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Abstract—Smartphone-powered data collection systems are
rapidly becoming an effective method of gathering field data.
One major challenge of using smartphones to collect data is
the ability to link smartphone metadata, such as location ata
specific time, back to the user–thereby violating the privacy of
that individual. A promising approach to helping ensure user
privacy is through geographical k-anonymity, which attempts
to ensure that every gathered data reading is geographically
indistinguishable from k other readings. The approach helps
prevent precise localization of the user or reverse engineering
of reported data by leveraging the user’s known location. This
paper presents a dynamic tesselation algorithm for k-anonymity
that provides better privacy preservation and data reporting
precision that previous static algorithms for k-anonymity. The
paper presents empirical results from a real world data set
that demonstrate the improvements in privacy provided by the
algorithm.

Index Terms—smartphone, privacy, data collection

I. I NTRODUCTION

Emerging Trends and Challenges.The number of de-
ployed smartphone devices has grown rapidly in recent years
to over 81 millions units in Q3 2010 [1], [2]. Significant
interest in using smartphones as distributed data collection sys-
tems has emerged because smartphones are widely deployed
and have a number of computing capabilities that make them
desirable for data collection systems, including: a plethora of
sensors, plentiful processing and storage, a regular connection
to the Internet, rapid application development through high-
level programming languages, and frequent recharging by
end-users. During the recent tragedy of the Gulf Oil Spill
[3], multiple smartphone developers created applicationsthat
allowed citizens to help collect and report field data, such as
images and text of oil-impacted animals or environments, to
researchers and scientists. The success of these ‘citizen sci-
entist’ applications has raised interest in smartphone-powered
data collection, in which data measurements are collected by
a number of smartphones dispersed over an environment of
interest.

Smartphone data collection systems are currently used for
a variety of data collection applications, such as health mon-
itoring [4], CO2 emission tracking [5], traffic accident detec-
tion [6], [7], traffic flow measurement [8], and cardiac patient
monitoring [9]. Additionally, multiple middleware layersare
being created to enable rapid creation and deployment of
smartphone data collection applications [10]–[13]. Due tothe

increasing use of smartphones for data collection, multiple
research efforts are attempting to quantify various aspects of
using human-carried smartphones as sensors [10], [13], [14].

Open Problem ⇒ Location Data from Smartphone-
powered Data Collection Systems can be Used to Invade
the Personal Privacy of Users.One major challenge of using
smartphones for data collection is the ability to leverage a
user’s known location to determine what data was submitted
by a user. For example, in a remote health monitoring system,
if each health report includes the location of the user, thenan
attacker could follow the user and utilize the user’s location
to determine which health report was his or hers. Conversely,
if specific information about the user is known, such as hair
color, eye color, and weight, the attacker could potentially use
this information to filter the data reports and determine the
user’s exact latitude and longitude.

One promising approach of protecting user’s location data
and helping to prevent location data from being used to find
private user data is geographical k-anonymity [12]. Geographi-
cal k-anonymity involves making an informed guess regarding
the temporal and spatial distribution of incoming data, and
using this assumption to logically break a geographical area
into a number of regions [12] that each contain a minimal
number of data readings, as shown in Figure 1. By sharing
this tessellation map with end-user smartphone devices, they
can report regional id’s instead of specific latitude/longitude
locations. If the real-world incoming data distribution matches
the assumption used to generate the regional tiles, then the
incoming data will have the property of being k-anonymous,
where at leastk data readings are indistinguishable from
one another [12], [15]. This ambiguity helps to protect an
attacker from determining a user’s exact latitude/longitude or
discovering their private data using their latitude/longitude.

A good k-anonymity tessellation map is critical for pre-
serving user privacy in a smartphone-powered data collection
system. A key challenge with current tessellation approaches
for k-anonymity is that they use a static, one-time tessellation
based on predictions about the data that will enter the system.
If the expected prediction used to generate the tessellation
differs too much from the actual incoming data, the algorithms
experience quality of service failures where either privacy is
not preserved, or data precision is reduced needlessly. Even
with an accurate prediction, unpredictable events such as
disasters can radically alter the distribution of incomingdata,
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causing a previously derived tessellation to perform poorly.
Moreover, common situations, such as weekend vs weekdays
or peak vs off-peak hours, can have vastly different spatialand
temporal distributions of incoming data, which will resultin
poor performance.

