Creating Self-healing Service
Compositions with Feature
Models and Micro-rebooting

J. White*

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN, USA

E-mail: jules@dre.vanderbilt.edu

*Corresponding author

H.D. Strowd

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN, USA

E-mail: harrison.strowd@vanderbilt.edu

D.C. Schmidt

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN, USA

E-mail: schmidt@dre.vanderbilt.edu

Abstract:

Service-oriented architectures (SOAs) are emerging awana mechanism to provide loose
coupling and software reuse in enterprise application®sS&xpose individual reusable software
applications or components as remotely accesible sertheésommunicate using standardized
message-oriented protocols, such as the Simple ObjecsA¢u®tocol (SOAP). One possibility
that SOAs provide is the ability for applications to healrtiselves by failing over to alternate
services when a critical application component or seneéference fails. The numerous intricate
details of identifying errors, releasing resources usedcitess services, and plan a recovery
strategy makes developing applications that can heal bpEwg services hard.

Model-driven engineering (MDE) offers a potential solatim handling the complexity of
building applications that can heal by swapping servicesstiig MDE solutions for building
adaptive applications require developers to explicitlydeleach potential error state and recov-
ery action, which can be extremely complex. Furthermoreeld@ers must then implement the
complex recovery actions modeled, which adds significamtldpment complexity. This paper
presents a technique based on micro-rebooting that 1) eaésé models to derive a new and
correct service composition when a failure occurs; 2) usegpalication’s component container
to shutdown the reference to the failed service; and 3) useapplication container to reboot
the subsytem with the new service composition. The papaepis a case study that shows this
approach significantly reduces both modeling and healiq@@mentation effort.

1 Introduction organizations, multiple services are available that caome
plish a particular task. The redundancy in services previde

Service-oriented architectures (SOAs) are emerging asvarpo Potential to create applications that can heal themselyésilp

ful mechanism to provide loose coupling and software remsd!ig Over to leverage similar services when a service in tesi
enterprise applications. SOAs expose individual reussbie Vice compositioni(e. the services used by the application) fails.
ware applications or components as remotely accessible 5&#ling over to another equivalent but not necessarily idah
vices that communicate using standardized message-edieS€rvice can create robust applications that can adaptvaeer
protocols, such as the Simple Object Access Protocol (SOARjlures and remain functional.

The loose coupling provided by message-oriented communicaDesigning and implementing a mechanism to build self-
tion and standardized protocols allows applications tapélty healing service compositions is a complex endeavor. Soite s

composed from both newly developed custom components d¢t&fe development projects already have low success rates an
from existing services. high costs, building a service capable of healing is typiaadt

Often, within a single organization or group of collabonati Copyright(© 200x Inderscience Enterprises Ltd.

feasible. Furthermore, building adaptive mechanismstlyrearder database access service. If one particular ordebaisa
increases the complexity of an application and can be difficaccess service is chosen, it excludes the other potental or
to divorce from application code if the development of the@d services from being used (it constrains the other featurks)
tive mechanism is not successful. the chosen service fails, a new feature selection can beedkeri
Model-driven engineering (MDE) provides a potential soldhat does not include the failed service’s feature.
tion to managing the complexity of developing adaptive ser-To avoid the challenges and accidental complexities of both
vices. In an MDE approach, high-level adaptive models aredeling all possible error states and paths to correastRte-
used to generate the complex adaptive code required toHeeaftesh uses an approach basednaicro-rebooting[8]. When a
application when services fail. This approach allows much failure, such as the inability to communicate with a depende
the complex healing code to be generated by the MDE tool as&tvice, occurs, Refresh 1) uses the application’s feahoe-
in many cases, removed in needed. Numerous approaches bbv® derive a new and valid service composition from the cur
been presented for building MDE models and platforms for erently available services and components; 2) uses thecappli
terprise applications but these approaches tend to sufier ftion’s component container to shutdown the failing appiaa
one or more of the following problems: subsystemé.g. remote reference to a failed service); 3) and
restarts the application subsystem in the newly derivedigon
1. they require tight-coupling between application codé aqration (that points to a different service and includeslaogl
adaptation logic or frameworks components needed to communicate with it).
The remainder of this paper is organized as follows: Se&ion
resents the e-commerce application that we will use asea cas
Eféfdy throughout the paper; Section 3 illustrates currbat-c
lenges in applying existing MDE techniques for building pda
3. they require extensive effort to develop the adaptation 4V€ applicationsto our case study; Section 4 describessBle
tion implementations for a realistic application approach to using feature models and micro-rebooting teced
the complexity of modeling and implementing an application

In this paper we present an MDE approach and toolset, callegt can heal; Section 5 presents empirical results olatdinen
Refresh for designing and implementing self-healing servi@PPlying Refresh to our case study; Section 6 compares $tefre
compositions. In Section 4, we show that Refresh does net S¥ith related work; and Section 7 presents concluding remark
fer from the above limitations. Refresh is specifically desd
for healing a service composition when:

2. they require significant development effort to explicitl
model the numerous potential error states and recovi
paths from an error state to a correct state

2 Case Study: The Java Pet Store
1. the application is implemented with a component-based
technology To illustrate the complexity of applying existing MDE tech-
niques to creating healing applications, we present a ¢adg s
based on Sun’s Java Pet Store e-commerce application [k&]. T

3. the application and any redundant instances in an appli'@ﬁt Store provides a web-based storefront for selling fiéte.

