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Abstract. This paper introduces a subset of mobile wireless sensor net-
works, called smartphone sensor networks, where large numbers of smart-
phone devices cooperate to perform sensing tasks. While these emerging
networks show high potential, little work has been done on design-time
verification and validation to ensure that a designed system will meet the
specified goals. This paper introduces Empower, a simulation environ-
ment for smartphone sensor networks that simulates smartphone-specific
properties of a sensor network, such as data collection policies, and out-
puts high-level system metrics, such as coverage of the environment be-
ing monitored. Experimentation is used to demonstrate that Empower’s
ability to derive system design parameters, such as the minimum number
of smartphones required for proper operation, or the most appropriate
data collection policy for the production environment.
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1 Introduction

From 2009 to 2010, smartphones sales increased by 96% worldwide [1]. The
resultant rise in the number of available smartphones has generated interest
in the area of smartphone sensor networks, where consumer-owned smartphone
devices are utilized as sensing platforms, and sensing results are aggregated
into a coherent final product, such as a map of noise pollution in an urban
environment. The primary motivations for using smartphones as sensor network
nodes include: available sensing hardware such as GPS chipsets and modern
cameras, significant local storage and processing power, access to a network
infrastructure, end-user maintenance and upkeep, frequent battery recharging,
and ubiquitous deployment platforms for dispersing applications to end-users [2].
Moreover, the natural distribution and mobility of end-users provides an ideal
environment for data collection.

Numerous smartphone sensor networks have been developed, such as applica-
tions to track and analyze CO2 emissions [3], detect traffic accidents and provide
situational awareness services to first responders [4, 5], measure traffic [6], and
monitor cardiac patients [7]. Additionally, citizens living in the Gulf Coast region
have been using using smartphone sensors, such as cameras and GPS, to enter
data on the ecological impact of the Gulf Oil spill, thus providing scientists with
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a wealth of field data on this disaster that can then be used to generate impact
analysis and recommendations [8]. A key challenge, however, is that verification
and validation of smartphone-powered sensor networks is hard.
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Fig. 1. Architecture of a Smartphone-based Cellular Coverage Mapping Application

Open Problem ⇒ Emergent and context-dependent aspects of

smartphones make verification and validation challenging.

Because smartphone sensor networks rely on end-user smartphones, then in-
troduce challenges that are not present in a more traditional wireless sensor net-
work model, including complex system properties such as system adoption rate
and cellular network infrastructure, context-dependent aspects such as unan-
ticipated smartphone reconfiguration, and emergent system properties. Due to
these issues, it is tough for smartphone sensor network developers to have con-
fidence that the chosen system architecture, protocols, and policies will work
as expected and desired in the environment being monitored. Additionally, the
costly nature of changing software system designs late in the development cycle
motivates making good system design decisions as early as possible.

Verification and validation of systems early in the development is critical
to reducing the overall system cost, and critical to ensuring successful creation
of a smartphone sensor network that will properly monitor the environment of
interest. Typical verification and validation of a sensor network (SN) is done
either through formal methods, using tools such as Real-Time Maude [9], or
model checking, using tools such as SPIN [10]. Neither of these approaches are
feasible for verifying and validating smartphone sensor networks because they
fail to account for the context-dependent aspects of smartphones, such as move-
ment of the smartphone by its end-user. Moreover, wireless sensor networks have
primarily been investigated in the context of small, very low-power sensors com-
municating through an ad hoc network, usually not interacting with an end-user,
and with very limited computing resources.

Solution Approach ⇒ Simulation of smartphone data collection sys-

tems to enable design-time verification and validation. To address the
need to verify and validate smartphone sensor networks, we present a platform



Smartphone Sensor Networks 3

for the Evaluation of M obile PhOne W ireless Environmental data Reporting,
or ‘Empower’. Empower allows design time verification and validation of smart-
phone sensor networks, ensuring the system meets specifications and fulfills the
posed systems goals, taking into account complex system parameters and poli-
cies, such as rate of change in the number of participating smartphones, run-time
smartphone context changes, and data collection/reporting policies. In Section 5
we present empirical data showing Empower can also be used to identify emer-
gent properties smartphone sensor networks.

