complexity of representing VM instance conditipn options, SCORCH
usedeature modelfl 2], which describe commonality and variability in a configble

Foft\iv re platform via.an abst]qactiotn calleébatHre Features can de Cllribe both hi_}(‘;rh-
evel functional variations'in the software.g, whether or not the underlying software

can load balance HTTP requests. A feature can also repilieggleimentation-specific
details,e.g, whether or not Ubuntu 9.10 or Fedora is used.

Feature models use a tree structure to define the relatmsbbiween the various
features and encode configuration rules into the mazlgl,a VM configuration can
include only a single operating system, such as Ubuntu &.Fedora. Some features
may require other features to be present to functog, the JBOSS v6 feature cannot
be chosen without also selecting tHgOSS feature.

A configuration of the software platform is defined by a sétecof features from
the feature model. The most basic rule of configuration cbmess is that every se-
lected feature must also have its parent feature selecthib riile also implies that
every correct feature selection must include the root featMMoreover, the feature
selection must adhere to the constraints on the parerd+aidtionships encoded into
the feature model.

Developers use the SCORCH cloud configuration model to sspttee available
configuration options for VM instances as a feature modele @tnfiguration adap-
tion time model’s information is captured as attributeshaf teatures in the SCORCH
cloud configuration model. Each feature can be annotatddamiinteger attribute that
specifies the time in milliseconds to add/remove the givatuie from a configuration.

The energy model and cost model are also captured usingagtsiin the SCORCH
cloud configuration model. Each feature impacting the gneocpnsumption or oper-
ating cost of a configuration is annotated with an energybati that specifies the
energy consumption per hour and cost attribute that spgdHie operating cost per
hour to have a booted VM configuration in the queue with thatuiee. For example,
these attributes can be used to model the cost of the “Smsall™Quadruple Extra
Large” computing node size features of an Amazon EC2 VM caonétjon.

3.2 SCORCH Configuration Demand Models . ) .
Applications are auto-scaled at runtime by dynamicallyuesging and releasing

VM instances. When a new VM instance is requested, the dksoafiguration for



the instance is provided. SCORCH requires each applictdiprovide a model of the
VM instance configurations that it will request over its fifee.

Developers construct SCORCH configuration demand modeltate what VM
configurations an application will request. The configunatiemand models use a
textual domain-specific language to describe each contigureequested as a selec-
tion of features from the SCORCH cloud configuration model. é&xample, Figure 3
shows a valid configuration demand model that includes onecdhfiguration for a
large JBOSS application server and one configuration fottp Server.

LargelB0SSServer {
Ubuntu 9.0:selected;
JBOSS vb:selected;
Processor:selected;
Large:selected;

}

JettyServer {

Ubuntu 9.0:selected;
Jetty v6.1:selected;
}

Figure 3: SCORCH Textual Configuration Demand Model

3.3 Runtime Model Transformation to CSP and Optimization
Using feature models to capture VM configuration optionsvedl the use of con-

straint solvers to select a group of features to optimizelgaabive function. In the
context of SCORCH, the cloud configuration model and conéition demand mod-
els are converted into a CSP where a solution is a valid sevrfigurations for the
VM instances in the auto-scaling queue. The objective fonadf the CSP attempts
to derive a mix of configurations that minimizes the energystonption and cost of
maintaining the queue while ensuring that any hard comtgan the time to fulfill
auto-scaling requests are met.

The conversion of feature selection problems into CSPs ées Bescribed in prior
work [14, 15]. Feature configuration problems are conveiéal CSPs where the
selection state of each feature is represented as a vavidthlelomain {0,1}. The
constraints are designed so that a valid labeling of thegablas yields a valid feature
selection from the feature model.

A CSP for a feature selection problem can be described asipl8:-t

P=<F_Cy>

where:

e F is a set of variables describing the selection state of eaatufe. For each
feature,f; € F, if the feature is selected in the derived configuratiomthe= 1. If the
ith feature is not selected, thén= 0.

e C captures the rules from the feature model as constraintsewariables irf.
For example, if tha'" feature requires th@" feature,C would include a constraint:
(fi=1)=(fj=1).



e yis an optional objective function that should be maximizethmimized by the
derived configuration.

Building a CSP to derive a set of configurations for an autdisg queue uses
a similar methodology. Rather than deriving a single vabdfiguration, however,
SCORCH tries to simultaneously derive both the size of thte-aualing queue and a
configuration for each position in the auto-scaling quedi6eQORCH derives a size
for the queue oK, thereforeK different feature configurations will be derived for the
K VM instances that need to fill the queue.

