
A Demonstration-based Model Transformation Approach

to Automate Model Scalability

1Yu Sun, 2Jules White, 3Jeff Gray

1
Department of Computer and Information Sciences, University of Alabama at Birmingham

yusun@cis.uab.edu

2
Department of Electrical and Computer Engineering, Virginia Tech

julesw@vt.edu

3
Department of Computer Science, University of Alabama

gray@cs.ua.edu

Abstract

Model-Driven Engineering (MDE) is playing an increasingly more significant role in

software development. An important aspect of software development is scaling software

models in order to handle design forces, such as enlarging and upgrading system features, or

allocating more resources to handle additional users. Model scalability is the ability to

refactor a base model, by adding or replicating the base model elements, connections or

substructures, in order to build a larger and more complex model to satisfy new design

requirements. Although a number of modeling tools have been developed to create and edit

models for different purposes, mechanisms to scale models have not been well-supported. In

most situations, models are manually scaled using the basic point-and-click editing operations

provided by the modeling environment.

Manual model scaling is often tedious and error-prone, especially when the model to be

scaled has hundreds or thousands of elements and the scaling process involves entirely

manual operations. Although model scaling tasks can be automated by using model

transformation languages, writing model transformation rules requires learning a model

transformation language, as well as possessing a great deal of knowledge about the

metamodel. Model transformation languages and metamodel concepts are often difficult for

domain experts to understand. This requirement to learn a complex model transformation

language exerts a negative influence on the usage of models by domain experts in software

development. For instance, domain experts may be prevented from contributing to model

scalability tasks from which they have significant domain experience.

In order to automate model scalability tasks, this paper presents a demonstration-based

approach to automate model scaling. Instead of writing model transformation rules explicitly,

users demonstrate how to scale models by directly editing the concrete model instances and

simulating the model replication processes. By recording a user’s operations, an inference

engine analyzes the user’s intention and generates generic model transformation patterns

automatically, which can be reused to scale up other model instances. Using this approach,

users are able to automate scaling tasks without learning a complex model transformation

language. In addition, because the demonstration is performed on model instances, users are

isolated from the underlying abstract metamodel definitions.

Keywords

Model Evolution, Model Scalability, Model Transformation by Demonstration

1 Introduction

Software systems often need to evolve in order to accommodate new features, to process

larger workloads, or to handle other scaling issues [1]. Scaling a software system is crucial for

its long-term success. With the increasing adoption of Model-Driven Engineering (MDE) [2],

models are emerging as a high level abstraction of software systems. The focus on models as

first-class entities in many domains (e.g., automotive and avionics domains) has promoted

models to an important role in software development.

When scaling a software system in the context of MDE, it is common to scale the related

software models, rather than the low-level software artifacts (e.g., source code). For instance,

feature models [34] are used as design models in software product-lines to configure the

components of a software system, such that adding new product functionality often consists

of adding new feature elements to a model. Domain-specific models [33] can be built to

specify software systems and generate implementation code, which means that expanding the

implementation of a software system is based on scaling the corresponding domain-specific

models. Moreover, when a software system is about to be deployed, deployment models can

be used to specify how to allocate software to the underlying hardware infrastructure [32] and

to monitor and control the infrastructure at runtime [31]. In order to allocate additional

infrastructure to handle larger workloads, the underlying deployment models must be scaled.

Thus, model scalability [6] (i.e., the ability to build a complex model from a base model by

adding, replicating, or modifying its model elements, connections or substructures) is an

important aspect of MDE-based software evolution.

To support model scalability, the host modeling tool must allow users to rapidly change the

model representation [5]. Although manually editing and scaling models is the most direct

approach, it is obviously laborious, time consuming and error prone, particularly when a large

number of model elements and connections exist. Editing a large model may require a

staggering amount of clicking and typing operations within the modeling tool [6]. Therefore,

the process of scaling models can benefit immensely from automation.

Model transformation has proven to be an effective approach to automate model scalability

tasks [6]. Scaling a base model to a more complex model is a type of model transformation.

More specifically, this type of scaling is an endogenous model transformation (i.e., model

transformations within the same metamodel or the same domain) [7]. A number of executable

Model Transformation Languages (MTLs) have been developed to assist users in specifying

the transformation rules that describe how to scale a model from a base state to a desired more

complex state.

Although model transformation languages are powerful and expressive approaches to

automating some model scalability tasks, adopting an MTL is not always the ideal solution.

Firstly, even though most MTLs are high-level and declarative languages, they have a steep

learning curve due to the complexity of their syntax, semantics, and other special features

(e.g., OCL [30] specification is used in many MTLs). This learning curve is particularly

apparent for domain experts, such as automotive engineers, who are not computer scientists

and have not received training on the use of MTLs. Furthermore, model transformation rules

are often defined at the metamodel level, rather than in the context of a concrete model

instance, which exposes users to metamodel concepts not specific to the modeling language.

Developing a deep and clear understanding of a metamodel is challenging, especially for

large and complex domains. In some cases, domain concepts may be hidden in the metamodel

and difficult to unveil [29], which makes comprehension more difficult. In the context of

MDE, more general users (e.g., domain experts or non-programmers) can participate in

building and using software models. The difficulties associated with using MTLs may prevent

these users from contributing to certain model scaling tasks from which they have a large

amount of domain experience.

Our contribution in this paper is an innovative approach to automate model scalability tasks,

so that domain experts are able to implement model evolution tasks without using a model

transformation language and without having to understand the metamodel definition. The

approach described in this paper extends our previous work, Model Transformation By

Demonstration (MTBD) [10]. MTBD simplifies the implementation of model transformations

by inferring transformation patterns from a user’s demonstrated operations to transform a

concrete model instance. Several new extensions and features have been made to enhance our

original approach (i.e., MT-Scribe, which is our implementation of the MTBD concept) so

that it can be adapted to handle special needs related to model scalability. We have applied

our approach to a number of model scalability scenarios that were previously performed by

manually writing transformation rules to demonstrate the reduction in manual effort that our

approach provides. Finally, we have created a new formal model of MTBD to precisely

define its semantics and inference techniques.

The rest of the paper is organized as follows. Three model scalability scenarios in different

domains are presented in Section 2 to motivate the need to support software evolution by

automating model scalability. In Section 3, the original MTBD project combined with its

limitations in dealing with model scalability are introduced, followed by a presentation of

new extensions and features that have been added to address those problems. The solutions to

solve the three motivating examples using the extended MTBD are then given in Section 4.

Section 5 evaluates the new approach, pointing out its advantages and limitations. Related

works and techniques are compared in Section 6, with Section 7 offering concluding remarks.

2 Motivating Examples Illustrating Model Scalability Issues

This section presents three examples that motivate the need for automating model scalability

to support software evolution in different phases of software development – design,

implementation, and maintenance. For each of the three examples in Sections 2.1, 2.2 and 2.3,

background information about the specific application domain and context will be given,

followed by an illustration using a concrete model instance. Then, we present a typical scaling

evolution scenario in the domain, as well as a desired model instance after the scaling process.

The challenges of accomplishing these model scalability tasks will be summarized in Section

2.4. The specific approach for using MTBD to address the needs arising from these examples

will be given in Section 4.

2.1 Adding New Event Types: Evolving Software Design Models

Stochastic Reward Nets (SRNs) [13] can be used for evaluating the reliability of complex

distributed systems. SRNs have been used extensively for designing and modeling reliability

and performability of different types of systems. The Stochastic Reward Net Modeling

Language (SRNML) was developed to describe SRN models of large distributed systems [6],

which shares similar goals with performance-based modeling extensions for the UML, such

as the schedulability, performance, and time profiles. For example, the SRN model defined by

SRNML in Figure 1 depicts the Reactor pattern [21] in middleware for network services,

providing mechanisms to handle synchronous event demultiplexing and dispatching.

In the Reactor pattern, an application registers an event handler with the event demultiplexer

and delegates the incoming events to it. On the occurrence of an event, the demultiplexer

dispatches the event to its corresponding event handler by making a callback. An SRN model

consists of two parts: the event types handled by a reactor and the associated execution

snapshot. The execution snapshot depicts the underlying mechanism for handling the event

types included in the top part, so any change made to the event types will require

corresponding changes to the snapshot. In Figure 1, the original model has two event types, 1

and 2, each from its arrival (e.g., A1), to queuing (e.g., Sn1) and finally service (e.g., Sr1)

through the immediate transitions (e.g., B1, S1). It also models the process of taking

successive snapshots and non-deterministic service of event handles in each snapshot through

some snapshot transitions and places (e.g., StSnpSht, TStSnp1, TProcSnp1,2).

Figure 1. An SRN model before (top) and after (bottom) scaling

Scalability Scenario in SRNML (Example 2.1): The scalability challenges of SRN models

arise from the addition of new event types and connections between their corresponding event

handlers. As shown in the bottom of Figure 1, when two new event types (3 and 4) need to be

modeled, two new sets of event types and connections (i.e., from A3 to Sr3, from A4 to Sr4)

should be added. Also, the snapshot model should be scaled accordingly by adding new

snapshot places (i.e., SnpLnProg3, SnpLnProg4), transitions from starting place to end place

(i.e., TStSnp3, TEnSnp3, TStSnp4, TEnSnp4), transitions between each new place and each

existing place (i.e., TProcSnp3,1, TProcSnp1,3, TProcSnp3,2, TProcSnp2,3, TProcSnp4,1,

TProcSnp1,4, TProcSnp4,2, TProcSnp2,4, TProcSnp3,4, TProcSnp4,3), as well as all the

needed connections between places and transitions.

