
Creating Self-healing Service
Compositions with Feature
Models and Micro-rebooting

J. White*
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA
E-mail: jules@dre.vanderbilt.edu
*Corresponding author

H.D. Strowd
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA
E-mail: harrison.strowd@vanderbilt.edu

D.C. Schmidt
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA
E-mail: schmidt@dre.vanderbilt.edu

Abstract:
Service-oriented architectures (SOAs) are emerging as a powerful mechanism to provide loose

coupling and software reuse in enterprise applications. SOAs expose individual reusable software
applications or components as remotely accesible servicesthat communicate using standardized
message-oriented protocols, such as the Simple Object Access Protocol (SOAP). One possibility
that SOAs provide is the ability for applications to heal themselves by failing over to alternate
services when a critical application component or service reference fails. The numerous intricate
details of identifying errors, releasing resources used toaccess services, and plan a recovery
strategy makes developing applications that can heal by swapping services hard.

Model-driven engineering (MDE) offers a potential solution to handling the complexity of
building applications that can heal by swapping services. Existing MDE solutions for building
adaptive applications require developers to explicitly model each potential error state and recov-
ery action, which can be extremely complex. Furthermore, developers must then implement the
complex recovery actions modeled, which adds significant development complexity. This paper
presents a technique based on micro-rebooting that 1) uses feature models to derive a new and
correct service composition when a failure occurs; 2) uses an application’s component container
to shutdown the reference to the failed service; and 3) uses the application container to reboot
the subsytem with the new service composition. The paper presents a case study that shows this
approach significantly reduces both modeling and healing implementation effort.

1 Introduction

Service-oriented architectures (SOAs) are emerging as a power-
ful mechanism to provide loose coupling and software reuse in
enterprise applications. SOAs expose individual reusablesoft-
ware applications or components as remotely accessible ser-
vices that communicate using standardized message-oriented
protocols, such as the Simple Object Access Protocol (SOAP).
The loose coupling provided by message-oriented communica-
tion and standardized protocols allows applications to be rapidly
composed from both newly developed custom components and
from existing services.

Often, within a single organization or group of collaborating

organizations, multiple services are available that can accom-
plish a particular task. The redundancy in services provides the
potential to create applications that can heal themselves by fail-
ing over to leverage similar services when a service in theirser-
vice composition (i.e. the services used by the application) fails.
Failing over to another equivalent but not necessarily identical
service can create robust applications that can adapt to service
failures and remain functional.

Designing and implementing a mechanism to build self-
healing service compositions is a complex endeavor. Since soft-
ware development projects already have low success rates and
high costs, building a service capable of healing is typically not

Copyright c© 200x Inderscience Enterprises Ltd.



feasible. Furthermore, building adaptive mechanisms greatly
increases the complexity of an application and can be difficult
to divorce from application code if the development of the adap-
tive mechanism is not successful.

Model-driven engineering (MDE) provides a potential solu-
tion to managing the complexity of developing adaptive ser-
vices. In an MDE approach, high-level adaptive models are
used to generate the complex adaptive code required to heal the
application when services fail. This approach allows much of
the complex healing code to be generated by the MDE tool and
in many cases, removed in needed. Numerous approaches have
been presented for building MDE models and platforms for en-
terprise applications but these approaches tend to suffer from
one or more of the following problems:

1. they require tight-coupling between application code and
adaptation logic or frameworks

2. they require significant development effort to explicitly
model the numerous potential error states and recovery
paths from an error state to a correct state

3. they require extensive effort to develop the adaptation ac-
tion implementations for a realistic application

In this paper we present an MDE approach and toolset, called
Refresh, for designing and implementing self-healing service
compositions. In Section 4, we show that Refresh does not suf-
fer from the above limitations. Refresh is specifically designed
for healing a service composition when:

1. the application is implemented with a component-based
technology

2. catastrophic failure is imminent

3. the application and any redundant instances in an applica-
tion cluster cannot continue functioning correctly in their
current configuration

4. the application has alternate composable services, that
could potentially be exploited to avoid failure

For each potential error state that an application’s service
composition could enter, most existing MDE adaptation tech-
niques require explicitly modeling both the error state andthe
numerous actions to transition from the error state to a correct
state. For large enterprise applications, there are usually a sig-
nificant number of potential error states and complex nuanced
considerations (e.g. availability of other services, database
locks held, transaction states, etc.) that make it very difficult
to create a model for service composition healing. Rather than
explicitly modeling error states and recovery actions, Refresh
usesFeature Modelsto capture the rules for determining what
is or is not a correct configuration/error state.

