
	

Deployment Optimization for Embedded Flight Avionics Systems

1Brian Dougherty, 2Jules White, 1Douglas C. Schmidt, 3Russell Kegley and
3Jonathan Preston

1Vanderbilt University, {briand,schmidt}@dre.vanderbilt.edu
2Virginia Tech, julesw@vt.edu

3Lockheed Martin Aeronautics, {russell.b.kegley,jonathan.d.preston}@lmco.com∗

1 Abstract
	

Loosely-coupled publish/subscribe messaging
systems facilitate optimized deployment of software
applications to hardware processors. Intelligent
algorithms can be used to refine system deployments to
reduce system cost and resource requirements, such as
memory and processor utilization. This article describes
how we applied a computer assisted deployment
optimization tool to reduce the required processors and
network bandwidth consumption of a legacy flight
avionics system.

2 Software Defense Application

 The deployment topology of a distributed system
determines how software is mapped to hardware.
Optimizing the deployment topology of DoD distributed
embedded systems has a significant impact on how
efficiently the software utilizes the hardware.
Deployment optimization can also help minimize costs
by increasing hardware efficiency without requiring
changes to the software or hardware architecture. This
increase in hardware efficiency, in turn, helps reduce
fuel consumption, increase operational ranges, and
decrease cost.

3 Introduction

 Current trends and challenges. Several trends are
shaping the development of embedded flight avionics
systems. First, there is a migration away from older
federated computing architectures where each
subsystem occupied a physically separate hardware
component to integrated computing architectures where
multiple software applications implementing different
capabilities share a common set of computing platforms.
Second, publish/subscribe (pub/sub) based messaging
systems are increasingly replacing the use of hard-coded
cyclic executives.
 These trends are yielding a number of benefits. For
example, integrated computing architectures create an
opportunity for system-wide optimization of deployment
topologies, which map software components and their

associated tasks to hardware processors as shown in
Figure 1.1

Optimized deployment topologies can pack more
software components onto the hardware, thereby
optimizing system processor, memory, and I/O
utilization [11, 13, 8]. Increasing hardware utilization
can decrease the total hardware processors that are
needed, lowering both implementation costs and
maintenance complexity. Moreover, reducing the
required hardware infrastructure has other positive side
effects, such as reducing weight and power
consumption.

Figure 1. Flight Avionics Deployment Topology

 Open problems. Developing computer-assisted
methods and tools to deploy software to hardware in
embedded systems is hard [1, 4] due to the number and
complexity of constraints that must be addressed.
 For example, developers must ensure that each
software component is provided with sufficient
processing time to meet any real-time scheduling
constraints [12]. Likewise, resource constraints (such as
total available memory on each processor) must also be
respected when mapping software components to
hardware components [12, 5]. Moreover, assigning real-
time tasks in multiprocessor and/or single-processor
machines is NP-Hard [3], which means that such a large
number of potential deployments exist that it would take
years to investigate all possible solutions.
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 This work was sponsored in part by the Air Force Research
Laboratory under FA8750-08-C-0064 & FA8750-08-1-0025.	