2.2 Enlarging Event Services: Evolving Software Implementation Models

The Event QoS Aspect Language (EQAL) [11] is a Domain-Specific Modeling Language

(DSML) for graphically specifying publisher-subscriber service configurations for large-scale

distributed systems. Publisher-subscriber mechanisms, such as event-based communication

models, help to reduce software dependencies, enhance system composability and evolution,

and allow application components to communicate anonymously and asynchronously,

particularly in large-scale distributed and real-time embedded (DRE) systems (e.g., avionics

mission computing, distributed interactive simulations). Several EQAL model translators

have been implemented to take EQAL models as input and generate publisher-subscriber

service configuration files, component property descriptions, and part of the underlying code

to support system implementation.

The top of Figure 2 illustrates a model defined by EQAL to specify a federation of event

channels in different sites, which allows sharing of filtering information and event

communications in the channels through CORBA gateways. A Site can contain an

EventChannel, multiple Gateways, an EventConsumer, an EventSupporter, and multiple

EventTypeRefs. Connections can be built between the EventChannel and Gateway, as well as

EventConsumer, EventSupporter and EventTypeRef.

Scalability Scenario in EQAL (Example 2.2): One complex scalability issue in EQAL

arises when a small federation of event services must be scaled to a very large system, which

usually accommodates a large number of publishers and subscribers. The bottom of Figure 2

shows a federated event service with five Sites, which is scaled up from the federated event

services with three Sites. The scaling process involves adding new Sites that contain an

EventChannel, a number of Gateways (the number of Gateways depends on the number of

existing Sites), an EventSupplier, an EventConsumer, two EventTypeRefs and the connections

among them. In addition, new Gateways need to be added to each original Site and new

connections need to be built to connect the new Site with original Sites.

Figure 2. An EQAL model before (top) and after (bottom) scaling

2.3 Replicating Overloaded Application Nodes: Evolving Software Maintenance Models

Cloud computing shifts the computation from local, individual devices to distributed, virtual,

and scalable resources, thereby enabling end-users to utilize the computation, storage, and

other application resources on-demand [35]. A user can create, deploy, execute, and terminate

the application instances in the cloud as needed, and pay for the cost of time and storage that

the active instances use based on a utility cost model.

Cloud Computing Management Modeling Language (C2M2L) [31] is a DSML constructed

specifically to describe the deployment of application nodes in the cloud and monitor the

running status of each node. For instance, the top of Figure 3 shows a diagram of an EJB

cloud application deployed in Amazon EC2 [36], containing four Nodes – Web Tier Instance,

Middle Tier Instance, Data Tier Instance and Load Balancer. NodeServices are included in

each Node (e.g., Apache, Tomcat, MySQL, JBoss, OpenSSH) to define the services needed for

each tier instance. A list of properties can be configured for each Node, such as the name of

the host (i.e., HostName), the running status of the Node (i.e., IsWorking), the load of the

CPU (i.e., CPULoad), and the changing rate of the CPU load (i.e., CPULoadRateOfChange).

This model configures the deployment and execution parameters of an application in a cloud

computing server.

To facilitate the management of applications in the cloud, a causal relationship is built

between the running applications and the model. Changes to the state of the cloud application

must be communicated back to the modeling tool and translated into changes in the elements

of the model, while changes from the model must also be pushed back into the cloud.

Therefore, the models defined by C2M2L serve as an interface to deploy, monitor, and

manage the applications in the cloud at runtime.

Figure 3. A C2M2L model before (top) and after (bottom) scaling

Scalability Scenario in C2M2L (Example 2.3): One essential task in the management of

applications in the cloud is to ensure that each node is handling a proper amount of work load

without being overloaded. For instance, if the CPULoad and CPULoadRateOfChange of a

certain Node are both out of the normal range, more Nodes containing the same NodeServices

and configuration need to be replicated in order to balance the work load. As shown in the

bottom of Figure 3, one more Web Tier Instance Node is replicated to handle the increasing

workload of the original single Node. To accomplish this task, creating the same Node and

NodeServices are needed, as well as setting up all the properties to be the same as the

previous Node, except balancing the CPULoad of both Nodes. In this scenario, the CPULoad

and CPULoadRateOfChange properties must be checked before scaling, so that the new Node

will be added only when the existing Node is really out of the normal range. This

management task becomes challenging when a large number of application Nodes are running

in the cloud. Automating the detection of overloaded Nodes and replicating them promptly is

essential to ensure applications are running correctly and smoothly.

2.4 Challenges of Model Scalability Current Practice

For each of these model scalability scenarios, it is possible to edit the model manually to scale

it from a simple state to another simple state (e.g., adding two new events in a 2-event SRN

model, creating one event service for a 3-Site EQAL model, or replicating two new Nodes in

a C2M2L model). However, it becomes extremely challenging to manually scale each of

these scenarios from to a complex state when there are a large number of new elements that

need to be added and connected. This challenge comes not only from the quantity of the

required editing operations, but also the required accuracy and correctness, because a model

scalability scenario often involves various types of error-prone activities: locating the correct

part of a model to be scaled, creating proper elements and connections, precisely replicating

elements and connections, setting up correct properties, and making accurate connections

between existing elements and newly created ones. Some of these examples (i.e., from

Sections 2.1 and 2.2) have been automated in the past using a model transformation language

(MTL) [3][6]. However, the model end-users (e.g., domain experts, such as cloud computing

administrators) might not have experience in using MTLs. A simpler approach is needed that

assists general end-users in specifying model scalability scenarios.

3 Automating Model Scalability Using MTBD

In this section, we first give a brief introduction to the ideas behind Model Transformation By

Demonstration (MTBD) (Section 3.1). Then, the key limitations that initially prevented

MTBD from being applied to model scalability tasks are identified (Section 3.2), followed by

the enhancements we have made to address these limitations (Section 3.3).

3.1 Overview of MTBD

MTBD is a model transformation approach motivated by the difficulties doman experts have

with learning model transformation languages and understanding metamodel definitions. The

basic idea (Figure 4) is that instead of manually writing transformation rules in a specific

model transformation language, users demonstrate how a model transformation should be

done by directly editing (e.g., add, delete, connect, update) a concrete model instance to

simulate the desired model transformation process (i.e., User Demonstration). A recording

and inference engine has been developed to capture all user operations performed during the

demonstration (i.e., Operation Recording). After the recording process has completed, the

engine optimizes the recorded operations (i.e., Operation Optimization) and infers a

transformation pattern that specifies the precondition of the transformation and the sequence

of actions needed to realize the transformation (i.e., Pattern Inference). This pattern can be

reused by automatically matching the precondition in any model instance and replaying the

actions to execute the intended model transformation (i.e., Pattern Execution). During the

execution of a transformation pattern, constraint checking ensures that the execution does not

violate the metamodel definition of the domain.

Figure 4.Overview of MTBD

The idea of MTBD has been implemented as an Eclipse plug-in for the Generic Eclipse

Modeling System (GEMS) [19] called MT-Scribe. Without using any model transformation

languages or the need to understand metamodels, general users are able to demonstrate

endogenous model transformations and execute generated transformation patterns in a simple

and automated manner. Similarly, this approach can be used to demonstrate how to scale

models and infer corresponding patterns. This section presents a simple example based on

EQAL to illustrate the basic idea of using MTBD to support automated model scalability.

More details about MTBD can be found in [10].

Assume that for each Site in an EQAL model, we desire to add one more Gateway (called

NewGateway). To accomplish this task using MTBD, a user needs to demonstrate the

scalability task by finding a single Site, adding a Gateway to it, followed by changing the

name of the new Gateway. Operations in List 1 represent the user-demonstrated actions that

are performed in the demonstration (a Site called Site1 is selected in the demonstration, see

Figure 5).

List 1. Operations performed in the demonstration

Sequence Operation Performed

1 Add a Gatewayin EQALRoot.Site1

2 Set EQALRoot.Site1.Gateway.name = “NewGateway”

Figure 5. The EQAL model before (left) and after (right) the demonstration

After the demonstration is completed, a transformation pattern can be inferred. This pattern

specifies the precondition (List 2 – any Site in the model root), and the transformation actions

(List 3 – adding a new Gateway and changing its name). These lists are abstract

representations of how the pattern is saved, which are invisible to end-users.

List 2. Precondition – elements needed and corresponding metatypes

Elements Needed for Operations

elem1.elem2

elem1.elem2.elem3

Element MetaType

elem1 ModelRoot

elem2 Site

elem3 Gateway

List 3.Transformation actions

Sequence Transformation Action

1 Add elem3 in elem1.elem2

2 Set elem1.elem2.elem3.name = “NewGateway”

A user may then apply this pattern to any other EQAL model. The engine will traverse the

model and match the precondition using a back-tracking algorithm, after which the

transformation actions will be executed. In this example, all the Sites in the model will

automatically have a new Gateway added with the name being “NewGateway” (Figure 6

shows the pattern applied to an EQAL model containing six Sites).