Solution Approach ⇒ Constructing Location Regions
Dynamically. To ensure user privacy in smartphone data col-
lection systems, we present a dynamic tessellation algorithm,
called Anonoly e.g.ANONymous pOLYgons, that addressed
the potential failures present in current static tessellation ap-
proaches. Anonoly uses samples of incoming real-world data
report location and times to update the algorithm’s prediction
of future incoming data spatial and temporal distribution.As
this distribution assumption is updated, a new tessellation
map that more closely models the real world is generated.
Anonoly’s approach to retessellation is that regions which
received too few data readings to safely enforce privacy
increase in size by merging with nearby regions, and regions
which received more than the minimum number of readings
needed to ensure privacy split into multiple sub-regions.

This dynamic tessellation approach can adapt to changes in
the real-world incoming data distribution, and therefore ensure
that both privacy and data precision are consistently balanced.
This paper provides the following contributions to the study of
privacy within a smartphone-powered data collection system:

• We describe a new algorithm, called Anonoly, for dynam-
ically tessellating a geographical environment to acheive
k-anonymity

• We provide empirical results that illustrate the limitations
of static tessellation approaches for k-anonymity

• We present empirical results showing that Anonoly pro-
vides better privacy preservation and data precision than
static tesselation approaches

• We demonstrate that Anonoly can operate under a wide
range of scenarios by running experiments which show
the algorithm maintaining a desired privacy level for a
two month dataset

The remainder of this paper is organized as follows: Sec-
tion II provides a motivating example to be used in outlining
the challenges of preserving locational privacy; Section III
discusses the specific challenges faced when attempting to
generate k-anonymous location regions; Section IV formally
introduces our algorithm for dynamic tessellation; Section V
presents empirical results from analyzing the proposed al-

gorithm; and Section VII presents concluding remarks and
lessons learned.

II. A SMARTPHONE-POWEREDDATA COLLECTION

SYSTEM

In order to motivate the challenges associated with maintain-
ing user privacy within a smartphone-powered data collection
system, we present an example smartphone data collection
system intended to collect field data about the status of the
cellular network from end-user smartphones and dynamically
generate a signal strength map. This type of data collection
system could be used to monitor the status of the cellular
network, build cellular network coverage maps, ensure that
cellular signal propagation models are corroborated by real-
world data, or ensure that all cellular chipsets are receiv-
ing similar signal strength. In this data collection system,
user-generated data reports include information about cellular
signal strength, the hardware/software configuration of the
smartphone, the location at which the reading was captured,
and the timestamp when the reading was taken.

Assume an attacker is interested in tracking the user’s loca-
tion and knows the type of phone that the user is carrying. If
the attacker can leverage the reported cell signal characteristics
to identify the user’s phone, then it will be possible to filter
the data reports and identify reports coming from the user. If
location is reported as a precise latitude/longitude, thenthe
attacker will be able to know the user’s exact location.

K-anonymity in a smartphone data collection system gives a
high level of confidence that there will consistently be at least
k data reports that are indistinguishable. This ambiguity makes
it difficult for an attacker to re-associate a user’s latitude and
longitude with a data report for a given user. The value ofk

can be adjusted based on the the required data precision for
the application, sensitivity of the data, and density of users to
provide a specific level of anonymity.

The anonymity is provided by overlaying a tessellation map
on top of a geographical region (see figure 1), and allowing
smartphones to report a region identifier instead of a precise
latitude/longitude. The region tessellation is generatedusing
an assumption of when and where data readings will enter
the system, and if the assumption is close to the real-world
data distribution then each region will receive at leastk data
readings. The goal is to prevent an outsider from determining
what data a user reported by knowing the location of the user
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or determining the user’s precise location with information
specific to that user. If the attacker knows the user’s location,
there will be at leastk data reports with the same region
identifier as the user. Moreover, if the attacker can find a
specific data report for a user, they can only map their location
to a specific region, the size of which is a function of the value
of k.

III. C HALLENGES OF K-ANONYMOUS TESSELLATION

Current approaches to smartphone data collection frequently
report the sensed data, time, and a precise location where
the data was collected. Most methods of anonymizing or
increasing the privacy of data involve reducing the fidelityof
that data, which consequently tends to reduce the usefulness
of the data. For example, tessellating a region into polygons of
size 10m2 provides more accurate data about measurements
associated with the data report but provides less privacy than
tessellating into regions of100m2. This section presents the
challenges associated with attempting to enforce k-anonymity
across a geographic region.