Feature models describe an application in terms of points of
variability and their affect on each other. For example, in an e-
commerce application, a feature might be a service for access-
ing an order database. The order feature can have different sub-
features, such as different potential services that can serve as the

order database access service. If one particular order database
access service is chosen, it excludes the other potential order
services from being used (it constrains the other features). If
the chosen service fails, a new feature selection can be derived
that does not include the failed service’s feature.

To avoid the challenges and accidental complexities of both
modeling all possible error states and paths to correct states, Re-
fresh uses an approach based onmicro-rebooting[8]. When a
failure, such as the inability to communicate with a dependent
service, occurs, Refresh 1) uses the application’s featuremod-
els to derive a new and valid service composition from the cur-
rently available services and components; 2) uses the applica-
tion’s component container to shutdown the failing application
subsystem (e.g. remote reference to a failed service); 3) and
restarts the application subsystem in the newly derived config-
uration (that points to a different service and includes anylocal
components needed to communicate with it).

The remainder of this paper is organized as follows: Section2
presents the e-commerce application that we will use as a case
study throughout the paper; Section 3 illustrates current chal-
lenges in applying existing MDE techniques for building adap-
tive applications to our case study; Section 4 describes Refresh’s
approach to using feature models and micro-rebooting to reduce
the complexity of modeling and implementing an application
that can heal; Section 5 presents empirical results obtained from
applying Refresh to our case study; Section 6 compares Refresh
with related work; and Section 7 presents concluding remarks.

2 Case Study: The Java Pet Store

To illustrate the complexity of applying existing MDE tech-
niques to creating healing applications, we present a case study
based on Sun’s Java Pet Store e-commerce application [12]. The
Pet Store provides a web-based storefront for selling pets.The
store includes multiple catetories of pets, products (e.g. Bull-
dog, Iguana), and individual product items (e.g. Female Bull-
dog Puppy). Customers browse for pets and purchase different
items.

Sun and other parties use the Pet Store as a reference appli-
cation to showcase various frameworks, such as the Java 2 En-
terprise Edition frameworks [14]. Because the Pet Store is very
widely known and can serve as a reference for comparing differ-
ent technologies, the Pet Store has been re-implemented in dif-
ferent programming languages and with different frameworks.
For example, Microsoft has created the .NET Pet Store [3] and
the Java Spring Framework [10, 4] has created the Spring Pet
Store. The Spring Framework’s version of the Pet Store in-
cludes support for integrating web services and is the imple-
mentation we have chosen for the case study.

Figure 1, presents a high-level feature model of the features
related to the Pet Store’s data tier. Features are denoted bythe
various boxes in the diagram. The levels of hierarchy represent
subfeatures. For example, all PetStore instances haveDAOs,
Datasources, andJTA as subfeatures (the filled circles at the
top of the child features denote required features). The Pet
Store Java Transaction API (JTA) feature can either be present,
denoted when the childJTAPresentfeature is selected, or not



AccountDAO OrderDAO ProductDAO ItemDAO

DAOs

Single

JTAPresentRef

Multiple

Datasources

JTAPresent JTANotPresent

JTA

PetStore

PetStoreServiceComposition

Figure 1: Pet Store Service Composition Feature Model

present. A Feature can also specify rules restricting the selec-
tion of other features if the feature is selected. For example,
the selection of theDatasources/Multiple features requires that
JTAPresentalso be selected. This requirement is denoted by the
JTAPresentRefrequired feature reference underMultiple.

HessianOrderServiceSOAPOrderService LocalOrderDAO BurlapOrderService

OrderDAO

Figure 2: Feature Model of the J2EE Pet Store’s OrderDAO

The SpringFramework allows individual components in the
Pet Store to be swapped with proxies to remote services. Fig-
ure 1 lists the various DAOs that are available in the PetStore.
Each of these DAOs can potentially be swapped for a remote
service. Figure 2 shows the various options for the OrderDAO.
Either the OrderDAO can be implemented by a local compo-
nent or it can be implemented as a dynamically created Java
proxy to a SOAP, Burlap, Hessian, or RMI order service. The
case study focuses on failing over from the middle-tier DAOs
to different remote services to demonstrate the complexities of
applying existing MDE techniques.

3 Challenges of Creating Self-healing Service Compositions

A very common approach to modeling application healing is to
model the individual error states that the application can enter
and a recovery path (a sequence of recovery actions) to return
the application to a correct state. For example multiple MDE
approaches useState Chartsto capture the various error states
of an application and the sequences of recovery actions to return
to a correct state. Enumerating each potential error state and
each recovery path can require significant modeling complexity.
As we will show through the rest of this section, even when an
MDE tool can generate the majority of the self-healing code for
a service composition, the requirement to model and implement
recovery actions places a heavy burden on developers.