Figure 6. An EQAL model before (left) and after (right) applying the

inferred scaling transformation pattern

3.2 MTBD Formal Description

Using the description of MTBD provided in Section 3.1, we can build a formal model of the

process. Our formal model of MTBD is based on a 5-tuple:

),,(),,(),,(),,(, TPMTPMMTGMtbd jmimim


  (1)

where:

1. Mi is a model conformant to the metamodel Metai

2. Mj is a model also conformant to the metamodel Metai

3. m


is a sequence of model modifications recorded during a user demonstration of a

transformation on the model, Mi.

4.),(miMTG 


is a generalization function that produces a model transformation, T,

that can be applied to any model conformant to Metai. The transformation is produced

by generalizing the series of modifications, m


, that were applied to Mi.

5.),(miM 


 is an inference function that extracts the preconditions, P


, needed in

order to generalize and apply the modifications, m


, to another model.

6.),(TP


 is an optional manual transformation and precondition refinement function

that allows the domain expert to modify the transformation and preconditions inferred

by TG and ϖ. This function produces a refined transformation, T  , and set of

preconditions P

 .

7.),,(TPM j


 is a transformation function that applies the refined generalized

transformation, T  , to a model, Mj, if the refined preconditions P



are met by Mj.

3.2.1 Operation Recording

The goal of MTBD is to allow users to express domain knowledge regarding a function,

K(Mi). That is, the user is describing a domain-specific function that can be applied to a model

in order to achieve a domain-specific goal. For example, the EQAL example in Section 2.2

captured a domain function that expressed how to scale up a publisher/subscriber model by

adding Sites, EventChannels, and Gateways. A critical component of MTBD is that the

domain function (transformation) is expressed in terms of the notations in the modeling

language and not the notations used to describe the metamodel, Metai.

MTBD captures domain functions as transformations that can be applied to models that

adhere to the metamodel, Metai, of the target domain. The first step in MTBD is for a user to

apply the domain function, K(Mi) to a model, so that the MTBD engine can capture the set of

model modifications, m


. The process begins by the user or an external signal initiating a

recording process. During the recording process, the user applies the domain function, K(Mi),

to the model, Mi:

K(Mi) ⇒ Mj (2)

K : Metai → Metai (3)

The domain function takes an initial model, Mi, as input, and produces a new model, Mj, as

output. Although it is possible that Mi and Mj are not conformant to the same metamodel,

Metai, this paper explicitly focuses and enforces this assumption. Equation 3 shows that

the domain function must represent an endogenous model transformation that maps a

model in one metamodel domain to a model in the same metamodel domain.

3.2.2 Pattern Inference

After the recording process, the MTBD engine possesses a series of model modifications,

m


that express the application of the domain function, K(Mi) to a specific model. The next

step of MTBD is to use pattern inference to generalize and describe the domain function as a

model transformation. A critical aspect of this process is that the transformation must be

expressed in terms of the general metamodel notations captured in, Metai, rather than a

specific model’s elements, Mi. The inference step produces a model transformation, which we

describe as a tuple:

TPtionTransforma ,


 (4)

where P


 is a precondition that must be met in order to apply the transformation, and T is

the set of generalized model modifications that transform the source model to the desired

target model. In terms of the domain function, P


 describes the domain knowledge

regarding the circumstances in which K(Mi) can be applied and T defines what to do when

these circumstances are met. For example, in the cloud computing example from Section

2.3, P


 is the precondition that the rate of change of CPU load is above a set threshold and

T represents the modifications to the system needed in order to scale up the number of

virtual machine instances to handle the load.

3.2.2.1 Precondition Inference

The preconditions can be subdivided into two types:

1. Structural preconditions that govern the types of elements, the containment

relationships, and connection relationships that must exist within the model. For

example, in the EQAL motivating scenario, there must be an element of type Site

contained within an element of type Root.

2. Attribute preconditions specify the required values of attributes on the model

elements. For example, in the cloud computing scenario, the

CPULoadRateOfChange attribute of a Node element must be above a specified

threshold.

Structural Preconditions. The structural preconditions take the form of assertions on the

hierarchy or connection relationships that must be present in the model. A hierarchical

precondition, Pei, is described as a vector:

Pei = T0, T1,..., Tn (5)

where T0 is the type of an element that is directly modified by one or more operations in m


,

T1 is the type of the parent of T0, T2 is the type of the parent of T1, and so forth to the root

element. In order for this precondition to hold in an arbitrary model, Mj, an instance of the

type T0, contained within an element of type T1, must exist. More formally, given an element,

ei, in a model Mj that conforms to the metamodel Metai, a hierarchical precondition, Pei, is

satisfied by ei if:

V (ei, Ti)=(type(ei) == Ti) ∧ (V(ei+1, Ti+1)) (6)



 


falseotherwise

truetrueTeV
ePe

i

ii
,

),),((
)(

0
 (7)

A connection precondition is another form of a structural precondition. Connection

preconditions dictate the associations that must be present in the model. For example, in the

EQAL example, a transformation that removes a connection between two Sites must have a

precondition that there exist two Sites that are connected. A connection precondition, Pci, is

defined as a 3-tuple:

Pci =< Pej, Pek, Tl > (8)

where Pej specifies a structural precondition that must be met for an element to be considered

the source element of a connection to be modified; Pek is a precondition that must be met for

an element to be considered the target element of the connection; and Tl is the type of

connection that must exist between the elements that satisfy the source and target structural

preconditions. In order for a connection, ci, between two elements, ei and ej, to satisfy Pci:















falseotherwise

trueTctypeePeePe

trueTctypeePeePe

Pc liikjj

lijkij

i

,

),)(()()(

),)(()()(

 (9)

The inference),(miM 


 function evaluates each change in m that occurred. From these

changes, structural preconditions are extracted as follows:

 Added Elements. For each model element, ej, that is added to the model as a child

of ei, a precondition, Pei, is created. The type vector for Pei captures the types of

elements that are visited from traversing from ei to the root of the model. T0 is set

to the type of ei.

 Removed Elements. If an element, ei, is removed from the model, a precondition,

Pek, is created. The type vector for Pek captures the types of elements that are

visited from traversing from ei to the root of the model. T0 is set to the type of ei.

 Added Connections. Each new connection, cj, that is added from model element

ei to ej, produces a new precondition, Pci. The type vector for the source element,

Pej, captures the types of elements that are visited from traversing from the source

element to the root of the model. The type vector for the target element, Pek,

captures the types of elements that are visited from traversing from the target

element to the root of the model. Tl is set to 0 to indicate that no existing

connection is required between the elements that satisfy Pej and Pek.

 Removed Connections. Each deleted connection, cj, that previously started from

model element ei and ended at model element ej, produces a new precondition, Pci.

The type vector for the source element, Pej captures the types of elements that are

visited from traversing from the source element to the root of the model. The type

vector for the target element, Pek, captures the types of elements that are visited

from traversing from the target element to the root of the model. Tl is set to the

type of cj.

 Changed Attributes. If an element, ei, has an attribute value changed, a pre-

condition, Pek, is created. The type vector for Pek captures the types of elements

that are visited from traversing from ei to the root of the model. T0 is set to the

type of ei.

Attribute Preconditions. Attribute preconditions specify the required values of properties on

elements that a transformation will be applied to. The attribute preconditions, Ac, are

specified as tuples:

Aci =< Pei, Expr > (10)

where Pei is a structural precondition specifying the source model element to which the

attribute precondition must be checked. The Expr component specifies a mathematical

expression over the attributes of an element that satisfies Pei. Currently, the attribute must be

a primitive value and only arithmetic primitives (e.g., addition, multiplication, division, and

subtraction) are supported.

Attribute preconditions are difficult to infer automatically. Simple algorithms can extract

preconditions that specify an exact value of one or more element attributes. However, these

algorithms are often too exclusive and generate preconditions that require exact matching of

all attribute values. Ideally, attribute preconditions are specified as expressions from domain

knowledge covering the affected elements. Manual inference refinement is used to capture

this type of attribute precondition.

3.2.3 Manual Inference Refinement

The goal of MTBD is to generate a transformation, T, that faithfully represents the domain

function K(Mi). However, in many circumstances, the model that the function is demonstrated

on, Mi, may lack sufficient information to infer preconditions accurately. For example, in the

cloud computing example from Section 2.3, the cloud computing model does not have any

information related to the CPU rate of change threshold at which scaling should occur. In this

type of situation, the domain expert must be able to refine the inferred preconditions, by

providing a CPU rate of change threshold value, in order to ensure that T accurately captures

K(Mi). The optional manual inference function,),(TP


 , allows the user to view the inferred

transformation and preconditions produced by TG and ϖ. The following section describes in

detail the need for a manual refinement step.

3.3 Limitations of Original MTBD to Support Model Scalability

Although the example in Section 3.1 is simple, it shows the potential for assisting general

end-users in using MTBD to automate model scalability. However, this example is too simple

to illustrate its real practicality. In fact, some key limitations existed in our previous

implementation of MT-Scribe that prevented the MTBD concepts from being applied to

complex model scalability tasks in practice.

Specific and restricted specification of preconditions. To scale a model, a precise

precondition is needed to specify exactly where to execute the model transformation.