1) Challenge 1: Unknown Data Reading Distribution
Makes Region Tessellation Difficult:A key challenge of tes-
sellating a geographic region to produce k-anonymity is that
it requires knowledge of the temporal and spatial distribution
of the future readings from the area. When the assumed data
distribution is incorrect, static tessellation can have two types
of quality of service failures. First, if the assumption over-
estimates the number of incoming data readings, and generates
a tessellation map based on that assumption, then the regions
will not receive the minimum number of readings required
to ensure user locational privacy. Second, if the assumption
under-estimates the number of incoming data readings, then
it will generate very large regions in order to ensure the
minimum required number of readings per region is met. This
will lead to each region receiving far more data readings
than minimally required, but the locational accuracy of the
incoming data will by much worse than it could have been
if the assumption was correct and the regions were smaller.
We term this ‘privacy-induced imprecision,’ whereby the in-
coming data is reduced in fidelity in order to protect privacy,
but the reduction is over-aggressive and data fidelity (e.g.
locational accuracy) is needlessly sacrificed. Static tessellation
algorithms can experience either of the failures if the original
assumption about the incoming data distribution was incorrect

In a smartphone data collection system designed to collect
information about cellular signal strength, the challengeof
interest may be generating cellular network coverage maps
for remote regions e.g. on hiking trails, above lakes, etc. In
these types of situations, there may be little to zero initial
information about the number of smartphone users that carry
their devices into these areas. Additionally, user smartphone
usage habits will likely change in these areas versus more rural
locations, and therefore there is little to no information on how
many data readings will be captured. These unknowns make it
difficult to generate an initial assumption about the incoming
data spatial and temporal distribution.

2) Challenge 2: Volatile Data Reading Distribution makes
Balancing Privacy and Data Precision Hard:As discussed
in Section III-1, a correct assumption regarding the spatial
and temporal distribution of incoming data readings can be
used to generate regions that enforce k-anonymity. However,
there is no guarantee that the time and location distribution
of incoming data readings will remain static. The amount
of incoming data per region can fluctuate incredibly rapidly,
making it very difficult for the assumption about incoming
data to correctly match the real incoming data distribution.
This volatility makes it very difficult to generate a distri-
bution assumption that can constantly match the real-world
distribution. In situations where there are fewer data readings
entering the system than expected (a.k.a the assumption over-
estimated), the data reports will not be grouped with at
least k other reports, thereby risking the privacy of users.
Conversely, if the assumption under-estimates the number of
incoming data readings, then the tessellation map will have
overly large regions (to ensure that each region receives at
least k data reports). In this situation, however, the regions
could be smaller without causing any privacy violations, and
therefore the locational imprecision is unnecessary. Balancing
the orthogonal desires of privacy and data precision is a
challenging topic.

In a data collection system to collect information on a
cellular network, for example, an assumption might be made
that the geographical area of interest will receive at least200
data readings every hour, and that assumption used to generate
a tessellation map. However, if there are only 50 data readings
being received in one hour, then there will be multiple region
identifiers that are used fewer than the desiredk number of
times, and the data reports entered into those regions will
not be as private as desired. If the system instead receives
10,000 data readings in one hour, then it is likely that each
region identifier will be used far more than the minimumk
number of times. In this case, it would be possible to use
smaller regions, thereby adding better locational granularity to
the dataset, without violating the desired user privacy margin.

IV. A NONOLY - THE ANONYMOUS POLYGON REGION

TESSELLATION ALGORITHM

This section describes theANONymous pOLYgons, or
Anonoly, algorithm in detail. It starts with a high-level outline
of the Anonoly algorithm, then introduces a formal model
of the algorithm, proceeds to discuss the execution of the
algorithm, and lastly concludes with discussion of the major
tradeoffs and parameters of Anonoly.

A. Overview of Anonoly

Anonoly is an algorithm for dynamically tessellating a
geographic region in order to maintain k-anonymity, where
k-anonymity is a property that has been shown to statistically
protect privacy by making it difficult to associate specific
individuals with specific data items [15]. By ensuring k-
anonymity, Anonoly provides a guaranteed level of privacy
(e.g.k data reports are indistinguishable) which has a number
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of practical benefits, including removing a potential deter-
rent for smartphone users interested in participating in data
collection, reducing the severity of system data leaks, and
increasing the potential for commercial datasets to be released
for research purposes.

Figure 2 shows how the anonoloy algorithm generates and
dynamically modifies a tessellation map of a geographic region
in order to protect user privacy. A tessellation map is a set of
non-overlapping polygons with points and edges defined via
latitude longitude locations, where the union of the polygons
spans an entire geographical region of interest. The goal of
producing the tessellation map, sharing that map with end-user
smartphones, and allowing the smartphones to enter regional
identifiers, is to ensure that user privacy is statically protected
by the k-anonymity property of the polygons.

Walking counter-clockwise around Figure 2, the following
steps are taken:

1) The first tessellation map is shared with end-user smart-
phones. This can either be generated using somea priori
information about the spatial and temporal distribution
of incoming data readings, or can simply be a tessel-
lation containing a single polygon covering the entire
region

2) Smartphones input data reports, using regional id’s in-
stead of precise latitude longitude locations

3) The number of reports that used each regional id is
summed, and used to determine which regions are
causing violations.