tion cluster cannot continue functioning correctly in megtore includes mglt_lp(ljg %ateltorlez of PEtS’ produetgl.(BuIII-I
current configuration og, lguana), and individual product itenesd. Female Bull-

dog Puppy). Customers browse for pets and purchase ditferen
4. the application has alternate composable services, fitems.
could potentially be exploited to avoid failure Sun and other parties use the Pet Store as a reference appli-
cation to showcase various frameworks, such as the Java 2 En-
For each potential error state that an application’s servterprise Edition frameworks [14]. Because the Pet Storeiig v
composition could enter, most existing MDE adaptation teclidely known and can serve as a reference for comparingdiffe
nigues require explicitly modeling both the error state #rel ent technologies, the Pet Store has been re-implementéfd in d
numerous actions to transition from the error state to aecorrferent programming languages and with different framework
state. For large enterprise applications, there are ysaallg- For example, Microsoft has created the .NET Pet Store [3] and
nificant number of potential error states and complex nudndke Java Spring Framework [10, 4] has created the Spring Pet
considerationsg.g. availability of other services, databas&tore. The Spring Framework’s version of the Pet Store in-
locks held, transaction states, etc.) that make it verycdiffi cludes support for integrating web services and is the imple
to create a model for service composition healing. Ratheam thmentation we have chosen for the case study.
explicitly modeling error states and recovery actions,r&&# Figure 1, presents a high-level feature model of the feature
usesFeature Modeldo capture the rules for determining whatelated to the Pet Store’s data tier. Features are denotdteby
is or is not a correct configuration/error state. various boxes in the diagram. The levels of hierarchy repres
Feature models describe an application in terms of pointssobfeatures. For example, all PetStore instances Da@s
variability and their affect on each other. For example,rirea Datasources, andTA as subfeatures (the filled circles at the
commerce application, a feature might be a service for aecasp of the child features denote required features). The Pet
ing an order database. The order feature can have diffarbnt Store Java Transaction API (JTA) feature can either be ptese
features, such as different potential services that cae serthe denoted when the childTAPresenfeature is selected, or not

2. catastrophic failure is imminent

‘ PetStoreServiceCompositi#n

‘ Single| | Multiple ‘

JTAPresentRef

Figure 1: Pet Store Service Composition Feature Model

‘JTAPresen’t ‘ JTANotPreser*t

present. A Feature can also specify rules restricting tleeseproblem with modeling each potential error state and regove
tion of other features if the feature is selected. For examppath is that the series of recovery actions that need to log&au/
the selection of th®atasourceAviultiple features requires thatis different for the local OrderDAO and remote service imple
JTAPresenalso be selected. This requirementis denoted by tmentation. If the local OrderDAQO fails, it may simply need to
JTAPresentRatquired feature reference undéultiple. be swapped for another implementation. If a remote service
fails, it may be necessary to free resources that were used by
a connection to it, such as memory used by caches or network

‘ HessianOrderServi#SOAPOrderServicH LocaIOrderDAq ‘ BurlapOrderServic}e pOftS.)) .) .
The type of remote service that is being communicated with

Figure 2: Feature Model of the J2EE Pet Store’s OrderDAC¥an also be important to the recovery action. For example, di
ferent recovery paths will be needed to release resouregs th

The SpringFramework allows individual components in thgere used by a connection to a SOAP-based web service as op-
Pet Store to be swapped with proxies to remote services. figsed to a Hessian-based web service proxy. Thus, for each
ure 1 lists the various DAOs that are available in the PetStdiype of service or implementation of the OrderDAO, separate
Each of these DAOs can potentially be swapped for a remeteor states and recovery paths are needed. Requiringasepar
service. Figure 2 shows the various options for the OrderDA@ror states for each service implementation can causeitne n
Either the OrderDAO can be implemented by a local compler of error states to explode when a real enterprise apiplica
nent or it can be implemented as a dynamically created Jig/modeled.
proxy to a SOAP, Burlap, Hessian, or RMI order service. Thelf the Pet Store’s service composition is modeled usingeStat
case study focuses on failing over from the middle-tier DA@harts, as shown in Figure 3, there are 4 different states for
to different remote services to demonstrate the compéexaf each DAO. Futhermore, there are 20 different states needed t
applying existing MDE techniques. represent the potential services and components that cem se
as the Pet Store’s DAOs. Another property of this model worth
noting is that it does not yet include any recovery logictéasl,
the model just includes some placeholder transitions from o
potential service to the next.

A very common approach to modeling application healing is to

3 Challenges of Creating Self-healing Service Compositien

PetStore Service Composition

model the individual error states that the application catere
and a recovery path (a sequence of recovery actions) taretur
the application to a correct state. For example multiple MDE
approaches usBtate Chartgo capture the various error states
of an application and the sequences of recovery actionsuore

to a correct state. Enumerating each potential error stade a
each recovery path can require significant modeling conitglex
As we will show through the rest of this section, even when an
MDE tool can generate the majority of the self-healing cae f

a service composition, the requirement to model and imphtme
recovery actions places a heavy burden on developers.