However, in the original implementation of MT-Scribe only the weakest precondition can be

inferred from the demonstration, such that there was no way for the end-user to provide more

restricted conditions. A model satisfying the weakest precondition is defined as the model

containing the minimum sufficient elements for each operation to be correctly executed. In

the previous example, the precondition inferred (List 2) is that a Site must exist in the Root, so

that a Gateway can be added in this Site, and the name of the new Gateway can be updated

later.

The weakest precondition is insufficient in practice. In many cases, more specific restrictions

are often required to provide more control on where to scale a model precisely. For example,

users may want to add the new Gateway in the Site only if a certain attribute of the Site

satisfies a specific condition (e.g., Site.capacity >= 100 as shown in Figure 7); or users may

want to add the new Gateway only if the Site has no outgoing and incoming connections from

it. These kinds of specific precondition requirements are frequently needed in model

scalability tasks. Scaling a model by adding or replicating model elements or connections

often requires the end-user to select specific locations to scale, rather than simply enlarging

all the places that could fit and execute the recorded operation in a demonstration (e.g.,

Example 2.3 requires the creation of new Nodes only when the CPULoad and

CPULoadRateOfChange are both out of the normal range). Therefore, enabling users to

specify more restricted and specific preconditions was the first need for extending MT-Scribe.

Figure 7. Scaling specific locations based on preconditions

The inferred transformation actions are not generic. Besides the precondition, another part

of the inferred transformation pattern is the list of transformation actions, which are extracted

from the recorded operations. However, the inferred actions are specific to a user’s

demonstration, which means that the sequence, the number and the type of inferred actions

are exactly the same as the recorded operations. The consequence is that it is not generic

enough to reflect a user’s real transformation intention. For instance, a user may want to

replicate a Site (e.g., Site1 in Figure 8a) that contains an EventChannel and two Gateways.

This would require that the operations in List 4 be performed in the demonstration.

List 4.Operations performed to replicate a Site

Sequence Operation Performed

1 Add a Site in EQALRoot

2 Set Site.name = EQALRoot.Site1.name

3 Add an EventChannel in the new Site

4 Set EventChannel.name = EQALRoot.Site1.EventChannel.name

5 Add a Gateway in the new Site

6 Set Gateway.name = EQALRoot.Site1.Gateway1.name

7 Add a Gateway in the new Site

8 Set Gateway.name = EQALRoot.Site1.Gateway2.name

The real intention of this demonstration is to make an exact copy of Site1, including all the

elements contained. However, the inferred transformation pattern only works correctly if the

Site to be replicated contains exactly the same number of elements as the Site in the

demonstration – one EventChannel and two Gateways. If there are more than two Gateways

(e.g., Site3 in the left of Figure 8b), only two of them (i.e., Gateway1 and Gateway2) will be

replicated, and Gateway3 and Gateway4 will not be copied (e.g., Site3 in the right of Figure

8b is the Site created after executing the inferred replication pattern), because in the

demonstration, the user only performed the necessary operations to add two Gateways,

although his or her real intention was to copy all the available Gateways. If there are less than

two Gateways (e.g., one Gateway1 is in the Site), the pattern will also fail to replicate the Site,

because this Site does not satisfy the weakest precondition due to a lack of sufficient

Gateways to execute the two replicating operations in the demonstration.

a. Replicate a Site in a demonstration

b. The inferred pattern failed to replicate all Gateways

Figure 8. The inferred transformation actions are not generic

The inability to infer generic actions may lead to a major problem when dealing with model

scalability tasks. The number of specific elements or connections varies frequently in

different scaling situations and the number will usually increase after each scaling process

(e.g., Example 2.1 requires the creation of transitions between the new snapshot place and

each of the existing snapshots, but the number of existing snapshots varies). Because of this, a

specific and non-generic inferred transformation obviously cannot handle each scenario

readily. Therefore, we needed to extend MT-Scribe to enable the inference of more generic

transformation actions.

More diverse options are required in attribute transformation. Enabling attribute

transformation (e.g., transforming a specific attribute from one value to another value through

arithmetic or string computations) in a user-friendly manner is an important innovation in

MTBD. However, only simple computations such as basic arithmetic (i.e., +, -, *, /) and string

concatenation were supported in earlier versions of MT-Scribe. To perform model scalability

tasks, other operations are needed. For instance, the name of a certain element should be

constructed based on a substring of the name of another element in the base model (e.g.,

Example 2.1 requires the creation of a new of snapshot transition by combing the names of

the source and target snapshot places, such as TProcSnp1,3). However, obtaining the

substring was not possible in previous versions of MT-Scribe. In other cases, the value of a

certain attribute should be decided from the user’s input (e.g., Example 2.1 requires the name

of the new event to be obtained by the end-user), which is independent of any attributes

existing in the model. This required the addition of interactive user input to MT-Scribe.

More options are needed to control the execution of transformation patterns. In the

original version of our tool, when applying a generated transformation pattern, only a single

pattern could be selected to execute only once. However, in the context of model scalability,

scaling a base model to a complex model requires repeated execution of a transformation to

avoid manual execution of the transformation multiple times. Additionally, to handle complex

scalability requirements, more than one transformation pattern is needed to work in sequence

to achieve the desired result. Therefore, users should be able to select and execute multiple

patterns together in a composed pipeline sequence, realizing the execution of a transformation

chain.

3.4 New Extensions and Features to MTBD

To address these limitations in the previous version of MT-Scribe, and adapt it to model

scalability requirements, several new features and extensions have been made.

Figure 9. The overview of extended MTBD

A user-refinement step to specify preconditions. Inferring the specific preconditions from

only the demonstration is difficult and inaccurate, because the performed operations only

reflect the actions with very limited information about the precondition. Therefore, additional

feedback should be given by users so that the engine can refine the generated pattern. In order

to maintain the simplicity of MTBD, a user-friendly interface has been implemented to enable

user selection of a specific element and specification of the desirable preconditions, without

having to know model transformation languages or metamodel definitions.

Figure 10. Precondition specification dialog

Figure 10 shows the precondition specification dialog. The upper-left lists all the recorded

operations in the demonstration. By clicking on a specific operation, all the model elements

involved will be listed, so that a user can easily find the elements for which they want to

provide more constraints. Similarly, by clicking on a certain element, all its attributes and

associated values are listed. Users can select certain attributes and type the necessary

restrictions. For example, the following additions could be made: “Site1.capacity >= 100”,

“Site1.capacity == Site2.capacity == Site3.capacity”, “Node1.CPULoad > 80 &&

Node1.CPULoadChangeOfRate > 10”. Also, constraints can be given on the attributes that

are not defined in the metamodel, such as the number of outgoing or incoming connections.

Through this interface, users continue to work at the model instance level to give specific

preconditions on the elements they considered in the demonstration. The meta-information

and generic computation will be inferred and stored in the transformation pattern

automatically.

A new user-refinement step to identify generic operations. From the Site replication

example in Section 3.1, it can be observed that the reason an inferred transformation pattern

does not work correctly for the Sites containing more than two Gateways is that the inferred

actions are specific to the user’s demonstration, failing to reflect the user’s real intention (i.e.,

copying all Gateways, no matter how many there are). However, from List 4, we can see that

operations (5, 6) and (7, 8) have exactly the same meaning and the same purpose (i.e., adding

a new Gateway in the new Site and setting its name to be the name of an existing Gateway

being copied). In fact, only one set is enough, and we can just repeat their execution

according to the number of available Gateways in the Site being copied. Therefore, to solve

the problem, we implemented the idea that if certain operation(s) needs to be generic (i.e.,

needs to be executed or repeated for different times according to the number of available

elements), a demonstration is only needed to be done once, followed by clearly identifying

the operation(s) as generic or repeatable.

Figure 11. Generic operations identification dialog

Figure 11 shows the generic operations identification dialog. It simply lists all the operations

performed during the demonstration process. Users may identify the generic operation(s) by

selecting the checkbox. The new MT-Scribe inference engine will then mark the operations

accordingly, and repeat them in the pattern execution according to the specific model

instance. For example, to solve the problem in Example 2.2, instead of performing the

operations listed in List 4, the user should do as specified in List 5.

List 5. Demonstrate generic operations only once

Sequence Operation Performed

1 Add a Site in EQALRoot

2 Set Site.name = EQALRoot.Site1.name

3 Add an EventChannel in the new Site

4 Set EventChannel.name = EQALRoot.Site1.EventChannel.name

5 Add a Gateway in the new Site

6 Set Gateway.name = EQALRoot.Site1.Gateway1.name

After performing the above demonstration, the user must then mark operations 5 and 6 as

generic (as shown in Figure 11). This sequence of demonstration and operation revision

actions will generate a generic transformation pattern that is capable of replicating any Sites

correctly, independent of the number of Gateways. With these enhancements, users still work

at the model instance level when demonstrating the generic operations.

An enhanced attribute refactoring editor. In the earlier version of MT-Scribe, we

implemented an attribute refactoring editor, which allowed users access to all the attributes

existing in the current model instance. Through this editor, users could calculate the needed

attributes through arithmetic or string computations during the demonstration (e.g., users

could just click on a certain attribute, retrieve the value, type the computation, and calculate

the new value). All of the meta-information and computation details are stored in the inferred

transformation. For instance, to set the capacity of the new Site to be 2 times the capacity of

Site1 being copied, the user just clicks on the capacity of the Site being copied, and retrieves

its current value (e.g., 100). Then, the user can type “/2” and click on “Calculate,” the result

being that 50 is displayed and assigned as the capacity of the new Site while the computation

“NewSite.capacity = Site1.capacity / 2” is stored in the transformation pattern.