4) The reporting information is used to improve upon
the current tessellation map, by increasing the size of
regions that received too few data reports and decreasing
the size of regions that received too many data reports.
This improved tessellation map is shared with end- user
smartphones

5) Smartphones input data reports, using regional id’s in-
stead of precise latitude longitude locations

If the distribution of incoming data is non-volatile, then
the tessellation map will converge upon a map that causes
no privacy or imprecision violations. If the distribution of
incoming data changes frequently, then the tessellation map
will change rapidly to ensure that the privacy of users is
maintained without significant loss in data precision.

Regions in danger of privacy 

violation grow in size

Regions that are overly large split

1 Tessellation map 
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2 Data readings
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Fig. 2. Evolution Anonoly’s Generated Tessellation Map

B. Formal Model of Anonoly

A formal model of Anonoly is defined for ease of discus-
sion. The formal model can be described as a 9-tuple:

DAR =< Rs, Tc,K,Cr, Rnk, A, U,M, Sfty, Split, S >

where:

• Rs is a set containing all of the location regions that are
currently defined. Each item inRs is a closed polygon
that defines the outline of one location region

• Tc is the timeslice size, or time between each regeneration
of the tessellation

• K is the desired k-anonymity value. For example, aK

of 10 would imply that each region would receive 10
data readings perTc. If a region receives fewer than 10
readings inTc, then that region currently invalidates the
k-anonymity of the system, and should be increased in
size. If a region receives more thanK readings, then that
region can potentially be reduced in size without invali-
dating k-anonymity, which would improve the locational
accuracy of the incoming data

• Cr is a set of counts that specify the number of data
readings that have been input for each region since the last
recalculation.Cr,i indicates the number of data readings
input from theith region inRs. After each recalculation,
all of the counts inCr are reset to zero, andCr is resized
to ensure that|Rs| = |Cr |. Individual data reading counts
from Cr are referred to asC

• Rnk is a function that accepts two regions fromRs

and returns an ordering for the two regions that defines
which region is farther from optimal. This allows system
administrators to implement any definition of ‘optimal’
they desire in their system. Multiple possibilities forRnk

are discussed in IV-D
• A is the total area for the environment of interest, in

distanceunits2

• U is a function that determines how much a region should
grow in response to not meeting the desiredK value.
It accepts a regionR, and the associated data reading
countC for that region, and returns the amount that the
region should grow (in area squared) in response to a
non-optimalC value

• M is a function that can resize two regions by removing
space from one region and allocating it to another.M is
given a region that needs to be resized (the consumer), a
value for the amount of change in area desired (retrieved
from U ), and a region that touches the region we are
attempting to change (the resource).M will make a best-
effort to resize the two given regions so that the consumer
region is given up to the desired amount of area from the
resource region.M will return either a single region that
is the full merge of the two individual regions, or two
resized regions

• Sfty is a scaling factor that is multiplied by the desired
K value before determining if a region should be split in
response to having an overly largeK value. This should
never be below two, as splitting a region that does not
have enough incoming data readings to support 2 * the
desired K value is likely to result in a privacy violation
for one of the descendant regions

• Split is a function that can determine the number of sub-
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regions an overly large region should be split into to meet
k-anonymity during the next cycle.

• S is a function that can resize a region by splitting it into
multiple sub-regions. The current implementation splits
into similarly sized regions.S is given the region to be
to be resized (the consumer region) and a value for the
desired number of partitions. It will return the generated
set of regions

C. Anonoly Execution

When the Anonoly algorithm is initially started,Rs is
initialized with a single region that enclosesA completely.

1) For every time rangeTc:

a) If there is only one region inRs, and if the sum
of Cr is less thanK, then wait one moreTc

b) Order all regions inRs usingRnk

c) Mark all regions as unused
d) While there are unused regions inRs:

i) Get the next unused region(R) from Rs

ii) Get the number of data readings(C) that were
input intoR during this cycleTc

iii) If C is equal toK, then mark this region as
used and continue

iv) If C is less thanK, then:

A) Retrieve the amount of desired area change
for R from U

B) Find all the neighboring regions ofR that
have aC value is larger thanK, and order
them according toRnk

C) While R has yet to be changed by the
desired area amount (or there are no unused
neighbors), passR, the updated desired area
change, and the next-unused neighbor toM ,
marking each the resulting regions as used

v) If C is greater thanK * Sfty, then:

A) Retrieve the number of desired partitions
from Split

B) PassR and the number of desired partitions
to S

C) Mark all of the returned regions as used and
add them toRs

If the desiredK value is impossible to obtain (e.g. a k-value
of 100 is desired, but each time spanTc only results in 10 data
readings), then this initial region will never increase in size.