3.1 Challenge 1: Significant Modeling Complexity to
Specify a Recovery Path from an Arbitrary Error
State to a Correct State

A healing model must use different error states for each im-
plementation of a service type or component type. The fail-

OrderDAO _

-

("~ AccountDAO_

—
(
[

ItemDAO

LocalOrder
DAO

DAO

Local IAccouml

Localltem
DAO

\"{

SOAPOrder

DAO \\‘

’ SOAP
Account
DAO

{

SOAPItem
DAO

Hessian
Order
DAO

/
L/

A SR S

A

Hessian
AccountDAO

7

)
%

N
Hessian
ItemDAO

d

\ Burlap
\ | AccountDbAO

f

Burlapltem
DAO

7*/

VI

(" ProductDAO

—®

LocalProduct
DAO

(

SOAP

Hessian
Product
DAO

Burlap
Product
DAO

ProductDAOJ
—

J

y
%

\ 2

RMIOrder

|

\\ BurlapOrder
DAO

(DAO

F

)

RMIAccount
DAO

)
y

[RMIItemDAO

H
M
H

RMIProduct
DAO

/

J

Figure 3: Pet Store Service Composition State Chart

ure of the OrderDAO appears to be a fairly simple error condhier every error state that the system needs to recover from,
tion to model and specify a recovery path for, but it is note Tlthe model must explicitly specify a recovery path. For each

of the numerous error states that can be produced, as dsgcribAn extension of the OrderDAO recovery State Chart to in-
above, an individual recovery path must be defined to heal tiede the JTA consideration is show in Figure 5. Each traomsit
service composition. For example not only do the failure oftathe swap states now includes a guard to ensure that swgappin
Hessian and SOAP-based order service need to be modeledisepiiowed. A newGlobalSwapControllehas been added to
arately, but the series of recovery actions attached to aksch the model to only allow swapping when either JTA is present
needs to be modeled separately. As with error states, the noma single data source is being referenced by the applicatio
ber of recovery path specifications produced for healind) eaervice composition.

component of an enterprise application can be large.

The Pet Store requires a number of recovery actions to take
place in order to swap the service used for a DAO. The various
actions for swapping the OrderDAO to one of the remote ser-
vices is modeled in Figure 4. First, to swap a DAO, a Spring
Hot Swappabl eTar get Sour ce (an object capable of swapping
an active componentin the application) must be obtainedt,Ne
any resources held by the old DAO implementation or DAO
proxy to a remote service must be released. After releasing r
sources, a new proxy to another remote service can be created
Finally, the newly created proxy can be swapped into theiappl
cation using theHot Swappabl eTar get Sour ce. Including the
recovery paths in the model ups the total number of states per
DAO from 4 to 25.

Py OrderDAO anrDAOLocz\Recovery

\(CreateSOAPOrderSer
{ LocalOrderdAO { ViceProxy |

3

LookupOrderService l
HotSwappableTarget +

SOAPOrderDAO |
Source]

Swapln

| Hessianorderpao |.On(Exception) SOAPOrderService

OrderDAO

LocalOrderDAO —
On(Exception)

‘SOAPOrderDAO

| (SwapInSOAPOrderSe |,

HessianOrderDAQ | On(Exception)

BurlapOrderDAO

RMIOrderDAO

On(Exception)
OrderDAOBurlapRecovery

[CreateHessian
OrderServiceProxy |\
|
ReleaseSOAP
OrderService
Resources

LookupOrderService
HotSwappableTarget *
Source
\
SwaplnHessianOrder |
ervice

OrderDAOLocal
Recovery

(CreateSOAPOrderSer |

viceProxy

LookupOrderService

HotSwappableTarget

Source

1

GlobalSwapController

[
JTAPresent -

———————O0n(JTA Found)
JTANotPresent |{

OrderDAOSOAP
@ Recovery

CreateHessian
OrderServiceProxy
ReleaseSOAPOrderS
ervice
Resources
LookupOrderService

HotSwappableTarget |

Source

|

CanSwap
[in(JTANotPresent) & in(Multiple)]

i cannotswap }
DataSources
Single

On(...) [more than one service host]

Multiple

[in(canSwap)}

SwaplnHessianOrder
Service

OrderDAOHessian
Recovery

[CreateHessian
OrderServiceProxy
ReleaseSOAP
OrderService
Resources
LookupOrderService

HotSwappableTarget |

Source

A very complex guard that takes
into account all of the hosts
providing the various DAO
services would be required here
OR a complex series of states
would be need to be added to
detect when services on
different hosts are transitioned
into.

(in(canSwap)]

|_('SwaplnHessianOrder |

/OrderDAOSOAPRecovery
ervice

BurlapOrderDAO

[~ CreateHessian
OrderServiceProxy |\

RMIOrderDAO =
Release |

SOAPOrderService +
Resources

TLookupOrderService

HotSwappableTarget &
Source

Figure 5: OrderDAO Recovery Paths State Chart when Ac-
counting for JTA

“ On(Exception)
|

OrderDAOBurlapRecovery _(SwapinHessianOrder |

Service

‘ \[" CreateHessian e arr———
OrderServiceProxy OrderDAOHessian

| @ remen 3.2 Challenge 2: Significant Complexity to Write Re-
configuration Code that Can Bring the System from

an Arbitrary Error State to a Correct State.

|| rewase—

|| | soAPOrdersenice premvere
Resources reateHessian

Il > _OrderServiceProxy |\

||/ LookupOrderService =

\ SHTES SOAPOrderService k

| Resources

| {SwapinHessianorder |
Service

— Release
| HotSwappableTarget | elease |

LookupOrderService
HotSwappableTarget +
Source

Regardless of the MDE approach used for building the appli-
cation healing mechanism, developers must always implemen
the application-specific recovery actions. This requinenpar-
allels the development of enterprise applications andicesy
where despite the frameworks used, developers are always re
quired to implement the core business logic. Some speedhliz
MDE tools may provide pre-built recovery actions for vergsp

