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1    Abstract 
	
  

Loosely-coupled publish/subscribe messaging 
systems facilitate optimized deployment of software 
applications to hardware processors. Intelligent 
algorithms can be used to refine system deployments to 
reduce system cost and resource requirements, such as 
memory and processor utilization. This article describes 
how we applied a computer assisted deployment 
optimization tool to reduce the required processors and 
network bandwidth consumption of a legacy flight 
avionics system. 

 
2     Software Defense Application 
 
 The deployment topology of a distributed system 
determines how software is mapped to hardware. 
Optimizing the deployment topology of DoD distributed 
embedded systems has a significant impact on how 
efficiently the software utilizes the hardware. 
Deployment optimization can also help minimize costs 
by increasing hardware efficiency without requiring 
changes to the software or hardware architecture. This 
increase in hardware efficiency, in turn, helps reduce 
fuel consumption, increase operational ranges, and 
decrease cost. 
 
 
3    Introduction 
 
 Current trends and challenges. Several trends are 
shaping the development of embedded flight avionics 
systems. First, there is a migration away from older 
federated computing architectures where each 
subsystem occupied a physically separate hardware 
component to integrated computing architectures where 
multiple software applications implementing different 
capabilities share a common set of computing platforms. 
Second, publish/subscribe (pub/sub) based messaging 
systems are increasingly replacing the use of hard-coded 
cyclic executives. 
 These trends are yielding a number of benefits. For 
example, integrated computing architectures create an 
opportunity for system-wide optimization of deployment 
topologies, which map software components and their  
 

 
 
 
associated tasks to hardware processors as shown in 
Figure 1.1 
 
Optimized deployment topologies can pack more 
software components onto the hardware, thereby 
optimizing system processor, memory, and I/O 
utilization [11, 13, 8]. Increasing hardware utilization 
can decrease the total hardware processors that are 
needed, lowering both implementation costs and 
maintenance complexity. Moreover, reducing the 
required hardware infrastructure has other positive side 
effects, such as reducing weight and power 
consumption. 

 
Figure 1. Flight Avionics Deployment Topology 
 
 Open problems. Developing computer-assisted 
methods and tools to deploy software to hardware in 
embedded systems is hard [1, 4] due to the number and 
complexity of constraints that must be addressed. 
 For example, developers must ensure that each 
software component is provided with sufficient 
processing time to meet any real-time scheduling 
constraints [12]. Likewise, resource constraints (such as 
total available memory on each processor) must also be 
respected when mapping software components to 
hardware components [12, 5]. Moreover, assigning real-
time tasks in multiprocessor and/or single-processor 
machines is NP-Hard [3], which means that such a large 
number of potential deployments exist that it would take 
years to investigate all possible solutions. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  This work was sponsored in part by the Air Force Research 
Laboratory under FA8750-08-C-0064 & FA8750-08-1-0025.	
  

© 2010 by Vanderbilt University and Lockheed Martin Corporation	
  



 Current algorithmic deployment techniques are 
largely based on heuristic bin-packing [3, 7, 2], which 
represents the software tasks as items that take up a set 
amount of space and hardware processors as bins that 
provide limited space. Bin-packing algorithms try to 
place all the items into as few bins as possible without 
exceeding the space provided by the bin in which they 
are placed. These algorithms use a heuristic, such as 
sorting the items based on sized and placing them in the 
first bin they fit in, to reduce the number of solutions 
that are considered and avoid exhaustive solution space 
exploration. 
 Conventional bin-packing deployment techniques 
take a one-dimensional view of deployment problems 
by just focusing on a single deployment concern at a 
time. Example concerns include resource constraints, 
scheduling constraints, or fault-tolerance constraints. In 
production flight avionics systems, however, 
deployments must meet combinations of these concerns 
simultaneously. 
 Solution approach ⇒ Computer-assisted 
deployment optimization. This paper describes and 
validates a method and tool called ScatterD that we 
developed to perform computer-assisted deployment 
optimization for flight avionics systems. The ScatterD 
model-driven engineering [10] deployment tool 
implements the Scatter Deployment Algorithm, which 
combines heuristic bin-packing with optimization 
algorithms, such as genetic algorithms [6] or particle 
swarm optimization techniques [9] that use evolutionary 
or bird flocking behavior to perform blackbox 
optimization. This article shows how flight avionics 
system developers have used ScatterD to automate the 
reduction of processors and network bandwidth in 
complex embedded system deployments. 
The remainder of this article is organized as follows: 
Section 4 outlines a flight avionics deployment case 
study we use to motivate the challenges and solutions 
throughout the paper; Section 5 describes the challenges 
faced by developers when attempting to optimize a 
representative flight avionics deployment topology; 
Section 6 discusses the ScatterD tool for deployment 
optimization; Section 7 provides empirical results 
demonstrating the reductions in hardware footprint and 
network bandwidth consumption that ScatterD can 
produce; and Section 8 presents concluding remarks. 
 