3.1 Challenge 1: Significant Modeling Complexity to
Specify a Recovery Path from an Arbitrary Error
State to a Correct State

A healing model must use different error states for each im-
plementation of a service type or component type. The fail-
ure of the OrderDAO appears to be a fairly simple error condi-
tion to model and specify a recovery path for, but it is not. The

problem with modeling each potential error state and recovery
path is that the series of recovery actions that need to be invoked
is different for the local OrderDAO and remote service imple-
mentation. If the local OrderDAO fails, it may simply need to
be swapped for another implementation. If a remote service
fails, it may be necessary to free resources that were used by
a connection to it, such as memory used by caches or network
ports.

The type of remote service that is being communicated with
can also be important to the recovery action. For example, dif-
ferent recovery paths will be needed to release resources that
were used by a connection to a SOAP-based web service as op-
posed to a Hessian-based web service proxy. Thus, for each
type of service or implementation of the OrderDAO, separate
error states and recovery paths are needed. Requiring separate
error states for each service implementation can cause the num-
ber of error states to explode when a real enterprise application
is modeled.

If the Pet Store’s service composition is modeled using State
Charts, as shown in Figure 3, there are 4 different states for
each DAO. Futhermore, there are 20 different states needed to
represent the potential services and components that can serve
as the Pet Store’s DAOs. Another property of this model worth
noting is that it does not yet include any recovery logic. Instead,
the model just includes some placeholder transitions from one
potential service to the next.

Figure 3: Pet Store Service Composition State Chart

For every error state that the system needs to recover from,
the model must explicitly specify a recovery path. For each



of the numerous error states that can be produced, as described
above, an individual recovery path must be defined to heal the
service composition. For example not only do the failure of a
Hessian and SOAP-based order service need to be modeled sep-
arately, but the series of recovery actions attached to eachalso
needs to be modeled separately. As with error states, the num-
ber of recovery path specifications produced for healing each
component of an enterprise application can be large.

The Pet Store requires a number of recovery actions to take
place in order to swap the service used for a DAO. The various
actions for swapping the OrderDAO to one of the remote ser-
vices is modeled in Figure 4. First, to swap a DAO, a Spring
HotSwappableTargetSource (an object capable of swapping
an active component in the application) must be obtained. Next,
any resources held by the old DAO implementation or DAO
proxy to a remote service must be released. After releasing re-
sources, a new proxy to another remote service can be created.
Finally, the newly created proxy can be swapped into the appli-
cation using theHotSwappableTargetSource. Including the
recovery paths in the model ups the total number of states per
DAO from 4 to 25.

Figure 4: OrderDAO Recovery Paths State Chart

Healing a local error may require evaluating the global ap-
plication state. In the models thus far, if the OrderDAO fails,
it can be replaced with any of the potential viable order services.
If the Java Transaction API (JTA) is being used to manage trans-
actions, the Pet Store can fail over to any remote service andstill
provide proper transaction behavior. If, however, JTA is not be-
ing used to manage transactions, the system can only provide
transactions across a single datasource, meaning that all of the
DAOs must be accessing the same database instance. Requiring
the use of a single database instance prevents an arbitrary ser-
vice from being chosen. In the non-JTA situation, the service
may only fail over to a remote service if the service is access-
ing the same database instance as all other referenced remote
services.

An extension of the OrderDAO recovery State Chart to in-
clude the JTA consideration is show in Figure 5. Each transition
to the swap states now includes a guard to ensure that swapping
is allowed. A newGlobalSwapControllerhas been added to
the model to only allow swapping when either JTA is present
or a single data source is being referenced by the application’s
service composition.

Figure 5: OrderDAO Recovery Paths State Chart when Ac-
counting for JTA

3.2 Challenge 2: Significant Complexity to Write Re-
configuration Code that Can Bring the System from
an Arbitrary Error State to a Correct State.

Regardless of the MDE approach used for building the appli-
cation healing mechanism, developers must always implement
the application-specific recovery actions. This requirement par-
allels the development of enterprise applications and services,
where despite the frameworks used, developers are always re-
quired to implement the core business logic. Some specialized
MDE tools may provide pre-built recovery actions for very spe-
cific domains, but in general, nearly every MDE approach re-
quires developers to write the recovery actions.

For each path from an error state to a recovery state, com-
plex recovery logic must be written. The more error states
that are possible in the application, the more recovery actions
must be written by developers. These numerous recovery ac-
tions can be both expensive to develop and difficult to test - a
potential problem when projects are already prone to failure and
cost overruns.