D. Ranking Regions By Their Distance From ‘Optimal’

The Rnk function can be implemented in multiple ways,
depending upon the needs of the system. In general, this
ranking algorithm is used to order regions by optimality,
where different system policies determine what is more or less
optimal. For example, our implementation ofRnk considers
privacy violations as being worse (e.g. less optimal) than
having far too many data readings for one region. Therefore
our implementation, in attempting to range regions with a
desiredk of 10, would consider a region with a k-value of 8

to be less optimal than a region with a k-value of 2000, even
though the latter could clearly be split into multiple regions
and increase location accuracy. During Anonoly execution,
Rnk is used to determine which regions get precedence during
the region resizing, based upon an implicit assumption that
allow the most non-optimal regions first priority in retes-
sellation will result in faster system convergence to a more
optimal state. Other approaches for theRnk function could
treat granularity as more important, or could treat distance
from K as the determining factor (thereby sacrificing some
locational privacy for improved granularity). Therefore,Rnk is
an effective method of allowing a system policy configuration
(e.g. privacy vs granularity).

E. Speed of Convergence

TheU function of the DAR algorithm, which specifies how
much a region should grow in response to having a smaller-
than-desired k-value, can be used to adjust the desired aggres-
siveness in correcting privacy violations. An overly-aggressive
response to a privacy violation will cause a data imprecision,
as the region size will be drastically increased in order to
ensure privacy. Conversely, an under-aggressive responsewill
not increase the region size enough, and therefore the region
will likely experience another privacy violation during the next
cycle. For example, if a region receives five data readings
but the system is using 10-anonymity, thenU could either
return that the region should double in size, orU could
report that the region should quadruple in size if the more
aggressive correction of privacy invasions is desired. Thesame
aggressiveness arguments can be applied to theSplit function
for determining how many sub-regions an overly-large region
is split into.

F. Merging and Splitting Locational Regions

The M and S functions, respectively, are used to merge
and split regions. Currently there are no parameters that direct
how these functions operate internally, and our initial imple-
mentation simply enforces that polygons remain closed and
contiguous (e.g. there cannot be a gap in between two closed
sections of a polygon). Our algorithms do allow for concave
polygons, which can create some technical difficulties when
attempting polygon transform operations such as merging two
polygons. Implementations that only permit convex polygons
may be less computationally intensive. Additionally, all of the
tessellation maps will need to be shipped to smartphones at
some point, and therefore an additional property of interest
in a tessellation map would be a small filesize. This concern
could be addressed in theM andS functions by attempting to
use long straight lines for polygon edges whenever possibleto
reduce the amount of data needed to represent the tessellation
map.

V. EMPIRICAL EVALUATION

This section compares the Anonoly algorithm to prior static
tessellation approaches using a real-world dataset obtained
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from the CRAWDAD.org repository [16]. We ran one ex-
periment to directly compare Anonoly to static tessellation
over the course of a two month timespan by recording the
achieved k-anonymity for both algorithms, and comparing that
achieved k-anonymity over the two month timespan to the
desired k-anonymity. Additionally, we ran a second experiment
that compares the ability of Anonoly and static tessellation to
balance privacy versus data precision when the incoming data
distribution was undergoing changes.

In order to bootstrap our experiments, we used the CRAW-
DAD.org dataset to simulate data reports entering a smart-
phone data collection system. Each incoming data report
must contain a timestamp and a location(starting as a lati-
tude/longitude on the smartphone device, but converted into
a regional identifier before it reaches Anonoly) in order to
be used as input to the Anonoly algorithm. The original
dataset is a log of wireless access point associations on the
Dartmouth campus, and therefore we used the time of each
access point association, and the latitude/longitude location of
the access point, as the required incoming data. Prior published
tessellation algorithms require manual human intervention to
create a tessellation map, and we therefore implemented a
static-tessellation algorithm by running Anonoly for a small
time on the dataset and then storing the generated tessellation
for use as a static map.

A. Experiment Setup

These experiments were conducted on a 2.66 GHz Intel
Core i7 MacBook Pro with 4Gb 1067 MHz DDR3 RAM
running Mac OS X 10.6.7 and Java SE Runtime 1.6.024.

B. Experiment 1: Comparing Anonoly to Static Tessellation
on Real-world Data

Static tessellation algorithms make a static prediction about
the distribution of the incoming data, and therefore we pre-
dicted that this class of algorithms would perform poorly in
situations where the incoming distribution of data changes
significantly during data collection. In this experiment, we
generated a tessellation map and then statically utilized that
single tessellation map for the entire duration of data col-
lection. On the same data, we also utilized the Anonoly
algorithm to dynamically re-tessellate, allowing comparison
of the Anonoly algorithm to a static tessellation algorithm.