This paper provides the following contributions to the study of smartphone
sensor networks:

– we introduce and describe Empower, which is a simulation environment for
smartphone sensor networks,

– we describe Empower’s formal simulation model,
– and we present emperical data from experiments from using Empower to verify
and validate a smartphone-based sensor network for dynamically mapping
cellular coverage

The remainder of this paper is organized as follows: Section 2 describes a
continuous map of cellular network coverage, which we use as a motivating ex-
ample throughout the paper; Section 3 discusses the challenges that are faced
when attempting to verify the effectiveness of a designed smartphone data col-
lection system; Section 4 covers the Empower framework; Section 5 presents
empirical results from analyzing multiple designed smartphone data collection
systems and demonstrates Empower identifying system failures and bottlenecks;
and Section 7 presents concluding remarks and lessons learned.

2 Motivating Example: Continuous, Accurate

Measurement of Cellular Network Coverage

In order to motivate the challenges associated with verifying and validating
smartphone sensor networks, we present a motivating smartphone application
for dynamically mapping cellular network coverage using end-user smartphones.
In order to create a smartphone sensor network that accurately monitors cellular
network coverage and conforms rapidly to any changes in coverage, there are a
number of needed system components, which we show in Figure 1.

Fig. 2. Empower Visualization of Real
Cellular Network Coverage Map

Fig. 3. Empower Visualization of Gen-
erated Cellular Network Coverage Map



4 Hamilton Turner et al.

First, a smartphone application must be programmed and deployed to nu-
merous smartphones, which are preferably well geographically distributed. As
smartphones are moved geographically, they use the built-in cellular chipsets to
sample the cellular coverage in their region. Figure 2 shows Empower visualizing
the simulated real cellular network coverage map. When a smartphone’s inter-
net connection is enabled, these coverage readings, along with meta information
describing the location and time of each reading, the network chipset on the
smartphone, and the particular operating system being run, can be transmitted
to a centralized cloud-based data aggregation server. As readings are entered,
data aggregation algorithms are used to combine the data into a smaller format
that can then be represented as a coverage map. Figure 3 shows a generated
cellular coverage map. System policies can be used to control various aspects of
the process, such as the rate of data collection, the speed at which data becomes
outdated, or the method used to aggregate the incoming data.

3 Challenges of Verifying and Validating Smartphone

Wireless Sensor Networks

Smartphone wireless sensor networks have a large number of potential applica-
tions, such as real-time traffic monitoring, accurate weather monitoring, or rapid
network analysis after a disaster. Unfortunately, it is difficult to ensure that a
set of smartphone data collection policies will meet the desired objectives, as the
success of these systems is heavily dependent on emergent properties of end-user
smartphones. For example, the number, distribution, and movement of smart-
phones influences coverage, the properties of the network being used to transmit
data impact timeliness of data reporting, and the change in the environment
heavily impacts the rate at which data ages. When developing system policies
to deal with these and other issues, developers face a number of challenges.

3.1 Challenge 1: Unpredictable smartphone availability makes it

hard to estimate the minimum number of nodes required to ensure

system goals are reached

The availability of nodes e.g. smartphones in a smartphone sensor network is
highly unpredictable, as smartphones may appear and disappear rapidly from
the network in a complex fashion dictated by their end-users, and the overall
trend in system adoption can follow a number of patterns. While the number of
smartphones participating in a smartphone wireless sensor network clearly has
an impact on the probability of system success, it is tough to know how signifi-
cant the impact is. Additionally, it is hard to know the number of smartphones
required, on average, for the system to meet a specific goal, such as acquiring
80% coverage of the environment.