© 2010 by Vanderbilt University and Lockheed Martin Corporation	

 Current algorithmic deployment techniques are
largely based on heuristic bin-packing [3, 7, 2], which
represents the software tasks as items that take up a set
amount of space and hardware processors as bins that
provide limited space. Bin-packing algorithms try to
place all the items into as few bins as possible without
exceeding the space provided by the bin in which they
are placed. These algorithms use a heuristic, such as
sorting the items based on sized and placing them in the
first bin they fit in, to reduce the number of solutions
that are considered and avoid exhaustive solution space
exploration.
 Conventional bin-packing deployment techniques
take a one-dimensional view of deployment problems
by just focusing on a single deployment concern at a
time. Example concerns include resource constraints,
scheduling constraints, or fault-tolerance constraints. In
production flight avionics systems, however,
deployments must meet combinations of these concerns
simultaneously.
 Solution approach ⇒ Computer-assisted
deployment optimization. This paper describes and
validates a method and tool called ScatterD that we
developed to perform computer-assisted deployment
optimization for flight avionics systems. The ScatterD
model-driven engineering [10] deployment tool
implements the Scatter Deployment Algorithm, which
combines heuristic bin-packing with optimization
algorithms, such as genetic algorithms [6] or particle
swarm optimization techniques [9] that use evolutionary
or bird flocking behavior to perform blackbox
optimization. This article shows how flight avionics
system developers have used ScatterD to automate the
reduction of processors and network bandwidth in
complex embedded system deployments.
The remainder of this article is organized as follows:
Section 4 outlines a flight avionics deployment case
study we use to motivate the challenges and solutions
throughout the paper; Section 5 describes the challenges
faced by developers when attempting to optimize a
representative flight avionics deployment topology;
Section 6 discusses the ScatterD tool for deployment
optimization; Section 7 provides empirical results
demonstrating the reductions in hardware footprint and
network bandwidth consumption that ScatterD can
produce; and Section 8 presents concluding remarks.

4 Modern Embedded Flight Avionics
Systems: A Case Study

 Over the past 20 years, flight avionics systems have
become increasingly sophisticated. Modern aircraft now
depend heavily on software executing atop a complex
embedded network for higher-level capabilities, such as
more sophisticated flight control and advanced mission
computing functions. To accommodate the increased
amount of software required, avionics systems have
moved from older federated computing architectures to

integrated computing architectures that combine
multiple software applications together on a single
computing platform containing many software
components.
 The class of flight avionics system targeted by our
work is a networked parallel message-passing
architecture containing many computing nodes. At the
individual node level, ARINC 653-compliant time and
space partitioning separates the software applications
into sets with compatible safety and security
requirements. Inside a given time partition, the
applications run within a hard real-time deadline
scheduler that executes the applications at a variety of
harmonic periods.
 The integrated computing architecture shown in
Figure 2 has benefits and challenges. Key benefits
include better optimization of hardware resources and
increased flexibility, which result in a smaller hardware
footprint, lower energy use, decreased weight, and
enhanced ability to add new software to the aircraft
without updating the hardware. The key challenge,
however, is increased system integration complexity. In
particular, while the homogeneity of processors gives
system designers a great deal of freedom allocating
software applications to computing nodes, optimizing
this allocation involves simultaneously balancing
multiple competing resource demands.
 For example, even if the processor demands of a
pair of applications would allow them to share a
platform, their respective I/O loads may be such that
worst-case arrival rates would saturate the network
bandwidth flowing into a single node. This problem is
complicated for single-core processors used in current
integrated computing architectures. Moreover, this
problem is being exacerbated with the adoption and
fielding of multi-core processors, where competition for
shared resources expands to include internal buses,
cache memory contents, and memory access bandwidth.
Artifacts complete with data describing the
computational interactions and requirements of this
system were provided by the Systems and Software
Producibility Collaboration and Experimentation
Environment (SPRUCE) web portal
www.sprucecommunity.org. The SPRUCE web
portal allows industry partners to create challenge
problems complete with artifacts comprised of real data.
These problems can then be paired with members of the
research community that maximize the potential of
discovering new, innovative solutions.

5 Deployment Optimization Challenges

 This section describes the challenges facing
developers when attempting to create a deployment
topology for a flight avionics system. The discussion
below assumes a networked parallel message-passing

	

Figure 2. An Integrated Computing Architecture for Embedded Flight Avionics

architecture (such as the one described in Section 4).
The goal is to minimize the number of processors and
the total network bandwidth resulting from
communication between software tasks.