In order to enhance the attribute editor, new functions have been added. More diverse

expressions, such as subString(), indexOf() can be used to specify the computation.

In the new implementation of MT-Scribe, we applied the dynamic language Groovy [12] to

parse and calculate the expressions. All of the Java expressions and functions supported by

Groovy may be used in the attribute computation.

Moreover, user input is also enabled in the attribute editing process. If a certain value is

independent of any existing attributes and should be input by users, they can create a name

and give its value in the demonstration, indicating that this is an input value, which is then

visible in the rest of the demonstration. Later, when executing this pattern, the inference

engine will automatically prompt an input box to ask the user to specify the value of this

name. Thus, with the enhanced attribute refactoring editor, users have more options to specify

and edit the attribute transformation in the demonstration of the scalability process.

An enhanced pattern execution controller. Users can select the pattern in the dialog to

execute an inferred transformation pattern from the repository. With the enhanced execution

dialog, not only the selection of multiple patterns at the same time is enabled, but also the

total times for executing a selected pattern(s) can be specified. The benefit is that users can

separate a complex scalability task into several subtasks, and generate several patterns, then

execute them all together in sequence. The model can then be scaled by executing the patterns

for any number of times desired. In the next section, we illustrate how these new features

work together to address the three model scalability examples presented in Section 2.

4 Automated Model Scalability Case Studies

In this section, we show how the concepts of MTBD can address the needs of the three

motivating examples presented in Section 2. To minimize the effort of performing a

scalability demonstration, we focus on a base model with a small number of elements, and

demonstrate how to scale it by one degree (e.g., scale a SRN model from two events to three

events; scale an EQAL model from three event services to four services). Then, by executing

the inferred transformation pattern for any number of times, the model can be scaled to the

desired state. In other words, the guidance of the approach can be summarized as

“demonstrate one, scale multiple times.”

Given a model scalability task, the main steps of a solution are: 1) analyze the process of

scaling the model by one degree, so that the minimum and generalized operations needed by

the scaling scenario can be clearly identified; 2) perform the demonstration of scaling the

model by one degree; 3) specify preconditions and identify generic operations in the user

refinement step; 4) scale the model to the desired state by executing the generated pattern for

the desired number of times.

The remainder of this section provides solutions to the scalability examples of Section 2 using

the new additions to MT-Scribe. Video demonstrations of each of the examples in this section

are available at the MT-Scribe web page [22].

4.1 Scaling SRN Models

By analyzing the scalability needs of Example 2.1, the task of adding one more event type to

an existing SRN model can be divided into the following three, sub-tasks as shown in Figure

12:

t1. Create a new set of places, transitions and connections for the new event type. Specify

proper names for them based on the name of the event.

t2. Create the TStSnp and TEnSnp snapshot transitions and the SnpInProg snapshot place,

as well as the associated connections.

t3. For each pair of <existing snapshot place, new snapshot place>, create two TProcSnp

transitions and connect their SnpInProg places to these TProcSnp transitions.

To give this demonstration, we choose the 2-event SRN model as shown in the top of Figure

1. Then, we manually edit the model and demonstrate the three sub-tasks. To demonstrate t1,

the operations identified in List 6 are performed.

List 6. Operations for sub-task t1 of Example 2.1

Sequence Operation Performed

1 Add a Place in SRNRoot

2 Create an artificial name with the value: EventName = “3”

3 Set SRNRoot.Place.name = “A” + EventName = “A3”

4 Add a Transition in SRNRoot

5 Set SRNRoot.Transition.name = “B” + EventName = “B3”

6 Add a Place in SRNRoot

7 Set SRNRoot.Place.name = “Sn” + EventName = “Sn3”

8 Add a Transition in SRNRoot

9 Set SRNRoot.Transition.name = “S” + EventName = “S3”

10 Add a Place in SRNRoot

11 Set SRNRoot.Place.name = “Sr” + EventName = “Sr3”

12 Connect SRNRoot.A3 and SRNRoot.B3

13 Connect SRNRoot.B3 and SRNRoot.A3

14 Connect SRNRoot.B3 and SRNRoot.Sn3

15 Connect SRNRoot.Sn3 and SRNRoot.S3

16 Connect SRNRoot.S3 and SRNRoot.Sr3

17 Connect SRNRoot.A3 and SRNRoot.B3

Operation 2 is used to manually create a name for a certain value, which can be reused later in

the rest of the demonstration to setup the desired name for each element (e.g., the new event

is called “3”, so the places and transitions are named as “A3”, “B3”, “Sn3”, etc.). The

operation also indicates that the value of this name should be given by the user, which will

invoke to an input box when the final generated transformation pattern is executed on other

model instances. When setting up the attribute in operations 3, 5, 7, 9, 11, users just need to

give the specific composition of the attributes by using the artificial names and constants, or

simply select an existing attribute value in the attribute refactoring editor. After applying

these operations, the top model will have a new event type, as shown in Figure 12 (Sub-task

1).

Figure 12. The process of scaling a SRN model from two events to three events

To demonstrate t2, the necessary snapshot places and transitions in sub-task 2 are added for

the new event type by performing the operations indicated in List 7. Figure 12 (Sub-task t2)

shows the model after these operations.

List 7. Operations for sub-task t2 of Example 2.1

Sequence Operation Performed

18 Add a SnpPlace in SRNRoot

19 SetSRNRoot.SnpPlace.name=

“SnpLnProg”+EventName = “SnpLnProg3”

20 Add a SnpTransition in SRNRoot

21 Set SRNRoot.SnpTransition.name =

“TStSnp” + EventName = “TStSnp3”

22 Add a SnpTransition in SRNRoot

23 Set SRNRoot.SnpTransition.name =

 “TEnSnp” + EventName = “TEnSnp3”

24 Connect SRNRoot.StSnpSht and SRNRoot.TStSnp3

25 Connect SRNRoot.TStSnp3 and SRNRoot.SnpLnProg3

26 Connect SRNRoot.SnpLnProg3 and SRNRoot.TEnSnp3

27 Connect SRNRoot.TEnSnp3 and SRNRoot.StSnpSht

To demonstrate t3, two snapshot transitions for each <existing snapshot place, new snapshot

place> are created. This sub-task involves using generic operations mentioned in Section 3.3,

because the number of existing snapshot places may vary in different model instances. This

number will also increase after each scaling process. Therefore, in the demonstration, users

only need to create two snapshot transitions for just one set of <existing snapshot place, new

snapshot place>, followed by identifying these operations as generic after the demonstration,

so that the engine will generate the correct transformation pattern to repeat these operations

when needed. The operations performed are shown in List 8. We select SnpLnProg2 as the

existing snapshot place, and demonstrate the creation of snapshot transitions TProcSnp2,3 and

TProcSnp3, 2.

List 8. Operations for sub-task 3 of Example 2.1

(* represents generic operations to be identified)

Sequence Operation Performed

28
*

Add a SnpTransition in SRNRoot

29
*

Set SRNRoot.SnpTransition.name = “TProcSnp” +

SRNRoot.SnpLnProg2.name.subString(9) + “,” + EventName

= “TProcSnp” + “2” + “,” + “3” = “TProcSnp2,3”

30
*
 Add a SnpTransition in SRNRoot

31
*
 Set SRNRoot.SnpTransition.name = “TProcSnp” +

EventName + “,” + SRNRoot.SnpLnProg3.name.subString(9)

= “TProcSnp” + “3” + “,” + “2” = “TProcSnp3,2”

32
*
 Connect SRNRoot.SnpLnProg2 and SRNRoot.TProcSnp2,3

33
*
 Connect SRNRoot.TProcSnp2,3 and SRNRoot.SnpLnProg3

34
*
 Connect SRNRoot.SnpLnProg3 and SRNRoot.TProcSnp3,2

35
*
 Connect SRNRoot.TProcSnp3,2 and SRNRoot.SnpLnProg2

When specifying the name attributes, complex String composition can be given using the Java

APIs, as done in operations 29 and 31. After the demonstration is completed and generic

operations are identified in the user refinement step (i.e., checking the generic operations in

the dialog as shown in Figure 11), the inference engine automatically infers and generates the

transformation pattern. After the inferred transformation is saved, a user may select any

model instance and a desired transformation pattern, and the selected model will be scaled by

adding a new event type. An execution controller has been implemented to enable execution

of a pattern multiple times. The bottom of Figure 1 is the result of adding two event types

using the inferred pattern.

4.2 Scaling the EQAL Models

Example 2.2 focuses on increasing event services. The scaling process of adding one more

event service includes four sub-tasks, as illustrated in Figure 13:

t1. Add a new Gateway to each original Site, and connect it to its EventChannel.

t2. Add a new Site, containing an EventChannel, EventSupplier, EventConsumer,

EventTypeRefs, Gateways, and necessary connections.

t3. Make connections from the EventChannel in the new Site to each new Gateway in

other Sites.

t4. Make connections from the EvenChannel in each original Site to a new Gateway in the

new Site.