For example, a key verification and validation challenge of building a smart-
phone WSN to dynamically map a cellular network is determining how many
smartphones are needed on average to generate a coverage map that is 80%
accurate. Given the number of complex factors included in determining the ex-
act number of smartphones available to participate in generating a map of the
cellular network, such as population measurements and adoption studies, it is
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critical that system designers have a concrete number for the minimum den-
sity of participating smartphones required in order to assess the risk of system
failure.

3.2 Challenge 2: The complex and emergent properties of

smartphone based opportunistic sensing systems make determining

the impact of various policy decisions difficult

In order to verify and validate a smartphone powered WSN, it is important to
understand the impact of system policies, such as data collection controls, on
system metrics, such as the accuracy of incoming data or the utilization of system
resources. The complex relationship between system policies, system parameters,
and emergent properties makes it difficult to know what system policies should
be used in which situations, or even which policies can be used without violating
system constraints.

For example, if a system to map cellular network coverage was powered by
postal service workers carrying smartphones, a data collection and reporting pol-
icy that took too many superfluous readings and wasted battery power could be
expensive or cause premature battery exhaustion during the workday. Further, if
the data collection policy only collects a limited set of measurements each day, a
policy that chooses optimal locations for data readings may have a direct impact
on the system success or failure. However, verifying and validating that the loca-
tion selection method is efficient and selects the appropriate data samples across
thousands of phones is hard. Section 4.3 describes how Empower aids validating
these design decisions by allowing system designers to plug and simulate custom
data collection and reporting policies across thousands of smartphones.

4 Empower: A Simulation Environment for Verifying and

Validating Smartphone Sensor Networks

To address the need to verify and validate smartphone sensor networks, we
present Empower, a simulation environment for the Evaluation of Mobile PhOne
Wireless Environmental data Reporting. As shown in Figure 1, smartphone pow-
ered opportunistic sensing systems contain multiple configurable components.
Empower can be used to model various aspects of these systems, including: the
smartphones in an environment, the network being used to transmit information
between the data collection server and the clients, various system-level policies
such as data collection and reporting policies, the algorithms used for data eval-
uation, system-level metrics, and system goals.

Figure 4 shows an overview of the Empower application, including the visu-
alization that Empower uses to represent a given environment, the formal model
that is used to back the executing simulation, the output (which si both shown
on-screen and logged), as well as small visualizations for each smartphone object.
In section 4.2 we discuss how Empower can be used by developers to derive criti-
cal system design parameters, focusing on the minimum number of smartphones
required to achieve system goals as a design parameter of interest. In section 4.3,
we discuss Empower’s approach to system-level policies, such as data collection
frequency and data reporting decisions, and show how Empower can be used to
identify the most appropriate policies for various operational environments.
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Fig. 4. Overview of Empower Software
4.1 Empower Formal Simulation Model

Empower uses a simulation engine based on a formal model for smartphone-
based opportunistic sensing. The model is based on the 8-tuple:

M =< E,D,Ve0, V d0, δE(Vei), δD(V di), O(V ei, V dij),M(V ei, ωi) > (1)

|E| = |V ei| (2)

∀Vdij ∈ V di, |Vdij| = |D| (3)

δE(Vei) = Vei+1 (4)

δE(Vdi) = Vdi+1 (5)

O(V ei, V dij) = ωij (6)

M(V ei, ωi) = Meti (7)

where:

– E is the set of parameters or variables that describe the environment that the
smartphones are operating in.

– D is the set of parameters that describe each smartphone in the simulation.
– V di is a set of vectors containing the parameter values describing the state of
each smartphone at time i.

– Vdij ∈ V di is a vector describing the state of the jth smartphone at time i.
– δE(V di) is a function that maps the state of every smartphone at time i, V di,
to their new states at time i + 1, V di+1.

– δD(Vei) is a function that maps the state of the environment at time i, Vei,
to its new state at time i+ 1, Vei+1.

– ω is a set of metric outputs, such as the overall coverage and accuracy of the
perceived network, at time i.

– O(V ei, V dij) is the smartphone sensor sampling function which determines
the sensor values, ωij, read by the jth smartphone at time i. The sensor values
that are produced are a function of the state of the smartphone, V dij , and
the state of the environment, V ei.