Healing a local error may require evaluating the global ap- Cific domains, but in general, nearly every MDE approach re-
plication state. In the models thus far, if the OrderDAO fails duires developers to write the recovery actions.

it can be replaced with any of the potential viable orderises:

If the Java Transaction API (JTA) is being used to managetraRor each path from an error state to a recovery state, com-
actions, the Pet Store can fail over to any remote servicst@hd plex recovery logic must be written. The more error states
provide proper transaction behavior. If, however, JTA ishe that are possible in the application, the more recoveryasti
ing used to manage transactions, the system can only proviuest be written by developers. These numerous recovery ac-
transactions across a single datasource, meaning thdtth# otions can be both expensive to develop and difficult to test - a
DAOs must be accessing the same database instance. Rgquatential problem when projects are already prone to fadund

the use of a single database instance prevents an arbigary@st overruns.

vice from being chosen. In the non-JTA situation, the servic In the Pet Store application, there are four separate DAOs
may only fail over to a remote service if the service is accesbat can each be swapped to one of four remote services t avoi
ing the same database instance as all other referencedereffadtires. To implement a simple swapping mechanism in the Pe
services. Store, the Spring framework provides numerous compleityutil

|_(SwaplnHessianOrder |
Service

Figure 4: OrderDAO Recovery Paths State Chart

classes for hotswapping components and connecting to eentiain’s component container to shutdown and reboot the eppli
services, such as Apache Axis web services. Despite thesetiomn’s components. Using the application container todbwn
merous utility classes, as is shown in Section 5, to createthe failed subsystem takes milliseconds as opposed to the se
action to swap just the OrderDAO to one of the four remote senrds required for a full application server reboot. Sincevery
vices requires 77 lines of Java code to implement the swapplikely that rebooting in the same configuratiand.referencing
logic and 11 lines of XML code to enable and configure thibe same failed remote service) will not fix the error, Rdires
swapping action in the Pet Store. Although some level oftrefalerives a new application configuration and service composi
toring and object-oriented design can be used to share comitian from the application’s feature models that does notaion
logic across actions, implementing each action still rezpisig- the failed featuresg(g.remote services).
nificant effort. The service composition dictates the remote services used
by the application. The application configuration detemsin

3.3 Challenge 3: Executing Arbitrary Recovery Actions any local componentimplementations, such a SOAP messaging

in Arbitrary Error States can have Numerous Unfore- classes, needed to communicate and interact properly gth t
seen Side-effects. remote services. After deriving the new application configu

tion and service composition, Refresh uses the application

Error states are often specified in such a way that the syst@ffer to reboot the application into the desired configanat
as a whole can be in numerous different states that all fall uthe overall structure of Refresh is shown in Figure 6.

der the definition of the same error state. For example, when

the OrderDAO fails, the Pet Store can have orders in progress

category listings in progress, and numerous other nuarared c
ditions. Building a robust and correct recovery action iezgi

taking into account the side effects of the recovery actiothe SOAPOrderSenvice HessianOrderService

complex overall state of the application.

For example, what will happen if the local OrderDAO is
swapped with a remote service during the submission of one
or more customer orders? Can the orders potentially be left :
in an inconsistent state in the database? Does the safdtg of t —— 'omms@
swap depend on whether or not a local or JTA-based transactio ' :
mechanism is used? These complex nuanced questions are no
easy to answer and must be considered for each recoverpactio

Network

Application

implementation. These intricacies make developing a regov T

action that will not lead to unforseen problems hard. commsnin Coatie '
Refresh

4 Modeling and Building Healing Adaptations with Refresh ’] \“

By evaluating the challenges in Sections 3.1-3.3, it is agma Figure 6: Refresh Structure

that they stem from two causes: 1) the requirement that every
error state and recovery path must be explicitly modeled andRefresh interacts directly with the application contajreey
2) that developers must implement every complex recovery §8n be seen in Figure 6. During the initial and subsequent
tion. This section describes our MDE toolset, calReffresh container booting processes, Refresh transparentlytsnaps
that eliminates these two sources of substantial complexit plication probesnto the application to observe the application
Refresh uses feature models to capture the rules for whagggponents. Observations from the application comporaeats
a correct system state, which as we will show in Section 438Nt back to aevent stream processtrat runs queries against
eliminates the need to explicitly model every error stateces the application event data, such as exception events, tifige
each state can be checked for correctness on-demand). 8@ers. Whenever an application’s service compositiordsee
ond, rather than requiring complex recovery actions to be iff be healedEnvironment probeare used to determine avail-
plemented, Refresh uses the application’s componentioentadble remote services and global application constraint) as
to shutdown the application, reconfigure its service corapodhether or not JTA is present. Finally, Refresh includésaa
tion, and restart the app"cation in the new and correcesiag ture modelf the application that dictates the rules for deriving
is shown in Section 5, this reuse of standard container mechdew application configuration and service compositionrwhe
nisms for adaptation significantly reduces healing develeqt the application needs to be healed and rebooted.
effort without sacrificing performance. Refresh uses event stream processing [11], to run queries
against the application’s event data and identify feataik f
ures. The initial implementation of Refresh, based on the§p
Frameworks loC container, uses the Esper event streamsaroce
Refresh is built around the concept of micro-rebooting. Whsor [2] for Java. Esper is a high-performance event stream pr
an error is observed in the application, Refresh uses theapp cessor that is capable of handling 100,000 events a secdihd wi