Hypothesis: The Anonoly algorithm will avoid or miti-
gate the quality of service failures which cause static tessel-
lation algorithms to be ineffective. We predicted two ways
in which static tessellation algorithms could underperform.
First, by over-estimating the number of data readings that enter
the data collection system, static tessellation algorithms could
result in a privacy violation occurring when the minimum
number of readings required to ensure k-anonymity are not
received. Second, static tessellation algorithms could under-
estimate the number of incoming data readings, which would
result in the tessellation map being much coarser than nec-
essary to ensure privacy. This ‘privacy-induced imprecision’
would reduce the utility of the entered data. For example,

a 16x16 grid tessellation would provide much finer data for
a data collection system than a 4x4 grid tessellation. In this
experiment, we hoped to see evidence of these quality of ser-
vice issues in a static tessellation, and evidence that Anonoly
either a) completely avoided privacy violations and privacy-
induced imprecisions, or b) Anonoly experienced these quality
of service failures less frequently or to a lesser magnitude. If
our hypothesis regarding static tessellation quality of service
failures is correct, and we find evidence that Anonoly does
not experience the same failures, then we will have shown
that Anonoly can outperform static tessellation at preserving
user privacy while increasing data precision.

Experiment 1 Results. Figure 3 shows the k-anonymity
which was achieved by one a static tessellation algorithm and
the Anonoly algorithm over the course of two months. Each
datapoint is the median of the k-anonymity values achieved
for all regions during that timeslice. The optimal values for
k-anonymity are located between the blue privacy violation
region, and the red privacy-induced imprecision region. By
allowing the k-anonymity value to drop below the set k-
anonymity algorithm parameter of fifteen into the blue privacy
violation region, the privacy of users in the smartphone data
collection system is no longer statistically protected. K-values
above the safety margin of forty-five (e.g. in the red zone)
indicate that the tessellation could be composed of smaller
regions without causing a privacy violation, and thereforethe
precision of the locational data could be improved with no
adverse affects.

Privacy-Induced 

Imprecision

(higher is worse)Optimal
Privacy Violation

(lower is worse)

Fig. 3. Anonoly vs Static Tessellation Over Two Months

In order to better understand the results shown in Figure 3,
we analyze the data on a week-by-week basis. The first week,
shown in Figure 4, shows Anonoly initially mirroring the
static tessellation algorithm results, but the algorithmsbegin to
differ as Anonoly updates its assumptions about the incoming
data distribution. For this experiment, the Anonoly algorithm
was tuned to very aggressively react to privacy violations,
operating under a policy that considered data precision only
after ensuring privacy was maintained. Therefore, near 10-26
datapoint the Anonoly algorithm reacts to a slight drop in the
median k-value and corrects too aggressively, reaching into the
non-desirable privacy-induced imprecision region. However,
the height of Anonoly’s over-correction is still significantly
lower than the height of the static algorithm’s imprecisionon
10-27. Therefore, while the policy chosen for Anonoly favors
adding imprecision over potentially violating privacy, Anonoly
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still performs with significantly more precision over the week-
long timespan.

Static Algorithm Sacrifices More Data Precision

Fig. 4. Anonoly vs Static Tessellation; Oct 24-Oct 31 Timespan

Anonoly consistently provides better data precision

Fig. 5. Anonoly vs Static Tessellation; Oct 31-Nov 7 Timespan

On the third week of data the difference between the
static algorithm and Anonoly become more significant. There
are multiple k-value peaks in the static algorithm where
the regions in the tessellation are larger than is required to
ensure user privacy. However, the Anonoly algorithm is able
to effectively avoid sacrificing data precision needlessly, and
generates a finer tessellation map as the number of incoming
data readings increases, thereby gaining data precision while
safely maintaining the required level of data privacy.

Static Algorithm Sacrifices Data Precision

Fig. 6. Anonoly vs Static Tessellation; Nov 7-Nov14

With the fourth week of data (shown in 7) the Anonoly
algorithm is capable of entirely avoiding the privacy-induced
imprecision, except for a small portion of Nov 17.