Figure 13. The process of scaling an EQAL model from three event services to four

We give the demonstration on the model instance shown in the top of Figure 2. The first sub-

task t1 is to add a new Gateway to each original Site and connect it to the EventChannel.

Obviously, this is another case of generic operations, because the number of current existing

Sites is unfixed (e.g., there are three Sites in this case, but there could be more or less in other

models). Therefore, in the demonstration, we only demonstrate adding one Gateway and

making the connection in one of the Sites, and then, identify them as generic. The operations

performed for t1 are shown in List 9.

List 9. Operation for sub-task t1 of Example 2.2

Sequence Operation Performed

1
*

Add a Gateway in EQALRoot.Site1

2
*
 Connect EQALRoot.Site1.EventChannel to EQALRoot.Site1.Gateway

To demonstrate t2, we need to create a new Site. Again, adding one Site and its

EventChannel, EventSuppiler, EventConsumer, and EventTypeRefs are only needed once for

each scaling process, while adding new Gateways and connecting them to the EventChannel

in the new Site should be generic and correspond to the number of existing Gateways in the

original Sites. List 10 shows the operations performed to add a new Site and its internal

structure.

List 10. Operations for sub-task 2 of Example 2.2

Sequence Operation Performed

3

Add a Site in EQALRoot

4 Add an EventChannel in EQALRoot.Site

5 Add a EventSupplier in EQALRoot.Site

6 Add a EventConsumer in EQALRoot.Site

7 Add a EventTypeRef in EQALRoot.Site

8 Add a EventTypeRef in EQALRoot.Site

9 Connect EQALRoot.Site.EventSupplier to EQALRoot.Site.EventTypeRef

10 Connect EQALRoot.Site.EventConsumer to EQALRoot.Site.EventTypeRef

11 Connect EQALRoot.Site.EventSupplier to EQALRoot.Site.EventChannel

12 Connect EQALRoot.Site.EventConsumer to EQALRoot.Site.EventChannel

13
*

Add a Gateway in EQALRoot.Site

14
*
 Connect EQALRoot.Site.EventChannel to EQALRoot.Site.Gateway

To demonstrate t3, multiple connections have to be made to connect the new EventChannel in

the new Site to each new Gateway in the other Sites. In this step, a user should not only

demonstrate a single generic connecting operation, but also give additional constraints on the

source and target elements of this connection, because there are so many EventChannels and

Gateways available (List 11). Without a user’s restriction, the inference engine may choose

the wrong source and target to make the connection when the pattern is executed. The

precondition on the source EventChannel is that it initially has no outgoing and incoming

connections, because it is a newly created EventChannel in the new Site. The extra

precondition on the target Gateway is that it has only one outgoing and no incoming

connections.

List 11. Operations for sub-task t3 of Example 2.2 (“p” represents the precondition)

Sequence Operation Performed

15
*

Connect EQALRoot.Site.EventChannel and EQALRoot.Site1.Gateway

p1
EQALRoot.Site.EventChannel.outgoingConns = 0

p2
EQALRoot.Site.EventChannel.incomingConns = 0

p3
 EQALRoot.Site1.Gateway.outgoingConns = 0

p4
 EQALRoot.Site1.Gateway.incomingConns = 1

The final sub-task t4 is to connect each original EventChannel to a new Gateway in the new

Site. Again, the Gateway in the new Site should have only one incoming connection from its

own EventChannel (List 12).

List 12. Operations for sub-task t4 of Example 2.2

Sequence Operation Performed

16
*

Connect EQALRoot.Site1.EventChannel and EQALRoot.Site.Gateway

p1
EQALRoot.Site.Gateway.outgoingConns = 0

p2
EQALRoot.Site.Gateway.incomingConns = 1

After the demonstration, generic operations are identified, and preconditions are given in the

user refinement step through the interface shown in Figure 10. Precondition specification

dialog. Users give the preconditions to the elements he or she just touched in the

demonstration, without being exposed to any metamodel information. The model can be

scaled by adding any number of new Sites by applying the pattern multiple times. The bottom

of Figure 2 is the result of applying the inferred pattern to scale the model by adding three

new event services.

4.3 Scaling the C2M2L Models

Replicating a Node in Example 2.3 includes two sub-tasks:

t1. Replicate the overloaded Node, and balance the CPULoad by setting the CPULoad

attribute for both the new Node and the original Node.

t2. Replicate all the NodeServices contained in the original Node to the new Node.

Replicating a model element involves creating the same type of element and setting up the

same attribute values. To demonstrate t1, we can create one Node and set all its attributes to

be the same as those in the original overloaded Node, except CPULoad (List 13). An

important set of preconditions should be specified to ensure that the Node is actually

overloaded, which in this case occurs when the CPULoad is greater than 100 and

CPULoadRateOfChange is greater than 10.

List 13. Operations for sub-task t1 of Example 2.3

Sequence Operation Performed

1

Add a Node in C2M2LRoot

2 Set Node.Name = PetStoreWebTierInstance1.Name =

“PetStoreWebTierInstance1”

3 Set Node.AMI = PetStoreWebTierInstance1.AMI = “ami-45e7002c”

4 Set Node.Annotation = PetStoreWebTierInstance1.Annotation =

“WebTier for PetStore”

5 Set Node.HeartbeatURI = PetStoreWebTierInstance1.HeartbeatURI =

 “http://ps01.aws.amazon.com/hb”

6 Set Node.HostName = PetStoreWebTierInstance1.HostName =

 “http://ps01.aws.amazon.com/hb”

7 Set Node.IsWorking = PetStoreWebTierInstance1.IsWorking = true

8

Set PetStoreWebTierInstance1.CPULoad (old) =

PetStoreWebTierInstance1.CPULoad (old) / 2 = 105 / 2 = 52.5

9 Set PetStoreWebTierInstance1.CPULoad (new) =

PetStoreWebTierInstance1.CPULoad (old) = 52.5
p1

PetStoreWebTierInstance1.CPULoad (old)> 100
p2

PetStoreWebTierInstance1.CPULoadRateOfChange (old)> 10

To demonstrate t2, because the number of NodeServices in a Node varies, the operations of

replicating the NodeService should be generic and demonstrated only once (List 14).

List 14. Operations for sub-task t2 of Example 2.3

Sequence Operation Performed

10
*
 Add a NodeService in the new C2M2LRoot.PetStoreWebTierInstance1

11
*
 Set NodeService.Name =

PetStoreWebTierInstance1.BootstrapWarCopyFromS3.Name =

“BootstrapWarCopyFromS3”

12
*
 Set NodeService.ResponseTime =

PetStoreWebTierInstance1.BootstrapWarCopyFromS3.

ResponseTime =0.14

13
*
 Set NodeService.ResponseTimeRateOfChange =

PetStoreWebTierInstance1.BootstrapWarCopyFromS3.

ResponseTimeRateOfChange = 0.001

The generated pattern can be executed by cloud computing administrators to automatically

detect the overloaded Nodes and replicate the necessary number of new ones.

5 Evaluation

In this section, the MTBD approach is first evaluated using the three desired characteristics of

model scalability proposed by [3] and [6]. Then, we compare scalability scenarios using

traditional model transformation languages to that of the MTBD approach advocated in this

paper. Finally, the main limitations of MTBD are discussed at the end of this section.

5.1 Evaluation on the Desired Characteristics of a Replication Approach

This section compares the scalability solution offered by MTBD to a set of proposed

desiderata described in [3] and [6].

Retain the benefits of modeling. The power of modeling comes from the ability to explore

various design alternatives and perform system analysis or development at a higher level of

abstraction. A model scaling technique should not inhibit this ability. For instance, a model

translator can translate a model into some other artifacts (e.g., code, simulation scripts).

Instead of scaling the original model, some scalability approaches may integrate the

scalability task into the generation of final artifacts or other intermediate representations. The

disadvantage of such an approach is that models are not the catalyst for representing the

scalability result (i.e., the scalability is not represented directly in a model, but in the

generated artifact), which inhibits the benefit of using models. By contrast, the MTBD

approach directly operates on model instances, retaining all of the benefits of modeling.

General across multiple modeling languages. This characteristic ensures that the scaling

approach should be applicable to different modeling languages. The MTBD implementation

is a plug-in to GEMS, and triggered in the model editor. Thus, any modeling language

defined in GEMS that can be edited in the model editor can apply MTBD to address the

scalability transformation problems, which means MTBD is a general solution that can be

applied across multiple domain-specific modeling languages.

Flexible to support user extensions. The desired scaling process should allow alteration of

the semantics of the replication more directly using a language that can be manipulated easily

by an end-user. The current generated transformation pattern is not editable, and therefore

does not allow direct extension or reuse on an existing pattern. However, we believe that the

user-focus of MTBD allows a user to re-demonstrate a new task in a manner that is better than

editing existing model transformation code. If the end-user has no idea of programming or

model transformation languages, user extension by altering the model transformation is

simply not even possible.