4.1 Overview of Refresh

2,000 queries on a single dual-core CPU [1]. Choco [5], is used to derive a new set of features/configumati
Each feature in the feature model that could potentially féor the application.

is associated with a group of event stream queries. At rtim Once the new application configuration and service composi-

when a query associated with a feature returns a resulte§tefition is derived, Refresh invokes the container’s shutdoam s

is notified that the associated feature has failed, as shoWwigi quence to properly release resources, abort transactoas,

ure 7. The data and objects observed and analyzed by Refpasifiorm other critical activities. The new configurationins

are determined by the query specifications. jected into the container through programmatic calls ordsy r
generating the application’s configuration files [16]. Aftee
—_—— @ % configuration is injected into the container, the applwatis
launched in the new configuration without the failed servase
SOAPOrerSenice HessianOrderSenice shown in Figure 9.

SOAPOrderService HessianOrderService

Refresh

Fosirs Evvroninest Probes |\|‘[Evert Sam Processor SOAPOrderService
M 4. Observation 5
= I Sent to
nPS!NEnFmeF.Ih! Event Stream o

@ . S New Feature
-,7: -3 Configuration
\ v without

5, Evenl Stream Processor

Processor
Determines
Failed Feature
and Notifies
Refresh

Refresh

Application
Figure 7: Error Propogation to Refresh o' m B m ——

Once Refresh is notified of a feature failure, it has threeamddigure 9: Refresh Launches the Application in the New Config-
tasks: 1) to use the container to shutdown the applicatamms uration
ponents; 2) to use the application’s feature model to dexive
new application configuration and service composition; and
to use the container to reboot the application in the newgonfig 2 Selution 1: Use Feature Modeling to Capture the Rules
ration. The sequence of events from a feature failure natiéia for Deriving what is Considered a Correct State
to the rebooting of the container are shown in Figure 8.

=3 =] [==] [
Processoc Befrosty Probes Solver inee
T

] 4 H
1

| SOAPOrderService Feature Dissbled

i

i

Check Available Serviors |

|
Derive New| Canfiuration
T

1

I

|

|

i

1

|

|

i

T

i | !
{ ‘Shutdorwn Appiication Camponents
r T
|

i

I

T

I

|

|

r

i

I

i

Lot New Appication Configuraton 1. Failure Identified

1]
Lbunch Applcation Components

o o I i

Figure 8: Refresh Reconfiguration, Shutdown, and Launch f
covery Sequence

To derive a new configuration of the application does not i 2. New Feature Selection Derived Features
clude the failed feature, Refresh transforms the featueese
tion problem into a constraint satisfaction problem (CS®) WFigure 10: Deriving a new Service Composition from the Pet
ing techniques that have been developed by us an otherStsre Feature Model
prior work [16, 6, 17]. Once the feature selection problem is
transformed into a CSP, a high-performance general purposAs was pointed out in Section 3.1, modeling each individual
constraint solver, such as ILog’s JSolver [9], Geocode,[&B] error state and recovery path is complex. Refresh usesréeatu

modeling to avoid requiring developers to model each imdivisince only one oHessianOrderServicendSOAPOrderService
ual error state and recovery path. Feature modeling captwran be used at a time by the Pet Store, a constraint can be
the rules—rather than individual error states and recouatlys— used to capture this rule. Le¥, be the variable representing
for deriving what constitutes a correct application configion the SOAPOrderServiceThis rule is specified as the constraint
and service composition. In terms of healing, feature mndelV; =1 — V, = 0. As described in [16], complex rules, such as
describes: memory constraints, can be described using a CSP.
) When a feature is flagged as failed, Refresh adds a new con-
* the componentor service types that are needed to COMPQR&GiNt (o the feature selection process preventing thecféga-
the application ture from being selectedt(g, Vi = 0). Refresh then uses a the
cﬁ)‘%straint solver to derive a new feature selection thatben
sed by the application based on the environmental conigrai
e.g. JTA vs. No JTA) and feature model composition con-
straints €.g, only one of the order services may be selected

o the rules dictating the requirements, such as dependengli2 time). When only standard feature modeling rules, like

braries, required by each component or service implemé¥cludes, requires, cardinality, and attribute valuesuaesl to
tation describe constraints, the solver can very quickly produoera

rect solution [17]. More complex constraints, such as mgmor

e the rules constraining how the choice of one service inesource constraints, can be added to augment standaundefeat

plementation restricts the choices of other componentmodeling rules but require more care in the feature model-spe

service implementations in the same application compaieation process to allow the solver to quickly derive a solu
tion tion [17].

e the sets of components or services that can serve as
implementation of a service type in the application’s co
position

When the failure of a feature is observed, Refresh uses the
feature model of the application to derive an alternate $etkiminating Error State and Recovery Path Modeling Com-
features for the application that does not include theddida- plexity: Because the new feature selection is introduced into
ture. For example, in the Pet Store, when ltlealOrderDAO the application by shutting down the old references to remot
feature fails, Refresh uses the feature model to derivetan alservices and launching the new component configuration and
nate feature selection for the Pet Store. In the example sh@ervice composition, separate recovery actions are nafegee
in Figure 10, Refresh chooses a new feature selection tkeat kurthermore, since feature models specify the rules fow-der
theHessianOrderDAQather than the failedocalOrderDAQ ing a correct/incorrect configuration and do not enumertite a
possible error configurations, they require significandwér
modeling elements. As we will show in Section 5, the equiva-
lent healing behavior to the 111 state State Chart descitbed
Section 3.1 can be produced in Refresh using a feature model
with 33 features —a roughly 70% reduction in total model ele-
ments. The feature models also have 33 connections versus th
102 connections for the State Chart.

