
Deployment Automation with BLITZ

Brian Dougherty, Jules White, Jaiganesh Balasubramanian,Chris Thompson, and Douglas C. Schmidt
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, TN, USA
{briand,jules,jai,schmidt}@dre.vanderbilt.edu & chris.m.thompson@vanderbilt.edu

Abstract

Minimizing the computing infrastructure (such as pro-
cessors) in a distributed real-time embedded (DRE) system
deployment helps reduce system size, weight, power con-
sumption, and cost. To support software components and
applications on the computing infrastructure, the hardware
must provide enough processors to ensure that all applica-
tions can be scheduled without missing real-time deadlines.
In addition to ensuring scheduling constraints, sufficientre-
sources (such as memory) must be available to the software.
It is hard to identify the best way(s) of deploying software
components on hardware processors to minimize computing
infrastructure and meet complex DRE constraints.

This paper provides the following contributions to the
study of the deployment of software components to hard-
ware in DRE systems: (1) we present an algorithmic de-
ployment technique that minimizes the required number
of processors, while adhering to real-time scheduling, re-
source, and co-location constraints, (2) we show how this
technique can be augmented with a harmonic period heuris-
tic to further reduce the number of required processors, and
(3) we present empirical data from applying three different
deployment algorithms for processor minimzation to a flight
avionics DRE system.

1 Introduction

Current trends and challenges
Software engineers who develop distributed real-time

and embedded (DRE) systems must carefully map software
components to hardware. These software components must
adhere to complex constraints, such as real-time scheduling
deadlines and memory limitations, that are hard to manage
when planning deployments that map the software compo-
nents to hardware [1]. How software engineers choose to
map software to hardware has a direct impact on the num-
ber of processors required to implement a system.

Ideally, software components for DRE systems should
be deployed on as few processors as possible. Each addi-
tional processor used by a deployment adds size, weight,
power consumption, and cost to the system [9]. For ex-

ample, it has been estimated that each additional pound of
computing infrastructure on a commercial aircraft resultsin
a yearly loss of $100 per aircraft in fuel costs. Likewise,
each pound of processor(s) requires four additional pounds
of cooling, power supply, and other support hardware. Nat-
urally, reducing fuel consumption also reduces emissions,
benefiting the environment [11].

Several types of constraints must be considered when
determining a validdeployment plan, which allocates soft-
ware components to processors. First, software compo-
nents deployed on each processor must not require more re-
sources, such as memory, than the processor provides. Sec-
ond, some components may have co-location constraints,
requiring that one component be placed on the same pro-
cessor as another component. Moreover, all components on
a processor must be schedulable to assure they meet critical
deadlines [10].

Existing automated deployment techniques [3, 6, 2]
leveraged by software engineers do not handle all these
constraints simultaneously. For example, Rate Monotonic
First-Fit Scheduling [2] can guaranteee real-time schedul-
ing constraints, but does not guarantee memory constraints
or allow for forced co-location of components. Co-location
of components is a critical requirement in many DRE sys-
tems. Moreover, if deploying a set of components on a
processor results in CPU over-utilization, critical tasksper-
formed by a software component may not complete by their
deadline, which may be catastrophic. DRE software engi-
neers must therefore identify deployments that meet these
myriad constraintsand minimize the total number of pro-
cessors [5].

This paper provides three contributions to the study of
software component deployment optimizations for DRE
systems that address the challenges outlined above. First,
we present theBin packing LocatIon Technique for proces-
sor minimiZation(BLITZ), which uses bin packing to al-
locate software applications to a minimial number of pro-
cessors and ensure that real-time scheduling, resource, and
co-location constraints are simultaneously met. Second, we
present a case study that motivates the minimization of pro-
cessors in a production flight avionics DRE system. Third,
we present empirical comparisons of minimizing processors
for deployments with BLITZ for three different scheduling

heuristics versus the simple bin-packing of one component
per processor used in the avionics case study.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 describes challenges that must
be overcome to determine valid deployments; Section 3 de-
scribes the BLITZ technique we developed to minimize the
number of processors in deployments; Section 4 presents
empircal results from applying BLITZ to the flight avionics
case study to reduce the number of processors in a deploy-
ment; and Section 5 presents concluding remarks.