On the fifth week of the dataset, first privacy violations
occur. In the hours immediately preceding Nov 24th, Anonoly
reacts to a large increase in the number of incoming data
readings (apparent by the rise of k-values in the static algo-
rithm) and over-aggressively splits regions, causing a privacy
violation for a short period of time. The Anonoly algorithm
rapidly corrects its mistake, and does so without causing
the privacy-induced imprecision error that we see in the
static algorithm. Moreover, from Nov 26-Nov 28, there is a

Anonoly avoids privacy-induced data imprecision

Fig. 7. Anonoly vs Static Tessellation; Nov 14-Nov 21 Timespan

significant drop in the number of incoming data readings, and
the static algorithm has an extended period of violating user
privacy. Anonoly, however, manages to react appropriatelyand
maintain k-values in the optimal region for this two day period.

Anonoly avoids privacy violation

Fig. 8. Anonoly vs Static Tessellation; Nov 21-Nov 28 Timespan

Figure 9 shows a quantitative comparison of quality of
service failures. For imprecision quality of service failures,
this value was created by summing any k-values over the
imprecision cutoff of forty five. For privacy, this value was
created by summing any negative distance from fifteen for
all data readings taken in that week. The figure shows that
Anonoly was substantially more effective at mitigating both
privacy violations and imprecision violations.

Higher Values
Are Worse

Anonoly Privacy

Anonoly excels at 
avoiding both
privacy and 
imprecision
failures

Static Imprecision

Anonoly Imprecision
Static Privacy

Fig. 9. Anonoly vs Static Tessellation Quality of Service; 6Week Timespan

C. Experiment 2: Evaluating Anonoly’s Ability to Maintain
Desired K-anonymity Value

The primary goal of Anonoly is to construct regions that
will have the desired k-anonymity property, in order to ensure
end-user privacy. In this experiment, we tested Anonoly’s
ability to maintain the desired level of user privacy e.g. k-
anonymity, across a range of algorithm configurations and
incoming data distributions. We executed the static tessella-
tion, and the Anonoly algorithm, on a two month section
of the CRAWDAD.org dataset, setting multiple desired k-
anonymity values and using multiple timeslice sizes. Our
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aim in this experiment was to extend V-B, which showed
us that Anonoly could avoid privacy-induced imprecision and
privacy violations, to also show that Anonoly can avoid these
quality of service failures while also maintaining the desired
k-anonymity value.

Hypothesis: The Anonoly algorithm will have k-values
closer to the desired k-anonymity than static tessellation’s
generated k-values.We hypothesized the Anonoly algorithm
would enforce k-anonymity as well or better than static tes-
sellation methods. Due to Section V-B showing that Anonoly
is able to successfully avoid or mitigate the two quality of
service failures present in static tessellation algorithms–privacy
violations and privacy-induced imprecisions–we predicted that
Anonoly would also be able to more effectively maintain
a desired k-anonymity value, even with a wide range of
algorithm parameters and different incoming data distributions.
Moreover, we predicted that Anonoly could achieve this re-
sult without the strict requirement fora priori information
necessary to seed a static tessellation algorithm, making the
Anonoly algorithm more useful than static tessellation algo-
rithms for many real-world data collection systems where this
a priori information is unavailable.

Experiment 2 Results.Figure 10 shows k-anonymity val-
ues generated by the Anonoly algorithm and a static tessel-
lation. Multiple desired k-values are considered on the x-
axis, and the actual achieved values are plotted on the y-
scale. Each point represents the median of the k-values, error
bars represent the 5-95th quantiles. Each algorithm (static and
Anonoly) was evaluated with three different timeslices foreach
desired k-value, and all achieved k-values were merged before
generating the 5th, 50th, and 95th quantiles.

Figure 10 shows that Anonoly’s 5th quantile is consistently
at or above the privacy violation, while the static tessellation
consistently falls below the privacy violation margin. More-
over, the static tessellation’s 95th quantile is consistently above
the Anonoly’s algorithms’ 95th, except for x=75 where the two
are equal. Therefore, Anonoly manages to perform better than
static tessellation in all scenarios.

Desired K-Anonymity

A
c
h
ie
v
e
d
 K
-A
n
o
n
y
m
it
y

Anonoly

Static Tessellation

5th Quantile to 

95th Quantile

Anonoly's 5th quantile is 
consistently 

above privacy margin, 
static is consistently

below

Anonoly's 95th quantile 
is consistently 
below static 

tessellation's 95th 

Fig. 10. Achieved vs Desired K-anonymity; Two Month Timespan

To highlight the difference between Anonoly and a static
tessellation, we created a histogram of the data used for the
x=55 portion of Figure 10, with the results shown in figure
11. The upper distribution is from Anonoly, while the lower
is from the static tessellation. The desired region for k-values

to fall is between the two vertical lines, with more left values
indicating privacy violations, and more right values indicating
privacy-induced imprecision values. Figure 11 shows Anonoly
is doing a substantially better at maintaining k-values within
the desired region. Anonoly is configured to rank privacy
violations as more serious than privacy-induced imprecision
violations, and therefore almost all of the quality of service
violations are imprecision violations, caused by Anonoly en-
suring that privacy violations do not occur. Moreover, Anonoly
manages to have fewer overall privacy-induced imprecision
violations, and the ones that it does have are contained closer
to the desired region.