Automated Feature Selection Using a Constraint Solver:
The key to Refresh’s healing capabilities is its ability tgeu
a constraint solver to automatically derive a new featukecse
tion for the application. Prior work provides extensiveatlst

on the process for transforming a feature selection probiém
a constraint satisfaction problem (CSP), which is the ifprt

mat of a constraint solver, and deriving a feature selectlan

this section, we briefly cover this mapping. 4.3 Reusing the Component Container's Shut-
A constraint satisfaction problem is a series of variabtes a down/Configuration/Launch Mechanisms for State
a set of constraints over the variables. For example;B < C" Transitions

is a constraint satisfaction problem over the integer \de=A,
B, andC. A constraint solver automatically derives a corre&ections 3.2-3.3 illustrated the complexity and large tgve
labeling (values for the variables). The labelily= 1,B = ment burden of writing recovery actions to heal an applaati
2,C =4"is a correct labeling of the example CSP. by failing over to alternate services. Refresh attacks tiob
A selection of features from a feature model can be reptem with a combination of code reuse and automation. Refresh
sented by a set of integer variables with domain 0 or 1. Eaehuses an application container’s ability to shutdown giieq-
variable represents a unique feature from the feature modieh’s components, reconfigure the components €reate the
If the variable representing thdessianOrderServices repre- newly desired service composition), and launch the apipica
sented by the variabMy, thenV; = 1 in a labeling of a feature in the new statei(e. transition the application into the new ser-
selection CSP means that the feature is selected in thémsuoluvice composition state). By reusing existing mechanismas th
If the labeling contain¥; = 0, it implies that the feature is notare well-tested and trusted by developers, the need to ouste
selected in the solution. The configuration of an applicaéiod tom recovery actions is eliminated.
its service composition is represented as a set of thesgblesi Second, since rebooting in the same application configura-
that denote which services and application componentsraret®n with the same service composition is unlikely to fix ddi
abled in a configuration. reference to a service, Refresh automatically derives aamelv
Rules dictating the proper composition of the services araid application configuration and service compositiorhisT
specified as constraints over the variables. For example,automated approach to deriving a new service compositoon fr

an application’s feature model allows micro-rebootingécp- DAOs and SprindHotSwappableTargetSourcesswap remote
plied to service composition healing. Normally, with a marservices on-the-fly. The second implementation was pratiuce
ual recovery action implementation process, developerddvoassuming an MDE tool was provided that could model the er-
deduce the correct states to transition the applicatiomantd ror states and recovery actions for the Pet Store and generat
implement the transition logic. Refresh’s automated @giinn the required monitoring code and recovery path logic but not
process eliminates the need for a developer to: 1) determtime implementations of the recovery actions. We refer te thi
where to transition to, 2) decide how to accomplish the frans1DE approach as thilDE error state/recovery patapproach.
tion, and 3) implement the transition. Finally, a third implementation was produced using Refresh

Container Rebooting-based Healing Reduces Potential Un-Manual Implementation: The top table in Figure 11 shows
intended Side-effects: A key benefit of using the container’sthe results of the initial implementation efforts. The makap-
built in component management mechanisms for state trafPach required implementing two key classeSeavice Swap-
tions is that they are guaranteed to bring the non-persiafen per capable of 1) looking up the Spring HotSwappableTarget-
plication state to the desired correct state. This guaedmigps Source for a DAO; 2) connecting to a Hessian, Burlap, SOAP, or
to resolve the problems outlined in Section 3.3 of havinggald RMI remote service; and 3) swapping in the new service for the
with the potential of unintended side-effects from recgnee- failed component/service. As is shown in the results figtme,
tions. class required 77 lines of code. The second class implewhente
With Refresh, the application container shuts down comptias a Spring Methodinterceptor that was used to monitor each
nents, which releases resources and resets in_memorwdteinvocation on a DAO or remote service for Exceptions and call
then re-launches the application with a clean memory stdft appropriate ServiceSwapper when an Exception occurred
With recovery actions, there is the potential that one orencthis class required 20 lines of code. Finally, the compaoment
of the affects on the application will have unforeseen cowere included in the Pet Store by adding them to the XML con-
sequences to the non-persistent in-memory applicatide. stguration files for the Pet Store, which required adding 86di
These unforseen side-effects are not possible with a cmrtaPf XML code.
rebooting approach that resets non-persistent state.