The CSP for a SCORCH queue configuration optimization psocas be described
formally as the 8-tuple

P=<SQCD,E,LT,My>

, Where:

e Sis the auto-scaling queue size, which represents the nuofilpeebooted VM
instances available in the queue. This variable is deriuédnaatically by SCORCH.

e Qs a set of sets that describes the selection state of eachn¥fdnice config-
uration in the queue. The size Qfis Z if there areZ distinct types of configurations
specified in the configuration demand models. Each set aibias Q; € Q, describes
the selection state of features for one VM instance in thaugud-or each variable,
gij € Qi, if gjj = 1 in a derived configuration, it indicates that thfeature is selected
by thei" VM instance configuration.

e C captures the rules from the feature model as constraintseoudriables in all
setsQ; € Q. For example, if the kth feature requires tfiéfeature C would include a
constraintvQ; € Q, (ak =1)= (g = 1).

e D contains the set of configuration demand models contriboyetthe applica-
tions. Each demand modB| € D represents a complete set of selection states for the
features in the feature model. If thH#& feature is requested by tif8 demand model,
thend;j € Dj,d;ij = 1. The demand models can be augmented with expected load per
configuration, which is a focus of future work.

e E is the cost model that specifies the energy consumptiontiegéom including
the feature in a running VM instance configuration in the eadaling queue. For each
configuratiorD; € D a variableE; € E specifies the energy consumption of that feature.
These values are derived from annotations in the SCORCHidonfiguration model.

e L is the cost model that specifies the cost to include the featua running
VM instance configuration in the auto-scaling queue. FohezmfiguratiorD; € D
a variableL; € L specifies the cost of that feature. These values are dernoed f
annotations in the SCORCH cloud configuration model.

¢ T is the configuration time model that defines how much time &led to add/-
remove a feature from a configuration. The configuration timoglel is expressed as a
set of positive decimal coefficients, where T is the time required to add/remove the
it feature from a configuration. These values are derived flerannotations in the
SCORCH cloud configuration model.

e vy is the cost minimization objective function that is desedlin terms of the
variables inD, Q, andL.

e M is the maximum allowable response time to fulfill a requestlkocate a VM



with any requested configuration from the demand models &pafication.

3.4 Response Time Constraints and CSP Objective Function )
SCORCH defines an objective function to attempt to minimiee ¢ost of main-

taining the auto-scaling queue, given a CSP to derive cordiguns to fill the queue.
Moreover, we can define constraints to ensure that a maxiresponse time bound is
adhered to by the chosen VM queue configuration mix and queeétst is derived.

We describe the expected response tiRig, to fulfill a requestDy from the con-
figuration demand model as:

Rt = min(CTp...CT,, boot(Dy)) Q)

Yaij € Qi, gij =dy; 0(a),
CTi = 2
{3%‘ €Qi, aij! =dyj Y tj([cij —dxjl) (b) @

where:

Rt is the expected response time to fulfill the request.

n is the total number of features in the SCORCH cloud configamahodel

CT; is the expected time to fulfill the request if tii& VM configuration in the
gueue was used to fulfill it.

boot(Dy) is the time to boot a new VM instance to sati€by and not use the
gueue to fulfill it.

The expected response tin@l is equal to the fastest time available to fulfill the
request, which will either be the time to use a VM instancénanqueuéCT; or to boot
a completely new VM instance to fulfill the requésiot(Dy). The time to fulfill the
request is zero (or some known constant time) if a configumadiists in the queue
that exactly matches request (a). The time to fulfill the esjuvith that configuration
is equal to the time needed to modify the configuration to m#te requested config-
urationDy if a given VM configuration is not an exact match (b). For eazhttireg;;
in the configuration that does not match what is requesteddrconfigurationt; is
the time incurred to add/remove the feature. Acrosszlagstinct types of configura-
tion requests specified in the configuration demand modelsandherefore limit the
maximum allowable response time with the constraint:

With the maximum response time constraint in place, the SC®Rodel-to-CSP
transformation process then defines the objective fun¢tioninimize. For each VM
instance configuratior®;, in the queue we define its energy consumption as:

n

Energy(Qi) = ZOQU E;

J

. The overall energy consumption minimization objectivediion,¢, is defined as the
minimization of the variabl&nergy where:

€ = Energy= Energy Qo) + Energy(Q1) + - - - + Energy Q)