– ωi is the set of all smartphone sensor value vectors at time i.
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– M(V ei, ωi) is a function that, based on the current state of the environment
and set of sensor outputs from all smartphones, calculates the values, Meti,
for the verification and validation metrics of interest. For example, the overall
accuracy of the perceived cellular signal strength map versus the actual cellular
signal strength map could be an output metric.

The core of the formal simulation model are the functions δE(V di) and
δD(Vei). These functions evolve the states of the smartphones and the envi-
ronment over the course of the simulation. Empower includes implementations
of the functions that are optimized for modeling environments that change based
on geographic coordinates and the movement of smartphones through those ar-
eas. Both functions can be customized or replaced for simulations that do not
focus on sensor data collection that is tied to the geolocation of a smartphone.
Section 4.2 discusses the parameters and operation of these functions.

In order to verify and validate a set of data collection and reporting poli-
cies in a specific smartphone scenario, developers must be able to incorporate
their application-specific policies into the Empower formal model. The func-
tion O(V ei, V dij) is designed to be configured by the user to accurately model
the data collection and reporting policies of the application. At each time step,
O(V ei, V dij) determines what data is sampled, based on the sampling policy of
the application. Moreover, O(V ei, V dij) also determines which of these samples
are actually reported to the aggregation system by the smartphone by limiting
the values that are output into ωij . For example, although the data collection
policy may determine that a particular sensor is sampled at a given time stamp,
O(V ei, V dij) may not output that sensor value until a later time step to simu-
late buffering of data on the phone. The base implementation of O(V ei, V dij) is
described in Section 4.3.

The final critical aspect of the formal model is the set of metrics that are
calculated by Empower and used for verification and validation. The function
M(V ei, ωi) can be adjusted to calculate any metrics that are a function of the
environment state, smartphone state, or sensor values.

4.2 Solution 1: Using simulation of smartphones to derive system

design parameters

Section 3.1 introduces the system design parameter of minimum required number
of nodes. In order to assist system designers in identifying the minimum number
of smartphones required to ensure that system goals are met, Empower allows
designers to vary the minimum number phones in a smartphone sensor network,
and then simulate the system to determine the probability of system goals being
reached. By varying simulation parameters, developers can identify a baseline
for the minimum number of smartphones required to achieve the system goals
that is specific to the future production environment of their smartphone sensor
network, such as a highly-dynamic environment with a low density of highly
mobile smartphones that frequently input data readings.

Empower allows design time control of the following smartphone properties:
• Initial number of smartphones in the system. System designers specify

this as the a constant number. For some situations, such as a mandatory adoption
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policy, this number can be significantly high. For other systems, the rate of
adoption (discussed below) is more important.

• Rate of Adoption determines how many smartphones are participating
in the opportunistic system at various times. This is controlled by a designer-
specified function that accepts time, which is tracked by the simulation envi-
ronment and used to relate the simulation results to a real-world timescale, and
returns the approximate number of smartphones that should currently be inside
of the data collection system. By implementing the rate of adoption function, a
designer can arbitrarily control the number of smartphones in the system at any
given time.

• Smartphone Properties and Settings, such as smartphone location
or network connectivity enabled versus disabled, can be specified by the sys-
tem designer using high-level functions. Empower controls configuring individ-
ual smartphone objects, ensuring that overall distributions match the desired
settings. For example, a developer can specify that 60% of the smartphones in a
network should initially have their GPS chip enabled. Designers can control each
smartphone property by specifying a function that accepts time as a parameter
and returns the appropriate distribution of that property at the given time.

• Frequency and Magnitude of Smartphone Movement can be con-
trolled via developer-specified functions. Developers can input high-level values
specifying how frequently smartphones move during the simulation execution,
and how significant each move is in terms of meters travelled per movement. This
is a fairly simple model of movement, and the authors are actively attempting
to build a more flexible movement function that would allow integration of re-
search on human movement patterns, with a goal of allowing system developers
to simply select a pre-defined movement pattern which has been vetted by prior
research.