5.2 The Benefits of Automating Model Scalability using MTBD

The benefits of MTBD can be compared with writing model transformation rules to solve the

same problems, as was done in [3] and [6]. In these earlier works, we used a model

transformation engine called C-SAW, which processed a transformation language called the

Embedded Constraint Language (ECL). We used ECL to perform the same model scalability

tasks that were introduced in Sections 2.1 and 2.2. Although ECL is specific to model

transformation tasks and is at a higher level than general-purpose programming languages, its

usage still requires that a user learn the syntax of the language. The use of ECL also requires a

deep understanding of the metamodel for the domain being scaled. Additionally, ECL

requires understanding of basic programming concepts such as variable declaration, branch

statements, and even recursion. Thus, for a general domain expert who does not have any

programming language knowledge or experience, ECL is often too challenging to use as a

model scalability solution. In fact, our understanding of this problem came after performing

the work described in [3] and [6], leading us to the realization that a new automation approach

was needed, which motivated our work on MTBD.

Comparatively, MTBD does not use any model transformation language. Users only need to

perform a single case of the scaling process on a concrete model instance. Every operation or

user refinement is done at the concrete model instance level, not at the metamodel level, as

needed with traditional transformation languages. MTBD enables users to solve complex

scaling problems while being ignorant of the underlying metamodel definition.

To better compare the efforts of automating model scalability tasks using MTLs and MTBD,

Figure 14 shows part of the model transformation rules written in ECL to implement sub-task

t1 of Example 2.2. To add a Gateway, the necessary objects should be declared first, followed

by calling creational APIs to create the correct type of elements and the connections.

However, the same task could be accomplished by only two operations in the demonstration,

as shown in List 9.

//add one CORBA_Gateway and connect it to Event_Channel

strategy addGateWay(j: integer)

{

 declare ec, site_gw : object;

 addAtom("CORBA_Gateway", "CORBA_Gateway");

 ec := findModel("Event_Channel");

 site_gw := findAtom("CORBA_Gateway");

 addConnection("LocalGateway_EC", site_gw, ec);

}

Figure 14. An excerpt of transformation rule written in ECL to accomplish

sub-task t1 of Example 2.2

In addition, to add the Gateway to each existing Site, and control the number of execution

times, recursive calls are used in the ECL transformation rules as shown in Figure 15. In

MTBD, a user simply identifies the two operations in List 9 as generic after the

demonstration. The inferred transformation can then be executed as many times as needed.

//traverse the original sites to add CORBA_Gateways

//n is the number of the original sites

//m is the total number of sites after scaling

strategy traverseSites(n, i, m, j : integer)

{

 declare id_str : string;

 if (i <= n) then

 id_str := intToString(i);

 rootFolder().findModel("NewGateway_Federation").

 findModel("Site " + id_str).addGateWay_r(m, j);

 traverseSites(n, i+1, m, j);

 endif;

}

//recursively add CORBA_Gateways to each existing site

strategy addGateWay_r(m, j: integer)

{

 if (j<=m) then

 addGateWay(j);

 addGateWay_r(m, j+1);

 endif;

}

Figure 15. An excerpt of transformation rule written in ECL to enable adding a Gateway to

each existing Site, while controling the number of execution times

We have not done a formal user study on the comparison between the two approaches.

However, Table 1 lists some of the results of the comparative effort, indicating that [6] used

over 170 lines of ECL code to address Example 2.1. We performed the same task with MTBD

by demonstrating 35 editing operations on a concrete model instance, and identifying one

generic operation. Similarly, the solution of Example 2.2 using ECL requires 32 lines of ECL

[3], while our MTBD-based scalability solution required 16 direct editing operations, one

generic operation identification and two precondition refinements.

Model Scalability Example MTBD ECL Rules

Example 2.1 35 operations

1 generic operation refinement

170 SLOC

Example 2.2 16 Operations

2 precondition refinement

1 generic operation refinement

124 SLOC

Table 1. The comparison of effort to solve model scalability tasks

using MTBD and a model transformation language (ECL)

5.3 Current Limitations of MTBD and Future Work

When designing and implementing MT-Scribe, a tradeoff existed between simplicity and

functionality, because a user’s demonstration and refinement are not as expressive and

accurate as the same transformation task written in an MTL. Some tasks could be easily

specified by a transformation language, but turn out to be very difficult to demonstrate. For

instance, scaling an element having the maximum value of a specific attribute is currently not

possible in MT-Scribe. The same task could be implemented by function calls, selection or

iteration facilities available in most MTLs. Although these kinds of functions could be

extended to MTBD by designing some other user-friendly refinement interfaces, its simplicity

after adding many user feedback steps would probably be undermined.

Therefore, since it is not easy to make MTBD a fully complete replacement to a well-defined

model transformation language to support all possible model scalability tasks, our initial focus

has been toward making MT-Scribe practical for most scenarios. When encountering

difficulties in using MTBD to solve common model scalability problems in practice, the most

needed and essential features and functions will be selected and added into MT-Scribe by

designing user-friendly and user-centric interfaces and mechanisms that are capable of

implementing the desired function. By such an incremental and selective extension process,

we believe a proper balance can be achieved between simplicity, functionality, and

practicality.

6 Related Work

Software scalability in computer systems has been well-recognized and defined. Bondi [1]

provided a comprehensive analysis on the characteristics of software scalability and the

impact on performance. However, automating scalability on models in the context of MDE

has not been widely investigated. Gray et al. investigated model scalability [3] and proposed

the use of ECL to automate model scalability tasks [3][6]. They point out that model

scalability is an endogenous model transformation task and other model transformation

languages (MTLs) and tools can be used to automate model scalability tasks. In this summary

of related work, we analyze the traditional model transformation approaches that can be used

to automate model scalability in Section 6.1. In Section 6.2, we overview some innovative

approaches that can potentially simplify the automation of model scalability tasks using

approaches similar to our own work on MTBD.

6.1 Traditional model transformation approaches that can support automating model

scalability

One of the most direct ways to automate model scalability tasks is to use General-purpose

Programming Languages (GPLs). Most modeling tools provide APIs that assist in the direct

manipulation of an internal representation of the model instance. The model scalability

procedures can be encoded in a GPL, such as Java and C++, which developers are generally

comfortable and familiar with, avoiding extra training to write transformations. However, the

power of transformations is often restricted by the APIs. Furthermore, GPLs lack the high-

level abstractions to specify models and scaling transformation rules, making the GPL-based

transformations difficult to write, understand, and maintain [4].

Because many modeling tools support importing and exporting model instances in the form of

XMI, it is possible to use the existing XML tools such as XSLT [23] to scale models outside

of the modeling tool infrastructure. Although XSLT is specifically used to transform models

and has a higher level of abstraction compared with GPLs, it is tightly coupled to XML,

forcing the specification of transformations using concepts at a lower level of abstraction. In

addition, transformations performed outside of a modeling tool exert a potential risk that the

models being transformed cannot be correctly imported or exported with future versions of

the tool.

Currently, the most mature approach to automate model scalability tasks is to specify the

transformation rules by using specialized MTLs [5]. A specialized transformation language

provides a set of constructs for explicitly specifying the behavior of the transformation, which

can typically be written more concisely than GPL and XML-based transformation

approaches. There are two major types of MTLs in this category: textual hybrid MTLs and

graphical MTLs. The former type usually combines both declarative and imperative

constructs to perform a transformation. Declarative constructs are used to specify source and

target patterns as direct mapping rules, and imperative constructs are used to implement

sequences of instructions (e.g., explicitly specifying how the scaling process should be

realized). ATL [8] and ECL [6] are examples of textual hybrid MTLs. By comparison,

graphical MTLs convert the task of scaling a model into a graph transformation problem by

utilizing graph matching and rewriting techniques. A typical graphical MTL usually defines a

transformation rule as a LHS (left-hand side) graph representing the source model and a RHS

(right-hand side) graph representing the target model. Then, the engine automatically matches

the LHS graph in a model and changes it into the desired RHS graph. Compared with textual

hybrid MTLs, it is easier to define specific model patterns using graphs, leading to a

simplification of the transformation rules in many cases. However, graphical MTLs are not as

expressive as textual definitions, resulting in less powerful functionality in some model

scalability scenarios. Typical MTLs in this category are GreAT [24], and VIATRA [25].

However, whether a MTL has a high level of abstraction, graphical or textual, its usage on

automating model scalability always suffers from the challenges mentioned in Section 1 (i.e.,

the steep learning curve and need to understand the details of the underlying metamodel),

preventing a wide range of end-users from contributing to model scalability tasks using their

expertise.

6.2 Innovative model transformation approaches that can potentially simplify the model

scalability tasks

Some innovative model transformation approaches have been proposed and developed as

alternatives to MTLs. These new approaches share a similar goal of making the specification

of model transformation easier and more user-friendly, requiring less knowledge of MTLs

and metamodels. These innovations provide strong potential to simplify the automation of

model scalability tasks.

Model Transformation By Example (MTBE) [16] is an innovative approach to address the

challenges inherent from using model transformation languages. Instead of writing

transformation rules manually, MTBE enables users to define a prototypical set of interrelated

mappings between the source and target model instances, and then the metamodel-level

transformation rules can be inferred and generated semi-automatically. In this context, users

work directly at the model instance level and configure the mappings without knowing any

details about the metamodel definition or the hidden concepts. With the semi-automatically

generated rules, the simplicity of specifying model transformations is greatly improved. As

first introduced by Varró [16], the prototypical transformation rules of MTBE can be

generated partially from the user-defined mappings by conducting source and target model

context analysis. Varró later proposed a way to realize MTBE by using inductive logic

programming [26]. Similarly, Strommer and Wimmer implemented an Eclipse prototype to

enable generation of ATL rules from the semantic mappings between domain models

[17][27]. Instead of using logic programming engines, the inference and reasoning process is

based on pattern matching.