4     Modern Embedded Flight Avionics 
Systems: A Case Study 
 
 Over the past 20 years, flight avionics systems have 
become increasingly sophisticated. Modern aircraft now 
depend heavily on software executing atop a complex 
embedded network for higher-level capabilities, such as 
more sophisticated flight control and advanced mission 
computing functions. To accommodate the increased 
amount of software required, avionics systems have 
moved from older federated computing architectures to 

integrated computing architectures that combine 
multiple software applications together on a single 
computing platform containing many software 
components. 
 The class of flight avionics system targeted by our 
work is a networked parallel message-passing 
architecture containing many computing nodes. At the 
individual node level, ARINC 653-compliant time and 
space partitioning separates the software applications 
into sets with compatible safety and security 
requirements. Inside a given time partition, the 
applications run within a hard real-time deadline 
scheduler that executes the applications at a variety of 
harmonic periods. 
 The integrated computing architecture shown in 
Figure 2 has benefits and challenges. Key benefits 
include better optimization of hardware resources and 
increased flexibility, which result in a smaller hardware 
footprint, lower energy use, decreased weight, and 
enhanced ability to add new software to the aircraft 
without updating the hardware. The key challenge, 
however, is increased system integration complexity. In 
particular, while the homogeneity of processors gives 
system designers a great deal of freedom allocating 
software applications to computing nodes, optimizing 
this allocation involves simultaneously balancing 
multiple competing resource demands. 
 For example, even if the processor demands of a 
pair of applications would allow them to share a 
platform, their respective I/O loads may be such that 
worst-case arrival rates would saturate the network 
bandwidth flowing into a single node. This problem is 
complicated for single-core processors used in current 
integrated computing architectures. Moreover, this 
problem is being exacerbated with the adoption and 
fielding of multi-core processors, where competition for 
shared resources expands to include internal buses, 
cache memory contents, and memory access bandwidth. 
Artifacts complete with data describing the 
computational interactions and requirements of this 
system were provided by the Systems and Software 
Producibility Collaboration and Experimentation 
Environment (SPRUCE) web portal 
www.sprucecommunity.org. The SPRUCE web 
portal allows industry partners to create challenge 
problems complete with artifacts comprised of real data. 
These problems can then be paired with members of the 
research community that maximize the potential of 
discovering new, innovative solutions. 
 
5 Deployment Optimization Challenges 
  
 This section describes the challenges facing 
developers when attempting to create a deployment 
topology for a flight avionics system. The discussion 
below assumes a networked parallel message-passing 



	
  

 
Figure 2. An Integrated Computing Architecture for Embedded Flight Avionics 

architecture (such as the one described in Section 4). 
The goal is to minimize the number of processors and 
the total network bandwidth resulting from 
communication between software tasks. 
 
