

What is EECE 262 About?

  This class is about picking a cool project
that involves networking and building it

2

3

• Required textbooks

None!!!

EECE 262 Course Information
• EECE 262 class web page

• www.dre.vanderbilt.edu/ ~jules/eece262/
• My office hours in Featheringill Hall room
226 are
• Tues/Thurs 10:50am to 11:20am or by
appointment

 Please send all questions to
jules@dre.vanderbilt.edu

I’ll send the answers to the class
mailing list

4

EECE 262 Goal
• The goal of this class is to develop
innovative new smartphone
applications that involve networking.

• Every team should be run like a startup.
Design a revolutionary application that
people need and build it.

• Startups don’t build “me too”
applications. Startups build highly novel
revolutionary apps.

• Any Vanderbilt-specific app is fine
too

• Just like in a startup, there are lots of
roles for the team members – but
everyone works hard. You can choose
any role you want but you must
produce results.

• My Expectations:

• I am interested in seeing
really creative thinking.

• I want everyone to work hard.

• Every project will be highly
novel or have some aspect
that sets it apart from its
competition.

• A valiant attempt on a
revolutionary idea that fails
will get just as good of a grade
as a successful
implementation of a vanilla
idea

• Hard work, participation in
class, and creative thinking
will guarantee an A.

5

EECE 262 Goal (Grad Students)

• The goal of this class for grad students
is to help you produce a research
paper.

• Grad student projects do not have to be
focused on smartphones and do not
require implementing some type of
software product.

• Grad students should replace all
instances of “project” with the word
“research project.”

• Grad students will deliver experimental
results and/or pages of their paper
each week.

• I encourage ALL groups to write papers
on their work.

• My Expectations:

• I am interested in seeing
creative research projects.

• I want to see incremental
progress EVERY week.

• Every grad student must turn
in 1pg on their paper each
week.

• All papers must be written
using the latex template I
provide. No MS Word.

• If you turn in all of your weekly
page assignments, you will be
guaranteed an A.

6

EECE 262 Research Papers

• Publishing papers in academic venues is very valuable.

• I will work with any undergrad that is interested on publishing a paper.

• I can’t guarantee that papers will get accepted, but we have a pretty good
track record in the DOC group ;-)

• Published undergrads that worked with me:

• Chris Thompson

• Hamilton Turner

• Scott Campbell (graduated)

• Harrison Strowd (graduated)

• Sean Mulligan (graduated)

• This list should soon include Ben Gotow, Krzysztof Z.

• I encourage ALL groups to write papers on their work.

7

EECE 262 Ground Rules
•  Build cycles must be completed on time

•  Work must be your own* All group projects!!!

•  Bring your laptops every day (just in case)

•  You will be called upon every day to answer questions

•  You’ll get out of this course what you put into it, so be
prepared to work hard

•  Be prepared for occasional guest lectures

•  No quizzes, no tests, no exam  instead: weekly demos,
code reviews, and a final demo

•  Make sure to avail yourself of available help, e.g., office
hours, TAs, mailing list, etc.

8

EECE 262 Course Contents
• Focus on developing large-scale
smartphone networking projects in a
team setting:

• Code must be turned in every build
cycle

• Agile software development practices
must be followed

• Demos of projects every 3rd class

• Everyone must be a member of a team
working on a smartphone networking
project

• The course will completely revolve
around topics that will aid the projects.

• There will be lectures and in-class
exercises on topics related to the
design and development of the projects

• I assume that people will have a
wide range of coding skills. Don’t
worry if you can’t code, there will
be lots of different roles for project
team members.

• Feel free to ask me questions via
email/class/office hours related to:

• Eclipse

• Java

• Framework XYZ

• Patterns

• Development practices

• Promoting your open source
project

• Etc…

9

EECE 262 Course Contents
• My main goal of the class is to facilitate
and guide everyone through the
implementation of a complex
smartphone networking project

• You will learn by doing

• Feel free to suggest advanced topics
that you would like to cover in class:

• Integrating smartphone apps and
cloud computing

• Ad-hoc networks for smartphones

• Smartphone software platforms

• Advanced web apis/protocols

• Etc.

• I am also free to help outside of class
with any questions you have

• Every member of each team must
contribute

• Although I will be focused on
groups as a whole, I will also pay
attention to each team member’s
individual effort

• I will look at SVN to see who
committed what code

• I will look at the bug tracking
system to see who was
reporting errors

• I will look at project wikis to
see who posted what

• I will pay attention in class to
who is contributing to the
discussion

10

EECE 262 Course Work
• There will be ~10 build cycles

• All projects must be implemented for
Android or iPhone

• Can be done on Windows, Linux,
Mac, etc.