A container rebooting approach does not eliminate the pe#BE Error State / Recovery Path Implementation: The
sibility that persistent application state, such as daabews, analysis for the MDE error state/recovery path approach was
will not be placed into an inconsistent state. The approaelsd pased on a generic model of the minimum effort that would be
however, have a number of properties that make this scenagi§uired for any MDE adaptation modeling tool and framework
far less likely than a recovery action approach. First,@thpo- that did not provide Spring-specific recovery action impbem
nents typicallymustimplementlifecycle methods that are calleghtions. There are no MDE frameworks that we are aware of
by the container to manage the component. If a component dggg have Spring-specific recovery action implementattbas
not properly handle persistent state on shutdown, it is aiflawcould accomplish the required swap. For the MDE analysis, we
the implementation of the component that could emerge—eyggasured only the lines of code required to implement the Ser
if the application never uses healing mechanisms. viceSwapper and to integrate the needed ServiceSwappers in

Second, most enterprise applications maintain the consie configuration files of the Pet Store. We asssumed that all o
tency of persistent application state through transastiéiur- the logic for choosing the correct ServiceSwapper to exgcut
thermore, most enterprise applications use containelgeth the implementation of the MethodInterceptor, and all config
persistence APIs, such as JTA. Even the Non-JTA examplgation code required to integrate the method intercefztods
provided for the Pet Store still use an alternate containgfeir dependent proxies into the configuration file would ée-g
managed persistence API that works across only a single datated by the tool.
source. When the container is used to as the healing tramsiti The MDE error state/recovery action approach used the State
mechanism, any transactions that are in process will besplyop Charts presented in Section 3.1. The full State Chart hgalin
rolled back or committed by the container during the heatihg specification requires 111 states and 102 transitions leetwe
the application’s service composition. states. As can be seen in Figure 11, the MDE approach still
requires 77 lines of code to implement the ServiceSwapper re
covery action but eliminates the 31 lines of code needed {0 im
plement the recovery path execution logic and the 20 lines of
code required for the monitoring implementation. Furtheren

To compare the development effort of including recovery an MDE approach reduces the lines of XML configuration code

tions into the Pet Store, we implemented three versionseof {Hat must be added from 96 to 44 (a roughly 54% savings).

Spring Pet Store that provided the ability to swap failed BAO

with remote services and to swap from failed remote sentwedRefresh Implementation: Finally, we implemented the
other remote services (the modifications for the three imple swapping capabilties in the Pet Store using Refresh. Réfres
tations are available from [15]). One implementation was pruse of Feature models required a total of 21 model elements
duced using a purely manual approach that used Spring'yprafeatures) versus the MDE approache’s 32 model elements (16
ing and aspect infrastructure to implement the monitorirtg® error states and 16 recovery actions associated with tloe err

5 Applying Refresh to the Java Pet Store

Manual MDE State/Action Refresh
Initial Implementation

Modeled Error States or Features 0 16 21
Modeled Recovery Actions 0 16 0
Implement Introspection 20 0 0
Model Error Identification 0 16 16
Implement Recovery Actions 77 77 0
Implement Recovery Path Chooser 31 0 0
Configuration Modifications 96 44 67
Sub Totals 224 169 104

Extend Implementation for Bandwidth
Consideration

Modeled Error States or Features 0 0 17
Modeled Recovery Actions 0 0 0
Implement Introspection 0 0 0
Implement Error Identification 0 0 0
Implement Global Recovery Coordinatc 47 47 0
Implement Recovery Path Chooser 31 0 0
Configuration Modifications 6 6 0
Sub Totals 84 53 17
Totals | 308 222 121

Figure 11: Comparing Implementation Effort for the Heallef Store

states). Refresh also required 16 lines of code to spec#fy times indicate that Refresh can provide high-performamse a
Esper queries over the event stream of the Pet Store to rmphgation healing while reducing modeling and implemeiotat
queries to the failure of one of the 16 features. Refrestésadis effort.

the container’s built-in shutdown/configuration/launchaha-

nisms for healing, eliminated the need to implement the code

for the SerV|c_eS_Napper. Refresh automatlcal_ly genermesé Related Work

required monitoring code for the Pet Store (this was assumed

for the other MDE approach as well). Refresh did require

more lines of code to be modified in the configuration file g . . ; . .
roposed by Birman et al. [7], require predefined invalidesta
the Pet Store versus the other MDE approach. These extga Iin ; 2. i
0 be identified. Birman et al. developed a tool known as As-

of configuration code are a result of adding the Refresh anioy . i
tations dictating how to dynamically modify the applicati® rolabe that stores the state of a set_of resources in a_lhlnyar
of tables. Astrolabe uses SQL queries to determine if the sys

configuration based on a feature selection. tem has reached an invalid state. Once an invalid state lesis be

Overall, the Refresh approach requidgps less implemen- . . L .
) ~ identified, the application can be healed. This approadeisuf
tation effort than the other MDE approach a5i% less than from the five challenges outlined in Section 3. First, sefgara

the ”_‘a”“a' approach. The error state/recovery action appro ueries must be specified to identify the failure of indiatiu
required roughl3_25% less effort than the manual appr(_)aqh. V@%rvice and component type implementations, complicatiag
WOUId expect this percentage to be larger for scenariosireq ealing model. Furthermore, even once an error has been iden
ing more complex monitoring code. The manual approach fifed, complex recovery actions must be devised to rechigy t

b_e_n_efited frOT“ the gxtensive prquing and hqtswapping CaRfor. As we outlined in Section 4, the reliance on featurelmo
bilities of Spring, which substantially reduced its totalelop- els and application container rebooting eliminates thedrtee