2 Challenges of Component Deployment
Minimization

This section summarizes the challenges of a determin-
ing a software component deployment that minimizes the
number of processors in a DRE system.

Rate-monotonic scheduling constraints. To create a
valid deployment, the mapping of software components to
processors must guarantee that none of the software com-
ponents’ tasks misses its deadline. Even if rate monotonic
scheduling is used, a series of components that collectively
utilize less than 100% of a processor may not be schedu-
lable. It has been shown that determining a deployment of
multiple software components to multiple processors that
will always meet real-time scheduling constraints is NP-
Hard [3].

Task co-location constraints. In some cases, software
components must be co-located on the same processor. For
example, variable latency of communication between two
components on separate processors may prevent real-time
constraints from being honored. As a result, some compo-
nents my require co-location on the same processor, which
precludes the use of bin-packing algorithms that treat each
software component to deploy as a separate entity.

Resource constraints. To create a validate deployment,
each processor must provide the resources (such as mem-
ory) necessary for the set of software components it sup-
ports to function. Developers must ensure that components
deployed to a processor do not consume more resources
than are present. If each processor does not provide a suf-
ficient amount of these resources to support all tasks on the
processor, a task will not be able execute, resulting in a fail-
ure.

3 Deployment Optimization with BLITZ

TheBinpacking LocatIon Technique for processor min-
imiZation (BLITZ) is a first-fit decreasing binpacking al-
gorithm we developed to (1) assign processor utilization
values that ensure schedulability if not exceeded and (2)
enhance existing techniques by ensuring that multiple re-
source and co-location constraints are simultaneously hon-
ored.

3.1 BLITZ Bin-packing

The goal of a bin packer is to place a set of items into a
minimal set of bins. Each item takes up a certain amount
of space and each bin has a limited amount of space avail-
able for packing. An item can be placed in a bin as long
as its placement does not exceed the remaining space in the
bin. Multi-dimensional bin packing extends the algorithm
by adding extra dimensions to bins and items (e.g., length,
width, and height) to account for additional requirements of
items. For example, an item may have height corresponding
to its CPU utilization and width corresponding to consumed
memory.

BLITZ uses an enhanced multi-dimensional bin packing
algorithm to generate valid deployments that honor multi-
ple resource constraints and co-location constraints as well
as the standard real-time scheduling constraints. In BLITZ,
each processor is modeled as a bin and each independent
component or co-located group of components is modeled
as an item. Each bin has a dimension corresponding to the
available CPU utilization. Each item has a dimension that
represents the CPU utilization it requires, as well as a a di-
mension corresponding to each resource, such as memory,
that it consumes. Each bin’s size dimension corresponding
to available CPU utilization is initialized 100%. The re-
source dimensions are set to the amount of each resource
that the processor offers.

To pack the items, they are first sorted in decreasing or-
der of utilization. Next, BLITZ attempts to place the first
item in the first bin. If the placement of the item does not
exceed the size of the bin (available resources and utiliza-
tion) of the bin (processor), the item is placed in the bin.
The dimensions of the items are then subtracted from the
dimensions of the bin to reflect the addition. If the item
does not fit, BLITZ attempts to insert the item into the next
bin. This step is repeated until all items are packed into bins
or no bin exists that can contain the item.

Burchard et al [7] describe several techniques that use
component partitioning and bin-packing to reduce total re-
quired processors. This work, however, does not account
for additional resource constraints, such as memory. Fur-
thermore, these techniques do not allow for co-location con-
straints that require specific components to reside on the
same processor.

3.2 Utilization Bounds

Conventional bin-packing algorithms assume that each
bin has a static series of dimensions corresponding to avail-
able resources. For example, the amount of RAM provided
by the processor is constant. Applying conventional bin-
packing algorithms to software component deployment is
challenge since it is hard to set a static bin dimension that

guarantees the components are schedulable. Scheduling can
only be modeled with a constant bin dimension of utiliza-
tion if a worst-case scheduling of the system is assumed.
Liu-Layland [8] have shown that a fixed bin dimension
of 69.4% will guarantee schedulability but in many cases,
tasks can have a higher utilization and still be schedulable.