• Must be done as a team*

• Your grade will be based on:

• 40% bi-weekly build cycle execution

• 20% final project demo/presentation

• 40% in-class participation

• Waiting until the end of the course
and trying to code everything
(regardless if it works) will produce
a poor grade

• A key part of the course is staying
on the development schedule,
following the development
guidelines, and contributing each
class period

• Feel free to use any open source
code that you want (as long as you
aren’t just ripping it off or writing a
wrapper around it)

11

EECE 262 & CS 279 Integration

• This year, the CS 279 class is available to you as a development resource

• Each project should propose a server-side component that could be
developed by the students in CS 279

• If your project is selected by one or more 279 students:

• You will serve as their customer

• Your user stories will include ones for the server-side team

• You will be responsible for developing the design documentation for
them

• If you are not an experienced Java coder and do not plan on doing any
Java coding for your project, you are required to manage the design
docs and coordination of your team with CS 279

12

EECE 262 Assignment 1
• Your first assignment is to come up with a list of 10 potential projects.

• Please put thought into these ideas

• Make sure you explain what the problem is that you are solving and
why your solution is going to be different than what already exists

• Graduate students must produce research ideas for their papers

• Each idea should be summed up in a 1-2 paragraph description.

• Even if you already know (or think you know) what you are going to work
on, you must complete this assignment. You may come up with a new
idea, an idea that changes how you think about your current plan, or an
idea that inspires someone else.

• Email the ideas to me by Sunday at midnight (subject: “eece262 ideas”)

• We will discuss these ideas on Tuesday and form teams in class

• Your server-side ideas will be pitched to CS 279 next Thursday

13

EECE 262 Assignment 2
• Your second assignment is to:

• Write a 1-page description of your project and list your team members

• Setup a Google Code website

• Setup a Google Group for your project to serve as a mailing list (add
me to the group)

• Create a wiki page and enter your first set of user stories

• Email me a link to your Google Code site by midnight next Wed

• Be prepared to discuss your project and user stories next Thurs. in class

• For Grad students, write a 1 page outline of your paper

Lessons from Conan

  The secret of steel has
always carried with it a
mystery. You must learn its
riddle, Conan. You must
learn its discipline. For no
one - no one in this world
can you trust. Not men, not
women, not beasts. Steel
you can trust

14

Lessons from Agile Development

  The secret of code has
always carried with it a
mystery. You must learn its
riddle, Conan. You must
learn its discipline. For no
project manager - no
developer in this world can
you trust. Not UML diagram,
not test plan, not architect
hype. Code you can trust

  (if it is thoroughly tested)

15

Lessons from Agile Development

  We will be using an Agile
development process in
EECE 262

  Short concentrated build
cycles that focus on working
code

  Client-focused, we will be
demoing each others’
software at the end of each
build cycle

16

EECE 262 Development Cycle

  We will use a 3 class development cycle that will start
next Thursday

  1st Class:
–  Discuss/select user stories in class (rough drafts

prepared before class)
–  Discuss why the features are important and how they

compare/contrast to any existing features from
competitors

–  Rough sketches of any user interfaces are presented
–  The class as a whole discusses the features and their

implementation

–  Groups present architecture for how the stories will be
implemented

–  Other groups play devil’s advocate and critique
architecture/features

17

EECE 262 Development Cycle

  2nd Class:
–  Discussion of any issues with user stories for current

build cycle
–  Topic related to the projects will be presented
–  In-class exercises on topic

18

EECE 262 Development Cycle

  3rd Class:
–  New user stories are demoed in class
–  Each team tests each of the other teams’ new

application release
–  Each team reports bugs that they find in the other

teams’ applications
  Bugs are reported in the team’s project’s bug tracker

–  Each team brainstorms ideas to improve the other
teams’ applications
  Ideas for improvement are reported in the project wiki

–  Each team brainstorms ways of changing the
architecture or approach of the other teams
  Crazy ideas are reported in the project wiki

19

User Stories

  What is a “user story”?

  A user story should be a
short 1-2 sentence
explanation of something
that a user can do with the
application:
–  A student can add a new course to

his/her schedule
–  A player can view the results of a

match

  User stories must be
assigned to team members

  Team members will be
graded on their assigned
user stories & integrated
functionality

20

User Stories

  Each user story will be
simple but will require a lot
of things to work under the
hood

  User stories emphasize
working fully integrated
software rather than large
bodies of un-integrated code

  At the end of the build cycle,
if a user can’t complete the
story, it isn’t finished

21

The user story…..