5.1 Challenge 1: Satisfying Ratemonotonic
Scheduling Constraints Efficiently

 In real-time systems, such as the embedded flight
avionics case study from Section 4, either fixed priority
scheduling algorithms, such as rate-monotonic (RM)
scheduling, or dynamic priority scheduling algorithms,
such as earliest deadline-first (EDF), control the
execution ordering of individual tasks on the processors.
The deployment topology must ensure that the set of
software components allocated to each processor can be
scheduled and will not miss real-time deadlines. Finding
a deployment topology for a series of software
components that ensures the ability to schedule all tasks
is called “multiprocessor scheduling” and is NP-Hard
[3].
 A variety of algorithms, such as bin-packing
algorithm variations, have been created to solve the
multiprocessor scheduling problem. A key limitation of
applying these algorithms to optimize deployments is
that bin-packing does not allow developers to specify
which deployment characteristics to optimize. For
example, bin-packing does not allow developers to

specify an objective function based on the overall
network bandwidth consumed by a deployment. We
describe how ScatterD ensures scheduling constraints
are met in Section 6.1 and allows for complex objective
functions, such as network bandwidth reduction.

5.2 Challenge 2: Reducing the Complexity of
Memory, Cost, and Other Resource Constraints

 Processor execution time is not the only type of
resource that must be managed while searching for a
deployment topology. Hardware nodes often have other
limited but critical resources, such as main memory or
core cache, necessary for the set of software
components it supports to function. Developers must
ensure that the components deployed to a processor do
not consume more resources than are present.
 If each processor does not provide a sufficient
amount of resources to support all tasks on the
processor, a task will not execute properly, resulting in a
failure. Moreover, since each processor used by a
deployment has a financial cost associated with it,
developers may need to adhere to a global budget, as
well as scheduling constraints. We describe how

ScatterD ensures that resources constraints are satisfied
in Section 6.2.

5.3 Challenge 3: Satisfying Complex Dynamic
Network Resource and Topology Constraints

 Embedded flight avionics systems must often ensure
that not only processor resource limitations are adhered
to, but network resources (such as bandwidth) are not
over consumed. The consumption of network resources
is determined by the number of interconnected
components that are not collocated on the same
processor. For example, if two components are
collocated on the same processor, they do not consume
any network bandwidth.
 Adding the consideration of network resources to
deployment substantially increases the complexity of
finding a software-to-hardware deployment topology
mapping that meets requirements. The impact of the
component’s deployment on the network, however,
cannot be calculated in isolation of the other
components. The impact is determined by finding all
other components that it communicates with,
determining if they are collocated, and then calculating
the bandwidth consumed by the interactions with those
that are not collocated. We describe how ScatterD helps
minimize the bandwidth required by a system
deployment in Section 6.3.

6 ScatterD: A Deployment Optimization
Tool to Minimize Bandwidth and Processor
Resources

 Heuristic bin-packing algorithms work well for
multiprocessor scheduling and resource allocation. As
discussed in Section 5, however, heuristic bin-packing is
not effective for optimizing designs for certain system-
wide properties, such as network bandwidth
consumption, and hardware/software cost. Metaheuristic
algorithms [6, 9] are a promising approach to optimize
system-wide properties that are not easily optimized
with conventional bin-packing algorithms. These types
of algorithms evolve a set of potential designs over a
series of iterations using techniques, such as simulated
evolution or bird flocking. At the end of the iterations,
the best solution(s) that evolved out from the group is
output as the result.
 Although metaheuristic algorithms are powerful,
they have historically been hard to apply to large-scale
production embedded systems since they typically
perform poorly on problems that are highly constrained
and have few correct solutions. Applying simulated
evolution and bird flocking behaviors for these types of
problems tend to randomly mutate designs in ways that
violate constraints. For example, using an evolutionary
process to splice together two deployment topologies is
likely to yield a new topology that is not real-time

schedulable.
 Below we explain how ScatterD integrates the
ability of heuristic bin-packing algorithms to generate
correct solutions to scheduling and resource constraints
with the ability of metaheuristic algorithms to flexibly
minimize network bandwidth and processor utilization
and address the challenges in Section 5.