By testing numerous property configurations, system designers can under-
stand which properties are most critical to data collection and reporting policy
success and take steps to ensure that those properties are met. For example,
Empower can allow a system designer to pinpoint the minimal number and di-
versity of smartphones required for the system to achieve the metrics of interest
by modifying these configuration parameters and executing the simulation. This
information is quite valuable for the successful deployment of such a system.

4.3 Solution 2: Exposing policy decisions as a configurable

simulation property

As Section 3.2 outlines, the complex parameters and emergent properties of
a smartphone-powered opportunistic sensing system make it difficult to under-
stand the effects of system-level policy decisions. To address this issue, Empower
allows various system-level policies to be configured, both at the beginning of
the simulation and during the simulation execution. This enables system design-
ers to verify that their chosen policies will improve metrics of interest under
the conditions they believe most likely to occur in the operational environment.
By testing these different policies with various parameter combinations, system
designers are able to determine the most optimal policy for different operational
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environments. Moreover, it is possible to identify various emergent properties
and understand the impact of those properties on system metrics.

Empower currently allows two system-level policies to be specified:
• A Data Collection Policy for the smartphones in the system can be spec-

ified. This policy determines which smartphones attempt to collect data, based
off the properties of each smartphone. In the experiments outlined in Section 5,
we compare a data collection policy that favors highly-mobile smartphones for
data collection over less mobile phones to a mobility-independent data collec-
tion policy. System designers can specify the data collection policy by creating
a function which accepts as input the properties of a smartphone (current loca-
tion, available sensors, mobility frequency and magnitude) and returns a boolean
value indicating if that smartphone should attempt to collect data.

• A Data Reporting Policy determines how smartphones report data
back to the central server. Interesting issues that this policy aims to address
are the limited network connectivity on smartphone platforms (both in terms of
network availability and network throughput), the rate at which data becomes
useless after it has been collected, and the amount of available persistent storage
on individual smartphones. System designers can specify a function that receives
the amount of available storage, the current network connectivity, and all other
smartphone properties. Based off of these properties, the function can return
that data should be discarded, cached, or sent to the data collection server.

5 Results

In this section we present results from experiments performed using Empower
that evaluate the impact of data collection policy decisions in the smartphone-
based cellular network mapping example from Section 2, such as data collection
policy, on overall system properties such as accuracy and wastefulness. Addi-
tionally, we perform experiments to derive system design parameters, such as
the minimum number of smartphones required to achieve system goals. These
results show that Empower can be used to verify the design of a smartphone
sensor network by ensuring that system goals are met. Moreover, these results
show that Empower can be used to determine critical system design parameters.

5.1 Experimental Platform

These experiments were performed on a 2.66 GHz Intel Core i7 machine with
4 GB of 1067 Mhz DD3 ram, running the Mac OS X 10.6.6 operating system.
Empower is written with Java, and the Eclipse IDE was used to both aid devel-
opment and to run the simulations.

5.2 Experiment 1: Measuring the Combined Impact of Smartphone

Quantities and Data Collection Policy Decisions on System Accuracy

Sections 3.1 and 3.2 discuss the challenges that arise due to unpredictable smart-
phone counts and system policy decisions. In particular, it is tough for a system
developer to determine the minimum number of smartphones required to en-
sure system goals are met. Additionally, it is tough to determine the effect of
system policies due to the complex nature of the system properties and the po-
tential for emergent properties. In order to measure the effect of system policy
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decisions, while also considering system properties, we simulate multiple system
policies in conjunction with multiple combinations of system properties of en-
vironment topology and smartphone quantities. The simulated policy for each
iteration is one of two possible data collection policies, where the first policy is
a constant data collection policy in which smartphones are taking readings as
rapidly as possible, and the second is a context-aware policy where more mobile
smartphones collect data more frequently.

Hypothesis: A Constant Data Collection Policy Will Result in Min-

imum 20% Higher Accuracy For all System Property Permutations.