5.1 Challenge 1: Satisfying Ratemonotonic 
Scheduling Constraints Efficiently 
 
 In real-time systems, such as the embedded flight 
avionics case study from Section 4, either fixed priority 
scheduling algorithms, such as rate-monotonic (RM) 
scheduling, or dynamic priority scheduling algorithms, 
such as earliest deadline-first (EDF), control the 
execution ordering of individual tasks on the processors. 
The deployment topology must ensure that the set of 
software components allocated to each processor can be 
scheduled and will not miss real-time deadlines. Finding 
a deployment topology for a series of software 
components that ensures the ability to schedule all tasks 
is called “multiprocessor scheduling” and is NP-Hard 
[3]. 
 A variety of algorithms, such as bin-packing 
algorithm variations, have been created to solve the 
multiprocessor scheduling problem. A key limitation of 
applying these algorithms to optimize deployments is 
that bin-packing does not allow developers to specify 
which deployment characteristics to optimize. For 
example, bin-packing does not allow developers to 

specify an objective function based on the overall 
network bandwidth consumed by a deployment. We 
describe how ScatterD ensures scheduling constraints 
are met in Section 6.1 and allows for complex objective 
functions, such as network bandwidth reduction.  
 
 
 
5.2 Challenge 2: Reducing the Complexity of 
Memory, Cost, and Other Resource Constraints 
 
 Processor execution time is not the only type of 
resource that must be managed while searching for a 
deployment topology. Hardware nodes often have other 
limited but critical resources, such as main memory or 
core cache, necessary for the set of software 
components it supports to function. Developers must 
ensure that the components deployed to a processor do 
not consume more resources than are present. 
 If each processor does not provide a sufficient 
amount of resources to support all tasks on the 
processor, a task will not execute properly, resulting in a 
failure. Moreover, since each processor used by a 
deployment has a financial cost associated with it, 
developers may need to adhere to a global budget, as 
well as scheduling constraints. We describe how 



ScatterD ensures that resources constraints are satisfied 
in Section 6.2. 
 
5.3 Challenge 3: Satisfying Complex Dynamic 
Network Resource and Topology Constraints 
 
 Embedded flight avionics systems must often ensure 
that not only processor resource limitations are adhered 
to, but network resources (such as bandwidth) are not 
over consumed. The consumption of network resources 
is determined by the number of interconnected 
components that are not collocated on the same 
processor. For example, if two components are 
collocated on the same processor, they do not consume 
any network bandwidth. 
 Adding the consideration of network resources to 
deployment substantially increases the complexity of 
finding a software-to-hardware deployment topology 
mapping that meets requirements. The impact of the 
component’s deployment on the network, however, 
cannot be calculated in isolation of the other 
components. The impact is determined by finding all 
other components that it communicates with, 
determining if they are collocated, and then calculating 
the bandwidth consumed by the interactions with those 
that are not collocated. We describe how ScatterD helps 
minimize the bandwidth required by a system 
deployment in Section 6.3. 
 
6     ScatterD: A Deployment Optimization 
Tool to Minimize Bandwidth and Processor 
Resources 
 
 Heuristic bin-packing algorithms work well for 
multiprocessor scheduling and resource allocation. As 
discussed in Section 5, however, heuristic bin-packing is 
not effective for optimizing designs for certain system-
wide properties, such as network bandwidth 
consumption, and hardware/software cost. Metaheuristic 
algorithms [6, 9] are a promising approach to optimize 
system-wide properties that are not easily optimized 
with conventional bin-packing algorithms. These types 
of algorithms evolve a set of potential designs over a 
series of iterations using techniques, such as simulated 
evolution or bird flocking. At the end of the iterations, 
the best solution(s) that evolved out from the group is 
output as the result. 
 Although metaheuristic algorithms are powerful, 
they have historically been hard to apply to large-scale 
production embedded systems since they typically 
perform poorly on problems that are highly constrained 
and have few correct solutions. Applying simulated 
evolution and bird flocking behaviors for these types of 
problems tend to randomly mutate designs in ways that 
violate constraints. For example, using an evolutionary 
process to splice together two deployment topologies is 
likely to yield a new topology that is not real-time 

schedulable. 
 Below we explain how ScatterD integrates the 
ability of heuristic bin-packing algorithms to generate 
correct solutions to scheduling and resource constraints 
with the ability of metaheuristic algorithms to flexibly 
minimize network bandwidth and processor utilization 
and address the challenges in Section 5. 
 