Similarly, the cost of each VM instance is defined as:
n
Cost(Qi) = aijL;
2

. The overall cost minimization objective function s defined as the minimization of
the variableCost where:

y=Cost= Cosf{Qq) + Cost{Q1) + - - - + Cost(Qk)

The final piece of the CSP is defining the constraints attathdde queue size
variableS. We defineS as the number of virtual machine instance configuratiors tha
have at least one feature selected:

Vgi € Qi, gij=0 0,
S:{q” Qi, Gij

e (4)
dgj €Qi, ;=1 1

z
s

Once the CSP is constructed, a standard constraint solr,as the Java Choco
constraint solverdhoco. sour cef or ge. net), can be used to derive a solution. Sec-
tion 4 presents empirical results from applying SCORCH wikia Choco to a case
study of an ecommerce application running on Amazon’s E@@dctomputing infras-
tructure.

4 Empirical Results

This section presents a comparison of SCORCH with two othpraaches for
provisioning VMs to ensure that load fluctuations can be nittout degradation of
QoS. We compare the energy efficiency and cost effectivesfesach approach when
provisioning an infrastructure that supports a set of ecenemapplications. We se-
lected ecommerce applications due to the high fluctuatiomsrkload that occur due
to the varying seasonal shopping habits of users. To contipaenergy efficiency and
cost effectiveness of these approaches, we chose thegnwdel and available VM
instance types associated with Amazon EC2.

We investigated three-tiered ecommerce applicationsistims of web front end,
middleware, and database layers. The applications rafjtbadifferent distinct VM
configurations. For example, one VM required JBOSS, MySdl, I65/Asp.Net while
another required Tomcat, HSQL, and Apache HTTP. Theseagijgns also utilize a
variety of computing instance types from EC2, such as higimory, high-CPU, and
standard instances.

To model the traffic fluctuations of ecommerce sites acclyrate extracted traffic
information from Alexa {mw. al exa. con) for newegg.comnewegg. com), which is
an extremely popular online retailer. Traffic data for thesarler showed a spike of
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Figure 4: Monthly Power Consumption & Cost

three times the normal traffic during the November-Decerhbéday season. During
this period of high load, the site required 54 VM instancesinyg the pricing model
provided by Amazon EC2, each server requires 515W of powercasts $1.44 an
hour to support the heightened demaaws( amazon. coni econoni cs).

4.1 Experiment: VM Provisioning Techniques
Static provisioning. The first approach provisions a computing infrastructqregped

to handle worst-case demand at all times. In this approdick¥ aervers run continu-

ously to maintain response time. This technique is simdaramputing environments
that permit no auto-scaling. Since the infrastructure damys support the worst-case
load, we refer to this technique afatic provisioning

Non-optimized auto-scaling queue The second approach augments the auto-
scaling capabilities of a cloud computing environment vathauto-scaling queue. In
this approach, auto-scaling is used to adapt the numbesaofirees to meet the current
load that the application is experiencing. Since additicesources can be allocated as
demand increases, we need not run all 54 servers continudnstiead, an auto-scaling
queue with a VM instance for each of ten different applicatonfigurations must be
allocated on demand. We refer to this technique@s-optimized auto-scaling queue
since the auto-scaling queue is not optimized.

SCORCH. The third approach uses SCORCH to minimize the number of VM
instances needed in the auto-scaling queue, while enstiragesponse time is met.
By optimizing the auto-scaling queue with SCORCH, the sik¢he queue can be
reduced by 80% to two VM instances.

4.2 Power Consumption & Cost Comparison of Techniques
The maximum load for the 6 month period occurred in Novembérraquired 54

VM instances to support the increased demand, decreasi@ $ervers in december
and finally 18 servers for the final four months. The monthlgrgg consumption and
operational costs of applying each response time minimizaéchnique can be seen
in Figure 4a and 4b respectively.

Since the maximum demand of the ecommerce applicationsreggb4 VM in-
stances, the static provisioning technique consumed ttst poover and was the most
expensive, with 54 VM instances prebooted and run contigilyoirhe non-optimized
auto-scaling queue only required ten pre-booted VM insgtarand therefore reduced
power consumption and cost. Applying SCORCH yielded thetreasrgy efficient
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and lowest cost infrastructure by requiring only two VM eustes in the auto-scaling
queue.