We expect that the constant data collection policy, given the much higher num-
ber of inputs, would yield significantly higher accuracy. Additionally, we believe
our results will allow a clear determination of the minimum number of smart-
phones required to a system accuracy of 80%.

Experiment 1 Results. Figure 5 shows, for a static environment and var-
ious smartphone counts, the accuracy over time for each of the two chosen data
collection policies. Figure 6 shows, for a dynamic environment and various smart-
phone counts, the accuracy over time achieved by the two data collection policies.

Fig. 5. Measuring the effect of smart-
phone count on the accuracy in static
environments
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Fig. 6. Measuring the effect of smart-
phone count on the accuracy in a dy-
namic environment

Figure 6 shows multiple dips in accuracy, which we identified as being the
times at which we changed the real environment, and therefore the current per-
ceived environment is incorrect. The magnitude of these dips noticeably de-
creases over time, which is discussed in Section 5.4. As expected, the constant
data collection policy does result in a small, but notable, increase in accuracy for
both types of environments. However, the acceptable performance of the context-
aware data collection policy was unexpected. The context-aware system policy
did not result in a significant loss in accuracy, indicating that our hypothesis
was incorrect. However, it is easily discernible, for each type of represented envi-
ronment, the minimum number of smartphones required in order to ensure that
80% accuracy is achieved. For both of the environments tested, independently
of the type of data collection policy, 80% accuracy cannot be achieved within
1460 simulation hours without a minimum of 900-1000 smartphones.
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5.3 Experiment 2: Determining the Wastefulness of Various Data

Collection Policies.

Given that Experiment 1 has shown that a context-aware data collection pol-
icy is acceptable under some circumstances, the next logical experiment was to
attempt to determine, for a given circumstance, if a context-aware policy was ac-
ceptable. Experiment 1 has already shown data on the slight increase in accuracy
that a constant data collection policy results in, and therefore we choose to mea-
sure the wastefulness of each of the policies. In order to do this, we counted the
number of data readings that resulted in absolutely no change in the accuracy
of the system, and accumulated those numbers over time.

Hypothesis: Constant Data Collection Is Accurate But Wasteful.

Our hypothesis for this experiment is that a constant data collection policy e.g.
having each smartphone constantly collect data would be both accurate, but
also notably wasteful of system resources.

Experiment 2 Results. To simplify the output, we realized that the con-
stant data collection policy almost always has more wasted readings than the
context-aware policy, and subtracted the number of wasted readings in the con-
stant data collection policy from the number of wasted readings under the same
property combination using the context-aware data collection policy. Each se-
ries shown in Figure ?? therefore represents the difference between the constant
data collection policy and the context-aware data collection policy. The six series
result from the three options for smartphone counts (200, 500, 1000) combined
with the two options for environment topology (static, dynamic).

Fig. 7. The number of wasted readings for constant versus mobility-based data collec-
tion

As expected, the constant data collection policy resulted in higher number
of wasted readings. Interesting, some extra analysis shows that the difference
in the number of wasted readings per smartphone seems to converge upon two
extra wasted readings per day when using the constant data collection policy.
However, more experimentation is likely needed before this can be trusted.

5.4 Analysis of Results

The experimental data provided both expected and unexpected results. For Ex-
periment 1, we were able to determine the minimum number of smartphones
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required to ensure that system goals were met for each operational environment
we tested. However, our experimental hypothesis was ultimately proved incor-
rect, as the context-aware data collection policy resulted in much higher accuracy
than was expected. In Experiment 2, we were able to show relative wastefulness
of a constant data collection policy versus a context aware data collection policy.

One interesting result was the unexpected significance of our metric imple-
mentations. For example, transitioning from ’zero’ knowledge to the first data
collection for a region made it difficult to approximate the accuracy of the over-
all simulation. In our experiments, we chose to count regions where we knew no
information as the absolute worst possible values (e.g. the values farthest from
the real network). This in turn had significant implications - the effect of an
unknown region on overall accuracy was very bad, and therefore coverage had
a significant relation to accuracy. Essentially, all values that were input regard-
ing a region, no matter how incorrect, were likely to be better than the worst
possible value. This effect was determined to be responsible for the reduction in
magnitude of the dips shown in Figure 6 as the simulation progressed.