In the Pet Store application, there are four separate DAOs
that can each be swapped to one of four remote services to avoid
failures. To implement a simple swapping mechanism in the Pet
Store, the Spring framework provides numerous complex utility



classes for hotswapping components and connecting to remote
services, such as Apache Axis web services. Despite these nu-
merous utility classes, as is shown in Section 5, to create an
action to swap just the OrderDAO to one of the four remote ser-
vices requires 77 lines of Java code to implement the swapping
logic and 11 lines of XML code to enable and configure the
swapping action in the Pet Store. Although some level of refac-
toring and object-oriented design can be used to share common
logic across actions, implementing each action still requires sig-
nificant effort.

3.3 Challenge 3: Executing Arbitrary Recovery Actions
in Arbitrary Error States can have Numerous Unfore-
seen Side-effects.

Error states are often specified in such a way that the system
as a whole can be in numerous different states that all fall un-
der the definition of the same error state. For example, when
the OrderDAO fails, the Pet Store can have orders in progress,
category listings in progress, and numerous other nuanced con-
ditions. Building a robust and correct recovery action requires
taking into account the side effects of the recovery action on the
complex overall state of the application.

For example, what will happen if the local OrderDAO is
swapped with a remote service during the submission of one
or more customer orders? Can the orders potentially be left
in an inconsistent state in the database? Does the safety of the
swap depend on whether or not a local or JTA-based transaction
mechanism is used? These complex nuanced questions are not
easy to answer and must be considered for each recovery action
implementation. These intricacies make developing a recovery
action that will not lead to unforseen problems hard.

4 Modeling and Building Healing Adaptations with Refresh

By evaluating the challenges in Sections 3.1-3.3, it is apparent
that they stem from two causes: 1) the requirement that every
error state and recovery path must be explicitly modeled and
2) that developers must implement every complex recovery ac-
tion. This section describes our MDE toolset, calledRefresh,
that eliminates these two sources of substantial complexity.

Refresh uses feature models to capture the rules for what is
a correct system state, which as we will show in Section 4.2,
eliminates the need to explicitly model every error state (since
each state can be checked for correctness on-demand). Sec-
ond, rather than requiring complex recovery actions to be im-
plemented, Refresh uses the application’s component container
to shutdown the application, reconfigure its service composi-
tion, and restart the application in the new and correct state. As
is shown in Section 5, this reuse of standard container mecha-
nisms for adaptation significantly reduces healing development
effort without sacrificing performance.

4.1 Overview of Refresh

Refresh is built around the concept of micro-rebooting. When
an error is observed in the application, Refresh uses the applica-

tion’s component container to shutdown and reboot the applica-
tion’s components. Using the application container to shutdown
the failed subsystem takes milliseconds as opposed to the sec-
onds required for a full application server reboot. Since itis very
likely that rebooting in the same configuration (e.g.referencing
the same failed remote service) will not fix the error, Refresh
derives a new application configuration and service composi-
tion from the application’s feature models that does not contain
the failed features (e.g.remote services).

The service composition dictates the remote services used
by the application. The application configuration determines
any local component implementations, such a SOAP messaging
classes, needed to communicate and interact properly with the
remote services. After deriving the new application configura-
tion and service composition, Refresh uses the applicationcon-
tainer to reboot the application into the desired configuration.
The overall structure of Refresh is shown in Figure 6.

Figure 6: Refresh Structure

Refresh interacts directly with the application container, as
can be seen in Figure 6. During the initial and subsequent
container booting processes, Refresh transparently inserts ap-
plication probesinto the application to observe the application
components. Observations from the application componentsare
sent back to anevent stream processorthat runs queries against
the application event data, such as exception events, to identify
errors. Whenever an application’s service composition needs
to be healed,Environment probesare used to determine avail-
able remote services and global application constraints, such as
whether or not JTA is present. Finally, Refresh includes afea-
ture modelof the application that dictates the rules for deriving
a new application configuration and service composition when
the application needs to be healed and rebooted.

Refresh uses event stream processing [11], to run queries
against the application’s event data and identify feature fail-
ures. The initial implementation of Refresh, based on the Spring
Frameworks IoC container, uses the Esper event stream proces-
sor [2] for Java. Esper is a high-performance event stream pro-
cessor that is capable of handling 100,000 events a second with



2,000 queries on a single dual-core CPU [1].
Each feature in the feature model that could potentially fail

is associated with a group of event stream queries. At runtime,
when a query associated with a feature returns a result, Refresh
is notified that the associated feature has failed, as shown in Fig-
ure 7. The data and objects observed and analyzed by Refresh
are determined by the query specifications.

Figure 7: Error Propogation to Refresh

Once Refresh is notified of a feature failure, it has three main
tasks: 1) to use the container to shutdown the application’scom-
ponents; 2) to use the application’s feature model to derivea
new application configuration and service composition; and3)
to use the container to reboot the application in the new configu-
ration. The sequence of events from a feature failure notification
to the rebooting of the container are shown in Figure 8.