ment cost. model error states for each implementation and write coxple
recovery actions.
Refresh Performance: We used Apache JMeter to simulate Microrebooting, a process developed by Candea et al., is a
the concurrent access of 40 different customers to the Beg Stechnique used to restart only the component, or colleaifon
and the time required to complete 4,000 orders. We simulatsuimponents in which the failure occurred. In this way theg-mi
the failure of different DAOs to force Refresh to heal the Patize the number of requests lost and the performance cost of
Store by swapping remote services for the failed DAOs. Adach reboot. The problem with this technique is that the sys-
ter the DAOs were swapped to remote services, we iterativedyn may potentially be left in an inconsistent state follogvi
shutdown the services used by the Pet Store to force theéailea reboot, because while the newly rebooted components are in
to alternate remote services. Over the tests, Refreshgardheir initial state, the rest of the system is midway throitgh
151ms from the time an exception indicating a failure was okervices. Reboots in refresh are based on the same set ®f rule
served until the Pet Store was reconfigured and rebooted wigied to initialize the system. In this way refresh is ensuoed
a new service composition. These times were obtained by rtghoot to a consistent state each time.
ning the Pet Store on a 2.0ghz Intel Core DUO on Windows XPGarlan and Schmerl use a model based approach to self heal-
with 2 gigabytes of RAM. The average time required by the coimg that requires the system to monitor the run time behavior
straint solver to derive a new feature selection was 12mesé&hof each component and handle each component failure irdivid

her autonomic web services approaches, such as the system

ually. This requires the system to have a specific path from[2] K. Birman, R. van Renesse, and W. Vogels. Adding high

set of invalid states to valid states. Refresh uses itsaliz- availability and autonomic behavior to Web servicBsftware
tion procedure to reboot the system in a valid state. In taigw Engineering, 2004. ICSE 2004. Proceedings. 26th Inteondli
refresh greatly decreases the overhead required to de@imath Conference oypages 17-26, 2004.

rameters of the system. [8] G.Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox

. . . Microreboot-a technique for cheap recoveRroceedings of the
Kephart and Chess identify the challenge of testing selfhea 6th Symposium on Operating Systems Design and

ing applications due to the large number of diverse statats th Implementationpages 3144, 2004.
the application may find itself in. Refresh is easily testgd b[g] A. Chun. Constraint programming in Java with JSoleroc.
verifying the set of rules used to determine valid statesis Th™ ~ practical Applications of Constraint Logic Programming,
set of rules is used each time the system is configured orrecon PACLP99 1999.

figured. In this way the system is guaranteed to be configu f@ﬁ R. Johnson and J. HoelleExpert one-on-one J2EE

to satisfy these rules. Thus the accuracy of the system depen = development without EJBVrox, 2004.

completely on the validity of the rules used to specify thease 117 p_ | yckham. The Power of Events: An Introduction to Complex

valid states. Event Processing in Distributed Enterprise Systems
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2001.

7 Concluding Remarks [12] S. Microsystems. Java Pet Store Sample Application.

[13] C. Schulte and P. Stuckey. Efficient constraint progiaga

In Section 3, we showed that modeling each potential erabest ~ €ngines-Arxiv preprint cs.Al/0611002006.

and recovery action for an application’s service compaosiis [14] T. Valesky. Enterprise JavaBeansAddison-Wesley Reading,
complex. Using State Charts, the Java Pet Store requires 111 MA, 1999.

states with 102 transitions to capture a very simple failgve- [15] J. White. Healing pet store case study implementation.
cess from the Pet Store’s middle-tier data access objectsto http:/www.dre.vanderbilt.edu/ jules/petstore-casest

mote services. Furthermore, modeling recovery actionsires ggg‘;'z'p'

developersto implementthe recovery actions. A simplevait '

; ; ; 5] J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wiedsn
ac'qon to swap a remote service for one DAQ in the Pet Store fE E. Wuchner, and L. Fiege. Automated Model-based
quires roughly 77 lines of code.

) .) _ Configuration of Enterprise Java Applications.HBOC 2007
Section 4 illustrated that by using feature models and appli October 2007.

cation container rebooting, our MDE approach, called I:Q#"f'“:"[17] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt
eliminated the need to model each potential error state@nd r ~ Optimizing and Automating Product-Line Variant Selectfon
covery path. Furthermore, Section 5 presented empirisalte Mobile Devices. Inl1th International Software Product Line
that demonstrated a 70% reduction in total modeling elesnent ConferenceSeptember 2007.

required for Refresh’s feature model approach versus MBE ap

proaches that require modeling each individual error statk

recovery path. Furthermore, Refresh also provided a 61% re-

duction in service composition healing implementatiorogff

by eliminating the need to create recovery actions. Refiesh

an opensource project available as part of&teMS Model In-

telligenceproject at http://www.eclipse.org/gmt/gems.

REFERENCES

[1] Esperfaq,
http://esper.codehaus.org/tutorials/faq_esper/fadperformance.

[2] Event stream intelligence with esper and nesper.
http://esper.codehaus.org.

[3] .NET Pet Store,
http://msdn2.microsoft.com/en-us/library/ms97848@xa

[4] The Spring Framework, http://www.springframeworlgtbout.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortésing
Java CSP solvers in the automated analyses of feature models
Post-Proceedings of The Summer School on Generative and
Transformational Techniques in Software Engineering (GEY

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Autondate
Reasoning on Feature Modelkszth Conference on Advanced
Information Systems Engineering (CAISES05, Proceedings)
LNCS 3520:491-503, 2005.