6 Related Work

This section compares Empower with related research from two key areas. First,
significant research has been performed in the area of mobile sensor networks.
Second, prior research in opportunistic sensing discusses some of the issues
present with this paradigm.

Mobile wireless sensor networks. While smartphone sensor networks
have many differences from conventional mobile wireless sensor networks, such
as a reduced need for ad hoc networking, some similarities do exist. Much mobile
wireless sensor network research focuses on methods for networking and power
reduction in mobile ad hoc networks. For example, Jain et al. show that by
exploiting mobile nodes as intermediate data carriers it is possible to significantly
reduce the amount of power required to transmit information between remote
sensors and base stations [11]. However, smartphone sensor network nodes can
be assumed to have fairly regular direct connection to the Internet, and are
regularly recharged.

Mainwaring et al. explores building a wireless sensor network to perform
habitat monitoring, because ”the connection with it’s immediate physical envi-
ronment allows each sensor to provide localized measurements, [...] integration
of local processing and storage allows nodes to perform complex filtering, [...]
and ability to communicate allows information to be retrieved and nodes to be
retasked in the field. [12]” However, methods of system-level verification and val-
idation are not addressed, and there are no guarantees that such as system can
meet its described goals. Most verification and validation research for wireless
sensor networks has been done in the context of individual nodes, and little work
has been done in full-system verification and validation.

Opportunistic Sensing. Research in opportunistic sensing has been in-
creasing in popularity as sensors rise in availability. However, much of this re-
search has been preliminary, and has not had a focus on the overall success of
the opportunistic network. Lilien et al. describe a framework standard, intended
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to allow components to be added and removed from any opportunistic network
during the system production [13]. This may be a promising future approach,
but in our research we have simply allowed mobile applications and previously-
established standards, such as Hyper text transport protocol, to manage the
interactions between opportunistic sensing components. Eisenman et al. discuss
techniques for implementing intelligent network in a network largely consisting
of mobile nodes [14]. Our research focuses on smartphone systems, which typi-
cally have an available network connection. However, in disaster scenarios this
ad hoc networking would become invaluable, and therefore Empower allows the
network components of the simulation to be handled by third party network
driver software. This allows other researchers to integrate the work done with
Empower and work being performed in the area of ad hoc networks.

7 Concluding Remarks & Lessons Learned

In this paper we discussed the emerging importance of smartphone-based data
collection systems. We described the current problems with building these sys-
tems, which largely arise because the properties of these systems are highly
emergent. This makes verification and validation of these systems at design time
quite difficult.

In order to address this issue, we developed a simulation environment titles
Empower that allows smartphone based data collection systems to be simulated.
This simulation allows smartphone-specific system properties, such as data col-
lection policies and smartphone counts, to be specified, and provides system-level
metrics that can be used to identify if the system achieved the goals of inter-
est. By simulating the system with different properties, system designers can
have informed opinions on the effectiveness of their system during the produc-
tion phase. From our research on simulating smartphone sensor network data
collection systems, we learned the following important lessons:

1. Smartphone-based Data Collection Systems have Very High Po-

tential. Through our research, we were able to realize that smartphone-
based data collection systems, when properly focused and directed, can have
an enormous impact with a very small user base. While we have only per-
formed initial research on quantifying these values, further work in this area
is likely to be very promising.

2. Calculation of Metrics for Data Collection Systems is Hard. In our
research the environments were divided into discrete regions, enabling us to
perform system metrics much more simply than if we had truly continuous
environments. This had significant impacts on may parts of the system, such
as inputting data readings, speed of execution, and accuracy of calculations.
In future work we plan to investigate continuous environments in order to
address this gap.

Empower and data from the experiments described in this paper are available
in opensource form from https://github.com/crabpot8/sr-simulation.
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