Figure 8: Refresh Reconfiguration, Shutdown, and Launch Re-
covery Sequence

To derive a new configuration of the application does not in-
clude the failed feature, Refresh transforms the feature selec-
tion problem into a constraint satisfaction problem (CSP) us-
ing techniques that have been developed by us an others in
prior work [16, 6, 17]. Once the feature selection problem is
transformed into a CSP, a high-performance general purpose
constraint solver, such as ILog’s JSolver [9], Geocode [13], or

Choco [5], is used to derive a new set of features/configuration
for the application.

Once the new application configuration and service composi-
tion is derived, Refresh invokes the container’s shutdown se-
quence to properly release resources, abort transactions,and
perform other critical activities. The new configuration isin-
jected into the container through programmatic calls or by re-
generating the application’s configuration files [16]. After the
configuration is injected into the container, the application is
launched in the new configuration without the failed service, as
shown in Figure 9.

Figure 9: Refresh Launches the Application in the New Config-
uration

4.2 Solution 1: Use Feature Modeling to Capture the Rules
for Deriving what is Considered a Correct State

Figure 10: Deriving a new Service Composition from the Pet
Store Feature Model

As was pointed out in Section 3.1, modeling each individual
error state and recovery path is complex. Refresh uses feature



modeling to avoid requiring developers to model each individ-
ual error state and recovery path. Feature modeling captures
the rules–rather than individual error states and recoverypaths–
for deriving what constitutes a correct application configuration
and service composition. In terms of healing, feature modeling
describes:

• the component or service types that are needed to compose
the application

• the sets of components or services that can serve as the
implementation of a service type in the application’s com-
position

• the rules dictating the requirements, such as dependent li-
braries, required by each component or service implemen-
tation

• the rules constraining how the choice of one service im-
plementation restricts the choices of other component or
service implementations in the same application composi-
tion

When the failure of a feature is observed, Refresh uses the
feature model of the application to derive an alternate set of
features for the application that does not include the failed fea-
ture. For example, in the Pet Store, when theLocalOrderDAO
feature fails, Refresh uses the feature model to derive an alter-
nate feature selection for the Pet Store. In the example shown
in Figure 10, Refresh chooses a new feature selection that uses
theHessianOrderDAOrather than the failedLocalOrderDAO.

Automated Feature Selection Using a Constraint Solver:
The key to Refresh’s healing capabilities is its ability to use
a constraint solver to automatically derive a new feature selec-
tion for the application. Prior work provides extensive details
on the process for transforming a feature selection probleminto
a constraint satisfaction problem (CSP), which is the inputfor-
mat of a constraint solver, and deriving a feature selection. In
this section, we briefly cover this mapping.

A constraint satisfaction problem is a series of variables and
a set of constraints over the variables. For example, "A+B<C"
is a constraint satisfaction problem over the integer variablesA,
B, andC. A constraint solver automatically derives a correct
labeling (values for the variables). The labeling "A = 1,B =

2,C = 4" is a correct labeling of the example CSP.
A selection of features from a feature model can be repre-

sented by a set of integer variables with domain 0 or 1. Each
variable represents a unique feature from the feature model.
If the variable representing theHessianOrderServiceis repre-
sented by the variableV1, thenV1 = 1 in a labeling of a feature
selection CSP means that the feature is selected in the solution.
If the labeling containsV1 = 0, it implies that the feature is not
selected in the solution. The configuration of an application and
its service composition is represented as a set of these variables
that denote which services and application components are en-
abled in a configuration.

Rules dictating the proper composition of the services are
specified as constraints over theVi variables. For example,

since only one ofHessianOrderServiceandSOAPOrderService
can be used at a time by the Pet Store, a constraint can be
used to capture this rule. Let,V2 be the variable representing
theSOAPOrderService. This rule is specified as the constraint
V1 = 1→V2 = 0. As described in [16], complex rules, such as
memory constraints, can be described using a CSP.

When a feature is flagged as failed, Refresh adds a new con-
straint to the feature selection process preventing the failed fea-
ture from being selected (e.g., Vi = 0). Refresh then uses a the
constraint solver to derive a new feature selection that canbe
used by the application based on the environmental constraints
(e.g. JTA vs. No JTA) and feature model composition con-
straints (e.g., only one of the order services may be selected
at a time). When only standard feature modeling rules, like
excludes, requires, cardinality, and attribute values areused to
describe constraints, the solver can very quickly produce acor-
rect solution [17]. More complex constraints, such as memory
resource constraints, can be added to augment standard feature
modeling rules but require more care in the feature model spec-
ification process to allow the solver to quickly derive a solu-
tion [17].