6.1 Satisfying Real-time Scheduling Constraints 
with ScatterD 
 
 ScatterD ensures that the numerous deployment 
constraints (such as the real-time scheduling constraints 
described in Challenge 1 from Section 5.1) are satisfied 
by using heuristic bin-packing to allocate software tasks 
to processors. Conventional bin-packing algorithms for 
multiprocessor scheduling are designed to take as input 
a series of items (e.g., tasks or software components), 
the set of resources consumed by each item (e.g., 
processor and memory), and the set of bins (e.g., 
processors) and their capacities. The algorithm outputs 
an assignment of items to bins (e.g., a mapping of 
software components to processors). 
 ScatterD ensures that all tasks of the flight avionics 
system discussed in Section 4 can be scheduled by using 
response-time analysis. The response time resulting 
from allocating a software task of the avionics system to 
a processor is analyzed to determine if a software 
component can be scheduled on a given processor 
before allocating its associated item to a bin. If the 
response time is fast enough to meet the real-time 
deadlines of the software task, the software task can be 
allocated to the processor. 
 
6.2 Satisfying Resource Constraints with 
ScatterD 
 
 To ensure that other resource constraints (such as 
memory requirements described in Challenge 2 from 
Section 5.2) of each software task are met, we specify a 
capacity for each bin that is defined by the amount of 
each computational resource provided by the 
corresponding processor in the avionics hardware 
platform. Similarly, the resource demands of each 
avionics software task define the resource consumption 
of each item. Before an item can be placed in a bin, 
ScatterD verifies that the total consumption of each 
resource utilized by the corresponding avionics software 
component and software components already placed on 
the processor does not exceed the resources provided. 
 
6.3 Minimizing Network Bandwidth and 
Processor Utilization with ScatterD 
 
 To address deployment optimization issues (such as 
those raised in Challenge 3 from Section 5.3), ScatterD 
uses heuristic bin-packing to ensure that all tasks can be 



	
  

scheduled and resource constraints are met. If the 
heuristics are not altered, bin-packing will always yield 
the same solution for a given set of software tasks and 
processors. The number of processors utilized and the 
network bandwidth requirements will therefore not 
change from one execution of the bin-packing algorithm 
to another. In a vast deployment solution space 

associated with a large-scale flight avionics system, 
however, there may be many other deployments that 
substantially reduce the number of processors and 
network bandwidth required, while also satisfying all 
design constraints. 
  

 

 
Figure 3. ScatterD Deployment Optimization Process 

 
 To search for avionics deployment topologies with 
minimal processor and bandwidth requirements—while 
still ensuring that other design constraints are met—
ScatterD uses metaheuristic algorithms to seed the bin-
packing algorithm. In particular, metaheuristic 
algorithms are used to search the deployment space and 
select a subset of the avionics software tasks that must 
be packed prior to the rest of the software tasks. By 
forcing an altered bin-packing order, new deployments 
with different bandwidth and processor requirements are 
generated. Since bin-packing is still the driving force 
behind allocating software tasks, design constraints have 
a higher probability of being satisfied. By using 
metaheuristic algorithms to search the design space— 
and then using bin-packing to allocate software tasks to 
processors—ScatterD can generate deployments that 
meet all design constraints while also minimizing 
network bandwidth consumption and reducing the 
number of required processors in the avionics platform, 
as shown in Figure 3. 
 