What is actually
needed to make
the story work

User Stories

  At the beginning, you should
pick fewer user stories b/c
you will need to build the
“hidden base” of software
beneath it

  Later, you can pump out
more user stories per build
cycle because the bulk of
your application is complete

22

Later stories can
be integrated into
the existing base

Hidden base

All Projects are Open Source

 /**
 * Copyright 2008 Jules White *
 * *
 * Licensed under the Apache License, Version 2.0 (the "License"); *
 * you may not use this file except in compliance with the License. *
 * You may obtain a copy of the License at *
 * *
 * http://www.apache.org/licenses/LICENSE-2.0 *
 * *
 * Unless required by applicable law or agreed to in writing, software *
 * distributed under the License is distributed on an "AS IS" BASIS, *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.*
 * See the License for the specific language governing permissions and *
 * limitations under the License. *
 **/

23

All code should be released under the Apache 2 license:

Project Requirements
  Every group must maintain their project in

Google code

  You must use SVN

  You must maintain a wiki that provides
detailed instructions on how to build, run,
and test your code

  You must actively use the bug tracker and
wiki

  You must produce a binary distribution at
the end of each build cycle

24

SVN Commit Rules

  Rule #1: Never ever ever commit code that
doesn’t compile

25

NFL equivalent of checking
in code that doesn’t compile

SVN Commit Rules

  Rule #2: Always include a commit comment that
briefly summarizes what changes you are
checking in

26

SVN Commit Rules

  Rule #3: Always try to make sure your code
passes the unit tests before checking it in

27

Bugs

  If I check in code and you
notice that it breaks something,
you must report it as a bug in
the bug tracker (issues in
google code)

  Make sure that you provide
sufficient information to
reproduce the bug

  All bugs should be cleaned up
by the end of the build cycle or
used as a rational for rescoping
a user story

  When you commit a fix for a
bug, reference the bug tracking
ID in the SVN commit comment

28

Bugs

  When you commit a fix for a
bug, reference the bug tracking
ID in the SVN commit comment

  Correct format:

Fixes for: 1878, 213, 7657

I removed the go to statements

that were causing these bugs.

29

Implementing User Stories

  Only build the minimum of what is
needed to realize the user story

  All code created during the build cycle
should be directly traceable back to a
user story

  On the 2nd Tuesday, we will do in class
code reviews
–  I will do code reviews for anyone who doesn’t

have their code reviewed in class

  Code will need to be refactored by the
following Thursday per the code
review recommendations

30

Implementing User Stories

  At the beginning, it is ok to “fake” or
use mock objects for parts of the
implementation

  For example, you may want to fake the
communication with a remote server
by creating a mock object that
automatically returns the expected
answers or stock data

31

What if I Just Can’t Get X to Work?

  If you realize that a user story is much
harder than expected to implement,
don’t panic
–  Discuss the issue with your group and send me

email saying that you are going to postpone the
user story until the next build cycle

–  Prioritize your other user stories and finish them
–  At the latest, you must notify me by the start of

the 2nd class

  Start early so that you can predict if
you aren’t going to finish a user story

  If you have a midterm, etc. during a
build cycle, go easy on yourself and
pick easy/fewer user stories

32

In-class User Acceptance Testing

33

  On the last class of a build cycle,
we will first let each team demo
their working user story
implementations

  Groups will then test each others’
user story implementations

  Every group will be required to
have a binary distribution that
other groups can download to
test

  Groups must have all usage
directions posted on their
project wiki (no hand holding)

  Groups can bring in user
surveys to get feedback from
users(optional)

Binary Distributions
  A binary distribution should be a compiled version of

the code that can be run fairly easily by a user

  Examples:
–  An Android APK file
–  A jar file, launch script, and instructions (always include

a license file too)
–  A Java launcher, such as launch4j
–  An Eclipse plugin distribution
–  A set of project binaries and an ANT file to run them

34

Build Cycle Grading
  (40pts) Were all of the student’s user stories completed or

properly postponed?

OR

  (40pts) (for non-coders) Did the student complete all of their
design and documentation activities?

AND

  (20pts) Did the student properly report and address bugs?

  (20pts) Did the student test and report bugs for the other
projects?

  (20pts) Did the student report ideas/refinements for other
projects in their wiki?

  (10pts Bonus) Did you bring up a cool new topic in class and
provide examples for it?

  ***I reserve the right to change the weighting/grading criteria
during the semester 35