Eliminating Error State and Recovery Path Modeling Com-
plexity: Because the new feature selection is introduced into
the application by shutting down the old references to remote
services and launching the new component configuration and
service composition, separate recovery actions are not needed.
Furthermore, since feature models specify the rules for deriv-
ing a correct/incorrect configuration and do not enumerate all
possible error configurations, they require significantly fewer
modeling elements. As we will show in Section 5, the equiva-
lent healing behavior to the 111 state State Chart describedin
Section 3.1 can be produced in Refresh using a feature model
with 33 features –a roughly 70% reduction in total model ele-
ments. The feature models also have 33 connections versus the
102 connections for the State Chart.

4.3 Reusing the Component Container’s Shut-
down/Configuration/Launch Mechanisms for State
Transitions

Sections 3.2-3.3 illustrated the complexity and large develop-
ment burden of writing recovery actions to heal an application
by failing over to alternate services. Refresh attacks the prob-
lem with a combination of code reuse and automation. Refresh
reuses an application container’s ability to shutdown an applica-
tion’s components, reconfigure the components (i.e. create the
newly desired service composition), and launch the application
in the new state (i.e. transition the application into the new ser-
vice composition state). By reusing existing mechanisms that
are well-tested and trusted by developers, the need to writecus-
tom recovery actions is eliminated.

Second, since rebooting in the same application configura-
tion with the same service composition is unlikely to fix a failed
reference to a service, Refresh automatically derives a newand
valid application configuration and service composition. This
automated approach to deriving a new service composition from



an application’s feature model allows micro-rebooting to be ap-
plied to service composition healing. Normally, with a man-
ual recovery action implementation process, developers would
deduce the correct states to transition the application into and
implement the transition logic. Refresh’s automated derivation
process eliminates the need for a developer to: 1) determine
where to transition to, 2) decide how to accomplish the transi-
tion, and 3) implement the transition.

Container Rebooting-based Healing Reduces Potential Un-
intended Side-effects: A key benefit of using the container’s
built in component management mechanisms for state transi-
tions is that they are guaranteed to bring the non-persistent ap-
plication state to the desired correct state. This guarantee helps
to resolve the problems outlined in Section 3.3 of having to deal
with the potential of unintended side-effects from recovery ac-
tions.

With Refresh, the application container shuts down compo-
nents, which releases resources and resets in-memory state, and
then re-launches the application with a clean memory state.
With recovery actions, there is the potential that one or more
of the affects on the application will have unforeseen con-
sequences to the non-persistent in-memory application state.
These unforseen side-effects are not possible with a container
rebooting approach that resets non-persistent state.

A container rebooting approach does not eliminate the pos-
sibility that persistent application state, such as database rows,
will not be placed into an inconsistent state. The approach does,
however, have a number of properties that make this scenario
far less likely than a recovery action approach. First, all compo-
nents typicallymustimplement lifecycle methods that are called
by the container to manage the component. If a component does
not properly handle persistent state on shutdown, it is a flawin
the implementation of the component that could emerge–even
if the application never uses healing mechanisms.

Second, most enterprise applications maintain the consis-
tency of persistent application state through transactions. Fur-
thermore, most enterprise applications use container-managed
persistence APIs, such as JTA. Even the Non-JTA examples
provided for the Pet Store still use an alternate container-
managed persistence API that works across only a single data-
source. When the container is used to as the healing transition
mechanism, any transactions that are in process will be properly
rolled back or committed by the container during the healingof
the application’s service composition.

5 Applying Refresh to the Java Pet Store

To compare the development effort of including recovery ac-
tions into the Pet Store, we implemented three versions of the
Spring Pet Store that provided the ability to swap failed DAOs
with remote services and to swap from failed remote servicesto
other remote services (the modifications for the three implemen-
tations are available from [15]). One implementation was pro-
duced using a purely manual approach that used Spring’s proxy-
ing and aspect infrastructure to implement the monitoring of the

DAOs and SpringHotSwappableTargetSourcesto swap remote
services on-the-fly. The second implementation was produced
assuming an MDE tool was provided that could model the er-
ror states and recovery actions for the Pet Store and generate
the required monitoring code and recovery path logic but not
the implementations of the recovery actions. We refer to this
MDE approach as theMDE error state/recovery pathapproach.
Finally, a third implementation was produced using Refresh.