6.1 Satisfying Real-time Scheduling Constraints
with ScatterD

 ScatterD ensures that the numerous deployment
constraints (such as the real-time scheduling constraints
described in Challenge 1 from Section 5.1) are satisfied
by using heuristic bin-packing to allocate software tasks
to processors. Conventional bin-packing algorithms for
multiprocessor scheduling are designed to take as input
a series of items (e.g., tasks or software components),
the set of resources consumed by each item (e.g.,
processor and memory), and the set of bins (e.g.,
processors) and their capacities. The algorithm outputs
an assignment of items to bins (e.g., a mapping of
software components to processors).
 ScatterD ensures that all tasks of the flight avionics
system discussed in Section 4 can be scheduled by using
response-time analysis. The response time resulting
from allocating a software task of the avionics system to
a processor is analyzed to determine if a software
component can be scheduled on a given processor
before allocating its associated item to a bin. If the
response time is fast enough to meet the real-time
deadlines of the software task, the software task can be
allocated to the processor.

6.2 Satisfying Resource Constraints with
ScatterD

 To ensure that other resource constraints (such as
memory requirements described in Challenge 2 from
Section 5.2) of each software task are met, we specify a
capacity for each bin that is defined by the amount of
each computational resource provided by the
corresponding processor in the avionics hardware
platform. Similarly, the resource demands of each
avionics software task define the resource consumption
of each item. Before an item can be placed in a bin,
ScatterD verifies that the total consumption of each
resource utilized by the corresponding avionics software
component and software components already placed on
the processor does not exceed the resources provided.

6.3 Minimizing Network Bandwidth and
Processor Utilization with ScatterD

 To address deployment optimization issues (such as
those raised in Challenge 3 from Section 5.3), ScatterD
uses heuristic bin-packing to ensure that all tasks can be

	

scheduled and resource constraints are met. If the
heuristics are not altered, bin-packing will always yield
the same solution for a given set of software tasks and
processors. The number of processors utilized and the
network bandwidth requirements will therefore not
change from one execution of the bin-packing algorithm
to another. In a vast deployment solution space

associated with a large-scale flight avionics system,
however, there may be many other deployments that
substantially reduce the number of processors and
network bandwidth required, while also satisfying all
design constraints.

Figure 3. ScatterD Deployment Optimization Process

 To search for avionics deployment topologies with
minimal processor and bandwidth requirements—while
still ensuring that other design constraints are met—
ScatterD uses metaheuristic algorithms to seed the bin-
packing algorithm. In particular, metaheuristic
algorithms are used to search the deployment space and
select a subset of the avionics software tasks that must
be packed prior to the rest of the software tasks. By
forcing an altered bin-packing order, new deployments
with different bandwidth and processor requirements are
generated. Since bin-packing is still the driving force
behind allocating software tasks, design constraints have
a higher probability of being satisfied. By using
metaheuristic algorithms to search the design space—
and then using bin-packing to allocate software tasks to
processors—ScatterD can generate deployments that
meet all design constraints while also minimizing
network bandwidth consumption and reducing the
number of required processors in the avionics platform,
as shown in Figure 3.

7 Empirical Results

 This section presents the results of configuring the
ScatterD tool to combine two metaheuristic algorithms
(particle swarm optimization and a genetic algorithm)
with bin-packing to optimize the deployment of the
embedded flight avionics system described in Section 4.
We applied these techniques to determine if (1) a

deployment exists that increases processor utilization to
the extent that legacy processors could be removed and
(2) the overall network bandwidth requirements of the
deployment were reduced due to collocating
communicating software tasks on a common processor.
 The first experiment examined applying ScatterD to
minimize the number of processors in the legacy flight
avionics system deployment described in Section 4 This
system originally required 14 processors to support all
necessary software tasks. Applying ScatterD with
particle swarm optimization techniques and genetic
algorithms resulted in increased utilization of the
processors, reducing the number of processors needed
to deploy the software of the system to eight in both
cases. The remaining six processors could then be
removed from the deployment without affecting system
performance, resulting in the 42.8% reduction shown in
Figure 4.
 The ScatterD tool was also applied to minimize the
bandwidth consumed due to communication by software
tasks allocated to different processors in the legacy
avionics system described in Section 4. Reducing the
bandwidth requirements of the system leads to more
efficient, faster communication while also reducing
power consumption. The legacy deployment consumed
1.83 · 1008 bytes of bandwidth. Both versions of the
ScatterD tool yielded a deployment that reduced
bandwidth by 4.39 · 1007 bytes or 24%, as shown in
Figure 4.