7 Empirical Results 
 
 This section presents the results of configuring the 
ScatterD tool to combine two metaheuristic algorithms 
(particle swarm optimization and a genetic algorithm) 
with bin-packing to optimize the deployment of the 
embedded flight avionics system described in Section 4. 
We applied these techniques to determine if (1) a 

deployment exists that increases processor utilization to 
the extent that legacy processors could be removed and 
(2) the overall network bandwidth requirements of the 
deployment were reduced due to collocating 
communicating software tasks on a common processor.  
 The first experiment examined applying ScatterD to 
minimize the number of processors in the legacy flight 
avionics system deployment described in Section 4 This 
system originally required 14 processors to support all 
necessary software tasks. Applying ScatterD with 
particle swarm optimization techniques and genetic 
algorithms resulted in increased utilization of the 
processors, reducing the number of processors needed  
to deploy the software of the system to eight in both 
cases. The remaining six processors could then be 
removed from the deployment without affecting system 
performance, resulting in the 42.8% reduction shown in 
Figure 4. 
 The ScatterD tool was also applied to minimize the 
bandwidth consumed due to communication by software 
tasks allocated to different processors in the legacy 
avionics system described in Section 4. Reducing the 
bandwidth requirements of the system leads to more 
efficient, faster communication while also reducing 
power consumption. The legacy deployment consumed 
1.83 · 1008 bytes of bandwidth. Both versions of the 
ScatterD tool yielded a deployment that reduced 
bandwidth by 4.39 · 1007 bytes or 24%, as shown in 
Figure 4. 



 While these experiments prove the effectiveness of 
applying ScatterD to legacy system deployments, it is 
important to note that ScatterD can also yield benefits if 
applied when initially designing a new system. If the 
potential processor utilization and network interactions 
of the software tasks that comprise the system are 
known, then ScatterD can be applied to potentially yield 
a deployment with reduced processor requirements and 
network bandwidth consumption.  
	
  

 
Figure 4. Network Bandwidth and Processor 
Reduction in Optimized Deployment 
 
8 Concluding Remarks 
 
 Optimizing deployment topologies on legacy 
embedded flight avionics system can yield substantial 
benefits, such as reducing hardware costs and power 
consumption. The following are a summary of the 
lessons we learned applying our ScatterD tool for 
deployment optimization to a legacy flight avionics 
system: 

• Multiple constraints make deployment 
planning hard. Avionics deployments must 
adhere to a wide range of strict constraints, such 
as resource, collocation, scheduling, and network 
bandwidth. Deployment optimization tools must 
account for all these constraints when 
determining a new deployment. 

• A huge deployment space requires intelligent 
search techniques. The vast majority of 
potential deployments that could be created 
violate one or more design constraints. Intelligent 
and automated techniques, such as hybrid-
heuristic bin-packing, should therefore be 
applied to discover valid “near-optimal” 
deployments. 

• Substantial processor and network bandwidth 
reductions are possible. Applying hybrid-
heuristic bin-packing to the flight avionics 
system resulted in 42.8% processor reduction 
and 24% bandwidth reduction. Our future work 

is applying hybrid-heuristic bin-packing to other 
embedded system deployment domains, such as 
automobiles, multi-core processors, and tactical 
smartphone applications. 

• ScatterD can be applied throughout system 
lifetime. Systems may initially include 
expansion resources for inevitable system 
maintenance and to support new software that 
becomes available during the 20-30 year system 
lifetime. These expansion resources can be used 
to support new software that is added to the 
system overtime. Expansion resources, however, 
are finite and may not be necessary for a large 
portion of the system lifecycle leading to 
increased system weight and cost for an 
underutilized architecture. Therefore is critical 
that all system resources, such as processor 
utilization and network bandwidth, are 
minimized so that superfluous hardware is 
limited. ScatterD can determine system 
deployments minimize network bandwidth 
consumption and processor utilization so that 
additional resources are present to support new 
software as it becomes available later in the 
system lifecycle  

The ScatterD tool is available in open-source from in 
the Ascent Design Studio (ascent-design-
studio.googlecode.com). A document describing 
the flight avionics system case study outlined in Section 
4, as well as additional information on ScatterD, can be 
found at the SPRUCE web portal 
(www.spruceommunity.org), which pairs open 
industry challenge problems with cutting-edge methods 
and tools from the research community. 
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