The Liu-Layland equation states that the maximum pro-
cessor utilization that guarantees scheduability is equalto
2
1/x − 1, where x is the total number of components allo-

cated to the processor. With BLITZ, each bin has a schedul-
ing dimension that is determined by the Liu-Layland equa-
tion and the number of components currently assigned to the
bin. Each item will represent at least one but possibly mul-
tiple co-located components. Each time an item is assigned
to a bin, BLITZ uses the Liu-Layland formula to dynami-
cally resize the bin’s scheduling dimension according to the
number of components held by the items in the bin.

If the the frequency of execution, or periodicity, of the
components’ execution requirements is known, higher pro-
cessor utilization above the Liu-Layland bound is also pos-
sible. Components with harmonic periods (e.g., periods that
can be repeatedly doubled or halved to equal each other)
can be allocated to the same processor with scheduability
ensured, as long as the total utilization is less than or equal
to 100%.

Unlike other deployment algorithms [7, 4], BLITZ uses
multi-stage packing to exploit harmonic periods. In the first
stage, components with harmonic periods are grouped to-
gether. In each successive stage, the components from the
group with the largest aggregate processor utilization are
deployed to the processors using a first-fit packing scheme.
If not all periods of the components in a bin are harmonic,
an item is allocated to a bin only if the utilization of its com-
ponents fits within the dynamic scheduling Liu-Layland di-
mension and all other resource dimensions. If all compo-
nent periods within a bin are harmonic, the utilization di-
mension is not dynamically calculated with Liu-Layland
and a fixed value of 100% is used.

3.3 Co-location Constraints

To allow for component co-location constraints, BLITZ
groups components that require co-location into a single
item. Each item has utilization and resource consumption
equal to that of the component(s) it represents. Each item
remembers the components associated with it. The Liu-
Layland and harmonic caculations are performed on the in-
dividual components associated with the items in a bin and
not each item as a whole.

4 Empirical Results

This section presents the results of applying BLITZ
to a flight avionics case study provided by Lockheed

Martin Aeronautics through the SPRUCE portal (www.
sprucecommunity.org), which provides a web-
accessible tool that pairs academic researchers with indus-
try challenge problems complete with representative project
data. This case study comprised 14 processors, 89 total
components, and 14 co-location constraints. We compared
2 different bin-packing strategies against both BLITZ and
the baseline deployment of this avionics system, produced
by the original avionics domain experts.

4.1 Experimental Platform

All algorithms were implemented in Java and all experi-
ments were conducted on an Apple MacbookPro with a 2.4
GHz Intel Core 2 Duo processor, 2 gigabytes of RAM, run-
ning OS X version 10.5.5, and a 1.6 Java Virtual Machine
(JVM) run in client mode. All experiments required less
than 1 second to complete with each algorithm.

4.2 Processor Minimization with Various
Scheduling Bounds

This experiment compared the following bin-packing
strategies against BLITZ and the baseline deployment of the
avionics system: (1) a worst-case multi-dimensional bin-
packing algorithm that uses 69.4% as the utilzation bound
for each bin, (2) a dynamic multi-dimensional bin-packing
algorithm that uses the Liu-Leyland equation to recalcu-
late the utilzation bound for each bin as components are
added, and (3) our BLITZ technique that combines dynamic
utilization bound recalculation with the harmonic period
multi-stage packing.

We used each technique to generate a deployment plan
for the avionics system described in Section 4. Figure 1
shows the original avionics system deployment, as well as
deployment plans generated by the worst-case bin-packing
algorithm, dynamic bin-packing algorithm, and BLITZ.

Figure 1. Deployment Plan Comparison

The BLITZ techinque required 6 less processors than the
original deployment plan, 3 less processors than the worst-
case bin-packing algorithm, and 1 less processor than the
dynamic bin-packing algorithm.