 While these experiments prove the effectiveness of
applying ScatterD to legacy system deployments, it is
important to note that ScatterD can also yield benefits if
applied when initially designing a new system. If the
potential processor utilization and network interactions
of the software tasks that comprise the system are
known, then ScatterD can be applied to potentially yield
a deployment with reduced processor requirements and
network bandwidth consumption.
	

Figure 4. Network Bandwidth and Processor
Reduction in Optimized Deployment

8 Concluding Remarks

 Optimizing deployment topologies on legacy
embedded flight avionics system can yield substantial
benefits, such as reducing hardware costs and power
consumption. The following are a summary of the
lessons we learned applying our ScatterD tool for
deployment optimization to a legacy flight avionics
system:

• Multiple constraints make deployment
planning hard. Avionics deployments must
adhere to a wide range of strict constraints, such
as resource, collocation, scheduling, and network
bandwidth. Deployment optimization tools must
account for all these constraints when
determining a new deployment.

• A huge deployment space requires intelligent
search techniques. The vast majority of
potential deployments that could be created
violate one or more design constraints. Intelligent
and automated techniques, such as hybrid-
heuristic bin-packing, should therefore be
applied to discover valid “near-optimal”
deployments.

• Substantial processor and network bandwidth
reductions are possible. Applying hybrid-
heuristic bin-packing to the flight avionics
system resulted in 42.8% processor reduction
and 24% bandwidth reduction. Our future work

is applying hybrid-heuristic bin-packing to other
embedded system deployment domains, such as
automobiles, multi-core processors, and tactical
smartphone applications.

• ScatterD can be applied throughout system
lifetime. Systems may initially include
expansion resources for inevitable system
maintenance and to support new software that
becomes available during the 20-30 year system
lifetime. These expansion resources can be used
to support new software that is added to the
system overtime. Expansion resources, however,
are finite and may not be necessary for a large
portion of the system lifecycle leading to
increased system weight and cost for an
underutilized architecture. Therefore is critical
that all system resources, such as processor
utilization and network bandwidth, are
minimized so that superfluous hardware is
limited. ScatterD can determine system
deployments minimize network bandwidth
consumption and processor utilization so that
additional resources are present to support new
software as it becomes available later in the
system lifecycle

The ScatterD tool is available in open-source from in
the Ascent Design Studio (ascent-design-
studio.googlecode.com). A document describing
the flight avionics system case study outlined in Section
4, as well as additional information on ScatterD, can be
found at the SPRUCE web portal
(www.spruceommunity.org), which pairs open
industry challenge problems with cutting-edge methods
and tools from the research community.

References

[1] H. Beitollahi and G. Deconinck. Fault-Tolerant Partitioning
Scheduling Algorithms in Real-Time Multiprocessor Systems.
Pacific Rim International Symposium on Dependable
Computing, IEEE, 0:296–304, 2006.
[2.]. Fault-Tolerant Rate-Monotonic First-Fit Scheduling in
Hard-Real-Time Systems. IEEE Transactions On Parallel and
Distributed Systems, pages 934–945, 1999.
[3] A.Burchard,J.Liebeherr,Y.Oh,andS.Son.New Strategies for
Assigning Real-time Tasks to Multiprocessor Systems. IEEE
Transactions on Computers, 44(12):1429–1442, 1995.
[4] A.Carzaniga,A.Fuggetta,S.Richard,D.Heimbigner, A. van
der Hoek, A. Wolf, and COLORADO STATE UNIV FORT
COLLINS DEPT OF COMPUTER SCIENCE. A
Characterization Framework for Software Deployment
Technologies. Defense Technical Information Center, 1998.
[5] W.Damm,A.Votintseva,A.Metzner,B.Josko, T.
Peikenkamp, and E. Bo ̈de. Boosting Re-use of Embedded
Automotive Applications Through Rich Components.
Proceedings of Foundations of Interface Technologies, 2005,
2005.
[6] C. Fonseca, P. Fleming, et al. Genetic algorithms for