Figure ?? compares the total power consumption and operating cogppfiag
each of the VM provisioning techniques for a six month peridthe non-optimized
auto-scaling queue and SCORCH techniques reduced the paguerements and price
of utilizing an auto-scaling queue to maintain response fimcomparison to the static
provisioning technique. Figure 6a compares the savingsinfja non-optimized auto-
scaling queue versus an auto-scaling queue generated@@RSH. While both tech-
niques reduced cost by more than 35%, deriving an autorgrglieue configuration
with SCORCH yielded a 50% reduction of cost compared toziigj the static pro-
visioning technique. This result reduced costs by over I@bfor supporting the
ecommerce applications for 6 months.

More importantly than reducing cost, however, applying Q8 also reduced
CO;, emissions by 50%, as shown in Figure 6b. According to redendies, a power
plant using pulverized coal as its power source emits 1. ththgs of CQ per each
kilowatt hour of power produced [2]. Not using an auto-soglijueue therefore results
in an emission of 208.5 tons of GQer year, as shown in Figure 6b. Applying the
SCORCH optimized auto-scaling queue, however, cuts eransdly 50% resulting in
an emission reduction of 104.25 tons per year.
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5 Related Work

This section compares SCORCH with related work.

VM forking handles increased workloads by replicating VM instancee apw
hosts in negligible time, while maintaining the configunatioptions and state of the
original VM instance. Cavilla et al. [16] describe SnowRpwhich uses virtual ma-
chine forking to generate replicas that run on hundreds leérohosts in a less than
a second. This replication method maintains both the cordtgn and state of the
cloned machine. Since SnowFlock was designed to instantiglicas on multiple
physical machines, it is ideal for handling increased waakl in a cloud computing
environment where large amounts of additional hardwareagable.

SnowFlock is effective for cloning VM instances so that tlerinstances have the
same configuration and state of the original instance. Asulttéhe configuration and
boot time of a VM instance replica can be almost entirely Isged. This technique,
however, requires that at least a single virtual machin@nte matching the configu-
ration requirements of the requesting application is badite contrast, SCORCH uses
prebooted VM instances that are more likely to match the gardition requirements
of arriving applications.

Automated feature derivation. To maintain the service-level agreements provided
by cloud computing environments, it is critical that teajues for deriving VM in-
stance configurations are automated since manual tectnggunmot support the dy-
namic scalability that makes cloud computing environmextisactive. Many tech-
niques [17, 18, 19, 20] exist to automatically derive featsets from feature models.
These techniques convert feature models to CSPs that caiMee sising commercial
CSP solvers. By representing the configuration options of MMances as feature
models, these techniques can be applied to yield featuselsst meet the configura-
tion requirements of an application. Existing techniquesyever, focus on meeting
configuration requirements of one application at a time.s€ttechniques could there-
fore be effective for determining an exact configurationehdor a single application.
In contrast, SCORCH analyzes CSP representations of &atodels to determine
feature sets that satisfy some or all of feature requiresn&iultiple applications.

6 Concluding Remarks

Auto-scaling cloud computing environments helps minimizgponse time during
periods of high demand, while reducing cost during periddgbt demand. The time
to boot and configure additional VM instances to supportiappbns during periods of
high demand, however, can negatively impact response fitnis.paper describes how
the Smart Cloud Optimization of Resource Configuration Hargd{(BCORCH) MDE
tool uses feature models to (1) represent the configuraégoirements of multiple
software applications and the power consumption/operaticosts of utilizing differ-
ent VM configurations, (2) transform these representaiimiasCSP problems, and (3)
analyze them to determine a set of VM instances that maxsrazéo-scaling queue
hit rate. These VM instances are then placed in an autorgpglieue so that response
time requirements are met while minimizing power consuprpéind operational cost.
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The following are lessons learned from using SCORCH to canshuto-scaling
queues that create greener computing enviornments by irgdamissions resulting
from superfluous idle resources:

e Auto-scaling queue optimization effects power consumptio and operating
cost.Using an optimized auto-scaling queue greatly reducestaépgower consump-
tion and operational cost compared to using a staticallyipimned queue or non-
optimized auto-scaling queue. SCORCH reduced power coptsoimand operating
cost by 50% or better.

e Dynamic pricing options should be investigated.Cloud infrastructures may
change the price of procuring VM instances based on curneradl cloud demand at
a given moment. We are therefore extending SCORCH to incatp@ monitoring
system that considers such price drops when appropriate.

e Predictive load analysis should be integrated. The workload of a demand
model can effect application resource requirements dwdbti We are therefore ex-
tending SCORCH to use predictive load analysis so autorgcglieues can cater to
specific application workload characteristics.

SCORCH is part of the ASCENT Design Studio and is availablepen-soure
format fromcode. googl e. conm p/ ascent - desi gn- st udi o.
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