Desired

Region
Imprecision

Region

Privacy 

Violation

Static Tessellation

Anonoly

F
re
q
u
e
n
c
y

Anonoly has far fewer privacy violations, 
and far more desired values. Imprecision

violations are typically less severe
Fig. 11. Distribution of Anonoly vs Static Tessellation K-values; Two Month
Timespan

VI. RELATED WORK

This section compares Anonoly to prior research, outlining
a taxonomy of related works that includes spatial/temporal
blurring, k-anonymity, and pre-production region generation.

Spatial or Temporal Blurring reduces the precision of data
readings to help ensure the privacy of the user’s location [17].
For example, users may choose to only report their location
to an accuracy of within 1 mile. The primary limitation with
using blurring independently is that it does not guarantee
privacy. Entering data reports with very imprecise locations
may seem secure, but there is no guarantee that multiple
data reports were entered for each imprecise location region.
Therefore, an attacker that knows a user’s rough location ata
time of data reporting may be able to reassociate that user and
their data report with minimal difficulty because there are very
few reports from that location at that time. Moreover, user-
set privacy preferences can actually leak user identity. Any
non-standard locational imprecision settings, such as highly-
privacy very imprecise location reporting, can actually be
used by an attacker to identify data reports coming from
the non-standard user (e.g. there may only be one user that
has extremely inaccurate location reporting, making it easy to
identify that user’s data report). Anonoly, however, uses both a
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standard imprecision metric and ensures that there are multiple
reports for every location region.

K-anonymity is a method that groups and manipulates data
so that ’k’ data items are indistinguishable from one another,
which solves the issues of simply applying spatial or temporal
blurring. This method is typically applied only after the data
has been received, so the system can ensure that there are at
least k-1 data readings in the same locational region [17]–[19].
This requires smartphone users to share their private data with
nontrusted sources. Anonoly in contrast operates by sharing a
tessellation map with end-user devices, therefore enforcing k-
anonymity without requiring private data to be shared with a
nontrusted source.

Region Generation is the tessellation of a large area into
multiple regions, where each region has an id that is valid to
submit to the smartphone data collection system as a localiza-
tion method [12]. Predictions about the incoming data report
locations and times are used to generate the regions, and if
these predictions match the real-incoming data then all incom-
ing data reports will be k-anonymous. The tessellation map is
shared with smartphones, thereby overcoming the requirement
for private data to be shared with nontrusted parties. A key
issue is that it is not always possible to predict the location and
time distribution of data readings in advance. Moreover, the
distribution will likely change over time, rendering the original
assumption incorrect and the assumption ineffective. As we
have described in Section V, Anonoly operates by updating
its assumption over time, thereby reflecting a much closer
approximation to the real-world data.

VII. C ONCLUDING REMARKS & L ESSONSLEARNED

An emerging privacy challenge in smartphone data collec-
tion systems is that data reports can be reassociated with the
specific users that submitted those reports, allowing multiple
types of private user data to be exposed. This possibility
of reassociation has a number of potential ramifications, in-
cluding deterring smartphone users from participating in data
collection systems, increasing the severity of malicious or
accidental system data leaks, and reducing the potential for
commercial datasets to be released for research purposes.

Existing research on preventing reassociation of location
data with users leverages a static tessellation approach based
on the expected spatial temporal distribution of future data
readings. These research approaches are frequently so ag-
gressive in protecting user privacy that the incoming data is
relatively useless to a data collection system (e.g. all of the in-
teresting details or features of the dataset have been removed).
Moreover, current methods requirea priori information speci-
fying the temporal and spatial distribution of incoming data to
seed the algorithms, which is impractical for many smartphone
data collection systems where this information is nonexistent
or difficult to predict.

This paper presented, Anonoloy, an algorithm for dynami-
cally tessellating a geographical region in order to ensureuser
privacy without severe loss of data precision. Empirical results
that we obtained from experiments on real-world datasets show

that Anonoly can successfully protect user privacy better and
provider higher data precision than prior static approaches.
Furthermore, Anonoly can be seeded witha priori information
about the incoming data, or it can operate with noa priori
information, allowing it to be used in situations where the
expected spatial and temporal distribution of data reportsis
not known.

The Anonoly algorithm implementation, and the exper-
iments and data described in this paper, are available in
opensource form from https://github.com/crabpot8/Anonoly.
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