	

multiobjective optimization: Formulation, discussion and
generalization. In Proceedings of the fifth international
conference on genetic algorithms, pages 416–423. Citeseer,
1993.
[7] S. Lauzac, R. Melhem, and D. Mosse. Comparison of
Global and Partitioning Schemes for Scheduling Rate
Monotonic Tasks on a Multiprocessor. In 10th Euromicro
Workshop on Real Time Systems, pages 188–195, 1998.
[8] L. Lehoczky, J.P. snf Sha and J. Strosnider. Enhancing
Aperiodic Responsiveness in a Hard Real-Time Environment.
In Proc. of the IEEE Real-Time Systems Symposium, pages
416–423, 1987.
[9] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm
optimization. Swarm Intelligence, 1(1):33–57, 2007.
[10] D. C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.
[11] L. Sha and J. Goodenough. Real-time scheduling theory
and Ada. Computer, 23(4):53–62, 1990.
[12] J. Stankovic. Strategic Directions in Real-time and
Embedded Systems. ACM Computing Surveys (CSUR),
28(4):751–763, 1996.
[13] J. Strosnider and T. Marchok. Responsive, deterministic
IEEE 802.5 token ring scheduling. Real-Time Systems,
1(2):133–158, 1989.

Brian Dougherty is a Ph.D. candidate at Vanderbilt
University. Mr. Dougherty’s research investigates
automated techniques for configuring DRE
systems and automatically scaling cloud
computing applications to meet quality of service
guarantees. He received his M.Sc. in Computer
Science from Vanderbilt University in 2009.
Contact Info:
Brian Dougherty
Institute for Software Integrated Systems
Vanderbilt University
2015 Terrace Place
Nashville, TN 37203
briand@dre.vanderbilt.edu

 Jules White
is an Assistant Professor in the Bradley
Department of Electrical and Computer
Engineering at Virginia Tech. He received his BA
in Computer Science from Brown University, his
MS and PhD from Vanderbilt University. His
research focuses on applying search-based
optimization techniques to the configuration of
distributed, real-time and embedded systems. In
conjunction with Siemens AG, Lockheed Martin,
IBM and others, he has developed scalable

constraint and heuristic techniques for software
deployment and configuration.

Dr. Douglas C. Schmidt
is a Professor of Computer Science at Vanderbilt
University. His research spans patterns,
optimization techniques, and empirical analyses of
software frameworks that facilitate the
development of distributed real-time and
embedded (DRE) middleware and applications.
Dr. Schmidt has also led the development of ACE
and TAO, which are open-source middleware
frameworks that implement patterns and product-
line architectures for high-performance DRE
systems.

Russell Kegley is a
Fellow at Lockheed Martin Aeronautics in Fort
Worth, TX, where he works in the areas of real-
time schedulability, software performance
measurement and optimization, distributed
algorithms, and internally-focused consulting.
Some of his most rewarding experiences at
Lockheed Martin are as a career mentor and
C/C++ coach for younger engineers. He holds an
MS in computer science from Mississippi State
University.

	

Jonathan Preston is a Fellow at Lockheed Martin
Aeronautics in Fort Worth, TX, where he works as
a research lead and system/software architect. His
interest areas include analytic methods, automated
design and analysis techniques, and distributed
real-time systems. He currently serves as a design
consultant for multiple aircraft programs and is
involved with several university and cross-
corporate collaborations.

	