Manual Implementation: The top table in Figure 11 shows
the results of the initial implementation efforts. The manual ap-
proach required implementing two key classes aServiceSwap-
per capable of 1) looking up the Spring HotSwappableTarget-
Source for a DAO; 2) connecting to a Hessian, Burlap, SOAP, or
RMI remote service; and 3) swapping in the new service for the
failed component/service. As is shown in the results figure,the
class required 77 lines of code. The second class implemented
was a Spring MethodInterceptor that was used to monitor each
invocation on a DAO or remote service for Exceptions and call
the appropriate ServiceSwapper when an Exception occurred.
This class required 20 lines of code. Finally, the components
were included in the Pet Store by adding them to the XML con-
figuration files for the Pet Store, which required adding 96 lines
of XML code.

MDE Error State / Recovery Path Implementation: The
analysis for the MDE error state/recovery path approach was
based on a generic model of the minimum effort that would be
required for any MDE adaptation modeling tool and framework
that did not provide Spring-specific recovery action implemen-
tations. There are no MDE frameworks that we are aware of
that have Spring-specific recovery action implementationsthat
could accomplish the required swap. For the MDE analysis, we
measured only the lines of code required to implement the Ser-
viceSwapper and to integrate the needed ServiceSwappers into
the configuration files of the Pet Store. We asssumed that all of
the logic for choosing the correct ServiceSwapper to execute,
the implementation of the MethodInterceptor, and all config-
uration code required to integrate the method interceptorsand
their dependent proxies into the configuration file would be gen-
erated by the tool.

The MDE error state/recovery action approach used the State
Charts presented in Section 3.1. The full State Chart healing
specification requires 111 states and 102 transitions between
states. As can be seen in Figure 11, the MDE approach still
requires 77 lines of code to implement the ServiceSwapper re-
covery action but eliminates the 31 lines of code needed to im-
plement the recovery path execution logic and the 20 lines of
code required for the monitoring implementation. Furthermore,
an MDE approach reduces the lines of XML configuration code
that must be added from 96 to 44 (a roughly 54% savings).

Refresh Implementation: Finally, we implemented the
swapping capabilties in the Pet Store using Refresh. Refresh’s
use of Feature models required a total of 21 model elements
(features) versus the MDE approache’s 32 model elements (16
error states and 16 recovery actions associated with the error



Figure 11: Comparing Implementation Effort for the HealingPet Store

states). Refresh also required 16 lines of code to specify the
Esper queries over the event stream of the Pet Store to map
queries to the failure of one of the 16 features. Refresh’s use of
the container’s built-in shutdown/configuration/launch mecha-
nisms for healing, eliminated the need to implement the code
for the ServiceSwapper. Refresh automatically generates the
required monitoring code for the Pet Store (this was assumed
for the other MDE approach as well). Refresh did require 23
more lines of code to be modified in the configuration file of
the Pet Store versus the other MDE approach. These extra lines
of configuration code are a result of adding the Refresh anno-
tations dictating how to dynamically modify the application’s
configuration based on a feature selection.

Overall, the Refresh approach required4̃8% less implemen-
tation effort than the other MDE approach and5̃4% less than
the manual approach. The error state/recovery action approach
required roughlỹ25% less effort than the manual approach. We
would expect this percentage to be larger for scenarios requir-
ing more complex monitoring code. The manual approach also
benefited from the extensive proxying and hotswapping capa-
bilities of Spring, which substantially reduced its total develop-
ment cost.

Refresh Performance: We used Apache JMeter to simulate
the concurrent access of 40 different customers to the Pet Store
and the time required to complete 4,000 orders. We simulated
the failure of different DAOs to force Refresh to heal the Pet
Store by swapping remote services for the failed DAOs. Af-
ter the DAOs were swapped to remote services, we iteratively
shutdown the services used by the Pet Store to force the failover
to alternate remote services. Over the tests, Refresh averaged
151ms from the time an exception indicating a failure was ob-
served until the Pet Store was reconfigured and rebooted with
a new service composition. These times were obtained by run-
ning the Pet Store on a 2.0ghz Intel Core DUO on Windows XP
with 2 gigabytes of RAM. The average time required by the con-
straint solver to derive a new feature selection was 12ms. These

times indicate that Refresh can provide high-performance ap-
plication healing while reducing modeling and implementation
effort.

6 Related Work

Other autonomic web services approaches, such as the system
proposed by Birman et al. [7], require predefined invalid states
to be identified. Birman et al. developed a tool known as As-
trolabe that stores the state of a set of resources in a hierarchy
of tables. Astrolabe uses SQL queries to determine if the sys-
tem has reached an invalid state. Once an invalid state has been
identified, the application can be healed. This approach suffers
from the five challenges outlined in Section 3. First, separate
queries must be specified to identify the failure of individual
service and component type implementations, complicatingthe
healing model. Furthermore, even once an error has been iden-
tified, complex recovery actions must be devised to rectify the
error. As we outlined in Section 4, the reliance on feature mod-
els and application container rebooting eliminates the need to
model error states for each implementation and write complex
recovery actions.