Figure 2 shows the total reduction of processors from
the original deployment plan for each algorithm. The de-
ployment plan generated by the worst-case bin-packing al-
gorithm reduces the required number of processors by 3
or 21.41%. The dynamic bin-packing algorithm yields a
deployment plan that reduces the number of required pro-
cessors by 5, or 35.71%. BLITZ reduces the number of
required processors even further, generating a deployment
plan that requires 6 less processors, a 43.86% reduction.

Figure 2. Scheduling Bound vs Number of
Processors Reduced

5 Concluding Remarks

Determining component deployments that minimize the
number of required processors is hard. This problem is ex-
acerbated by proving that software applications are schedu-
lable for a chosen deployment. Using bin packing algo-
rithms, such as first-fit decreasing, the entire deployment
space need not be searched. By using our BLITZ algo-
rithm (which combines first-fit decreasing bin packing with
proven utilization bounds based on data characteristics),
valid and near minimal deployments can be determined.

Based on our work with BLITZ thus far, we learned the
following lessons pertaining to deployment for DRE sys-
tems:

• Grouping based on harmonic periods improves
packing tightness. BLITZ combines the Liu-Layland
equation with the increased utilization bound of com-
ponents with harmonic execution periods to maximize
the utilization of each processor during deployment.
As a result, tasks can be clustered on fewer processors,
reducing the processors required.

• Processor minimization depends on real-time
benchmarks. BLITZ has been shown to greatly re-
duce the required processors of a DRE system of an
extensively benchmarked real-time system. Without
knowledge of periodicty, resource constraints, and co-
location constraints, BLITZ cannot be fully utilized. It

is essential to develop tools that effectively simulate
and thoroughly benchmark DRE systems before they
are deployed so that the full capabilities of BLITZ can
be applied.

The current version of BLITZ with example code is avail-
able in open-source form atascent-design-studio.
googlecode.com. The industry challenge problem
that is the basis for this paper can be found atwww.
sprucecommunity.org.

References

[1] H. Beitollahi and G. Deconinck. Fault-tolerant partitioning
scheduling algorithms in real-time multiprocessor systems.
Pacific Rim International Symposium on Dependable
Computing, IEEE, 0:296–304, 2006.

[2] A. Bertossi, L. Mancini, and F. Rossini. Fault-Tolerant
Rate-Monotonic First-Fit Scheduling in Hard-Real-Time
Systems.IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, pages 934–945, 1999.

[3] A. BURCHARD, J. LIEBEHERR, Y. OH, and S. SON.
New strategies for assigning real-time tasks to
multiprocessor systems.IEEE transactions on computers,
44(12):1429–1442, 1995.

[4] D. De Niz and R. Rajkumar. Partitioning bin-packing
algorithms for distributed real-time systems.International
Journal of Embedded Systems, 2(3):196–208, 2006.

[5] S. Dhall and C. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[6] S. Lauzac, R. Melhem, and D. Mosse. Comparison of
Global and Partitioning Schemes for Scheduling Rate
Monotonic Tasks on a Multiprocessor. In10th Euromicro
Workshop on Real Time Systems, pages 188–195, 1998.

[7] J. Liebeherr, A. Burchard, Y. Oh, and S. H.Son. New
strategies for assigning real-time tasks to multiprocessor
systems.IEEE Trans. Comput., 44(12):1429–1442, 1995.

[8] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-time Environment.
JACM, 20(1):46–61, Jan. 1973.

[9] M. Mikic-Rakic and N. Medvidovic. Architecture-Level
Support for Software Component Deployment in Resource
Constrained Environments.LECTURE NOTES IN
COMPUTER SCIENCE, pages 31–50, 2002.

[10] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task
schedulability in real-time control systems. InReal-Time
Systems Symposium, 1996., 17th IEEE, pages 13–21, 1996.

[11] N. R. C. Steering Committee for the Decadal Survey of
Civil Aeronautics.Decadal Survey of Civil Aeronautics:
Foundation for the Future. The National Academies Press,
2996.