Microrebooting, a process developed by Candea et al., is a
technique used to restart only the component, or collectionof
components in which the failure occurred. In this way they min-
imize the number of requests lost and the performance cost of
each reboot. The problem with this technique is that the sys-
tem may potentially be left in an inconsistent state following
a reboot, because while the newly rebooted components are in
their initial state, the rest of the system is midway throughits
services. Reboots in refresh are based on the same set of rules
used to initialize the system. In this way refresh is ensuredto
reboot to a consistent state each time.

Garlan and Schmerl use a model based approach to self heal-
ing that requires the system to monitor the run time behavior
of each component and handle each component failure individ-



ually. This requires the system to have a specific path from a
set of invalid states to valid states. Refresh uses its initializa-
tion procedure to reboot the system in a valid state. In this way
refresh greatly decreases the overhead required to define the pa-
rameters of the system.

Kephart and Chess identify the challenge of testing self heal-
ing applications due to the large number of diverse states that
the application may find itself in. Refresh is easily tested by
verifying the set of rules used to determine valid states. This
set of rules is used each time the system is configured or recon-
figured. In this way the system is guaranteed to be configured
to satisfy these rules. Thus the accuracy of the system depends
completely on the validity of the rules used to specify the set of
valid states.

7 Concluding Remarks

In Section 3, we showed that modeling each potential error state
and recovery action for an application’s service composition is
complex. Using State Charts, the Java Pet Store requires 111
states with 102 transitions to capture a very simple failover pro-
cess from the Pet Store’s middle-tier data access objects tore-
mote services. Furthermore, modeling recovery actions requires
developers to implement the recovery actions. A simple failover
action to swap a remote service for one DAO in the Pet Store re-
quires roughly 77 lines of code.

Section 4 illustrated that by using feature models and appli-
cation container rebooting, our MDE approach, called Refresh,
eliminated the need to model each potential error state and re-
covery path. Furthermore, Section 5 presented empirical results
that demonstrated a 70% reduction in total modeling elements
required for Refresh’s feature model approach versus MDE ap-
proaches that require modeling each individual error stateand
recovery path. Furthermore, Refresh also provided a 61% re-
duction in service composition healing implementation effort
by eliminating the need to create recovery actions. Refreshis
an opensource project available as part of theGEMS Model In-
telligenceproject at http://www.eclipse.org/gmt/gems.

REFERENCES

[1] Esper faq,
http://esper.codehaus.org/tutorials/faq_esper/faq.html#performance.

[2] Event stream intelligence with esper and nesper.
http://esper.codehaus.org.

[3] .NET Pet Store,
http://msdn2.microsoft.com/en-us/library/ms978487.aspx.

[4] The Spring Framework, http://www.springframework.org/about.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using
Java CSP solvers in the automated analyses of feature models.
Post-Proceedings of The Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE).

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
Reasoning on Feature Models.17th Conference on Advanced
Information Systems Engineering (CAiSEŠ05, Proceedings),
LNCS, 3520:491–503, 2005.

[7] K. Birman, R. van Renesse, and W. Vogels. Adding high
availability and autonomic behavior to Web services.Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International
Conference on, pages 17–26, 2004.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot-a technique for cheap recovery.Proceedings of the
6th Symposium on Operating Systems Design and
Implementation, pages 31–44, 2004.

[9] A. Chun. Constraint programming in Java with JSolver.Proc.
Practical Applications of Constraint Logic Programming,
PACLP99, 1999.

[10] R. Johnson and J. Hoeller.Expert one-on-one J2EE
development without EJB. Wrox, 2004.

[11] D. Luckham.The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 2001.

[12] S. Microsystems. Java Pet Store Sample Application.

[13] C. Schulte and P. Stuckey. Efficient constraint propagation
engines.Arxiv preprint cs.AI/0611009, 2006.

[14] T. Valesky.Enterprise JavaBeans. Addison-Wesley Reading,
MA, 1999.

[15] J. White. Healing pet store case study implementation.
http://www.dre.vanderbilt.edu/ jules/petstore-casestudy-
code.zip,
2007.

[16] J. White, K. Czarnecki, D. C. Schmidt, G. Lenz, C. Wienands,
E. Wuchner, and L. Fiege. Automated Model-based
Configuration of Enterprise Java Applications. InEDOC 2007,
October 2007.

[17] J. White, A. Nechypurenko, E. Wuchner, and D. C. Schmidt.
Optimizing and Automating Product-Line Variant Selectionfor
Mobile Devices. In11th International Software Product Line
Conference, September 2007.