However, the current state of MTBE research still has some limitations and is not very

appropriate to automate model scalability tasks. The semi-automatic generation often leads to

an iterative manual refinement of the generated rules; therefore, the model evolution

designers are not isolated completely from knowing the transformation languages and the

metamodel definitions. In addition, the inference of transformation rules depends on the given

sets of mapping examples. In order to obtain a complete and precise inference result, one or

more representative examples must be available for users to setup the prototypical mappings,

but seeding the process with the proper scalability examples is not always an easy task.

Furthermore, current MTBE approaches focus on mapping the corresponding domain

concepts between two different metamodels without handling complex attribute

transformations. Therefore, it is impossible to automate the configuration of attributes in the

scaling process, which is commonly required in practice. Furthermore, current MTBE

approaches fit the exogenous model transformation concept very well to map the concepts

between two different domains, but they are not very practical when it comes to endogenous

model transformations, which presents limitations in supporting model scalability evolution

activities.

Brosch et al. introduced a method for specifying composite operations within the user’s

modeling language and environment of choice [18][28]. The user models the composite

operation by-example, changing a source model into the desirable target model. By

comparing the source and target states, the specific changes can be summarized by a model

difference algorithm. After giving additional specification of the pre-condition and post-

condition, an Operation Specification Model (OSM) can be generated that represents the

composite operation scenario and can be used to generate other transformation artifacts.

Similar to MTBE, users can work on the concrete model instance level without knowing

about the metamodel to define composite operations through examples. Although user

refinement (e.g., specification of pre- and post- conditions) is also needed to make the

generated transformation complete and accurate, the refinement is done at the example level

through the given interfaces rather than at the generated transformation rule when using

MTBE. In addition, the composite operation focuses on endogenous model transformation,

which could be potentially used to support automating model scalability tasks. However, the

major limitations with this approach are: 1) Even though the refinement process is not on the

level of generated model transformation rules, some programming concepts are involved,

making this process dependent on technical skills that some domain experts may not possess;

2) Attribute transformation has not been considered and implemented, which shares the same

problem as MTBE; 3) In the generation of artifacts for a certain scenario, a manual binding

process is required to map the elements in the OSM to the new concrete model. Although a

user-friendly interface has been developed to simplify the procedure, the manual binding

process would become a problem when a large number of model elements and connections

are present in a scaling scenario.

7 Conclusion

This paper introduces a demonstration-based model transformation approach to automate

model scalability tasks in order to support software evolution. Compared with our previous

work on using model transformation languages to scale models [3][6], we believe that MTBD

offers several advantages supporting ease of use. The demonstration focus allows users to be

ignorant of both the details of the transformation language, as well as the structure of the

metamodel for the language being used. The paper presented a new formal model of MTBD

and summarized the changes that were needed to evolve an earlier version of our approach

(MT-Scribe) to address challenges related to precondition extraction, attribute refactoring,

and transformation site matching. Three case studies were used to demonstrate the application

of our improved technique in order to address a variety of scalability scenarios. We believe

that scalability issues will become more prominent as the concepts of MDE are integrated

further into development processes. The key contribution of this paper is an approach for

helping to overcome the challenges associated with scaling models in MDE processes.

Acknowledgement

This work was supported by NSF CAREER award CCF-1052616.

References

1. Bondi, A.: Characteristics of scalability and their impact on performance. 2nd International

Workshop on Software and Performance, Ottawa, Ontario, Canada, pp. 195-203 (2000)

2. Schmidt, D.: Model-Driven Engineering. IEEE Computer, vol. 39 no. 2, pp. 25-32 (2006)

3. Gray, J., Lin, Y., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S., Gokhale, S.: Replicators:

Transformations to address model scalability. In Proceedings of the International Conference on

Model-Driven Engineering Languages and Systems (MoDELS), Springer-Verlag LNCS 3713,

Montego Bay, Jamaica, October 2005, pp. 295–308 (2005)

4. Sendall, S., Kozaczynski, W.: Model transformation - The Heart and Soul of Model-Driven

Software Development. IEEE Software, Special Issue on Model Driven Software Development,

20(5):42–45 (2003)

5. Gray, J., Lin, Y., Zhang, J.: Automating Change Evolution in Model-Driven Engineering. IEEE

Computer, Special Issue on Model-Driven Engineering, vol. 39, no. 2, pp. 51-58 (2006)

6. Lin, Y., Gray, J., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S., Gokhale, S.: Model

Replication: Transformations to Address Model Scalability. Software: Practice and Experience,

vol. 38, no. 14, pp. 1475-1497 (2008)

7. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. IBM

Systems Journal, v.45 n.3, p.621-645 (2006)

8. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Science of

Computer Programming, vol. 72, nos. 1/2, pp. 31-39 (2008)

9. OMG, Revised Submission for MOF 2.0 Query/View/Transformations RFP (ad/2002-04-10),

OMG Document ad/2005-07-01 (2005)

10. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. Model Driven Engineering

Languages and Systems (MoDELS), Spring-Verlag LNCS 5795, Denver, CO, October 2009, pp.

712-726 (2009)

11. Edwards, G., Deng, G., Schmidt, D., Gokhale, A., Natarajan, B.: Model-Driven Configuration and

Deployment of Component Middleware Publish/Subscribe Services. Generative Programming and

Component Engineering (GPCE), Vancouver, BC, October 2004, pp. 337-360 (2004)

12. Groovy. http://groovy.codehaus.org/

13. Muppala J., Ciardo G., Trivedi K.: Stochastic Reward Nets for Reliability Prediction.

Communications in Reliability, Maintainability and Serviceability, vol. 1, no. 2, pp. 9-20. (1994)

14. Mens, T., Gorp, P.: A Taxonomy of Model Transformation. Workshop on Graph and Model

Transformation, vol. 152, Talinn, Estonia, pp. 125-142 (2005)

15. Agrawal, A., Karsai, G., Lédeczi, Á.: An End-to-End Domain-Driven Software Development

Framework. Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA) –

Domain-driven Track, Anaheim, CA, pp. 8-15 (2003)

16. Varró, D.: Model Transformation by Example. Model-Driven Engineering Languages and Systems

(MoDELS), Springer-Verlag LNCS 4199, Genova, Italy, October 2006, pp. 410–424 (2006)

17. Strommer, M., Wimmer, M.: A Framework for Model Transformation by-example: Concepts and

Tool Support. 46th International Conference on Technology of Object-Oriented Languages and

Systems (TOOLS), Zurich, Switzerland, July 2008, pp. 372–391 (2008)

18. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Retschitzegger, W.,

Schwinger, W.: An Example is Worth a Thousand Words: Composite Operation Modeling By-

Example. International Conference on Model Driven Engineering Languages and Systems

(MoDELS), Spring-Verlag LNCS 5795, Denver, CO, October, 2009, pp. 271-285 (2009)

19. Generic Eclipse Modeling System (GEMS), http://www.eclipse.org/gmt/gems/

20. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:

Composing Domain-specific Design Environments. IEEE Computer, 34(11), pp. 44-51 (2001)

21. Schmidt, D., Stal, M., Rohnert, H., Buschman, F.: Pattern-Oriented Software Architecture –

Volume 2: Patterns for Concurrent and Networked Objects. John Wiley and Sons (2000)

22. MTBD Project Page. http://www.cis.uab.edu/softcom/mtbd

23. W3C, XSLT Transformation version 1.0.http://www.w3.org/TR/xslt (1999)

24. Balasubramanian, D., Narayanan, A., Buskirk, C., Karsai, G.: The Graph Rewriting and

Transformation Language: GreAT. Electronic Communication of the European Association of

Software Science and Technology, vol. 1, 8 pages (2006)

25. Balogh, Z., Varró, D.: Advanced Model Transformation Language Constructs in the VIATRA2

Framework. Symposium on Applied Computing (SAC), Dijon, France, April 2006, pp. 1280-1287

(2006)

26. Varró, D., Balogh, Z.: Automating Model Transformation by Example using Inductive Logic

Programming. Symposium on Applied Computing (SAC), Seoul, Korea, March 2007, pp. 978-984

(2007)

http://www.eclipse.org/gmt/gems/

27. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transformation Generation

By-Example. Hawaii International Conference on System Sciences (HICSS), Big Island, HI,

January 2007, pp. 285 (2007)

28. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: The Operation Recorder: Specifying

Model Refactorings By-example. International Conference on Object-Oriented Programming

Systems Languages and Applications (OOPSLA) – Tool Demonstration, Orlando, FL, October

2009, pp. 791-792 (2009)

29. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Schwinger,

W., Wimmer, M.: Lifting Metamodels to Ontologies - a Step to the Semantic Integration of

Modeling Languages. International Conference on Model-Driven Engineering Languages and

Systems (MoDELS), Springer-Verlag LNCS 4199, Genova, Italy, October 2006, pp. 528-542

(2006)

30. Object Management Group, Object Constraint Language Specification.

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL. (2010)

31. Sun, Y., White, J., Gray, J., Gokhale, A.: Model-Driven Automated Error Recovery in Cloud

Computing. Model-driven Analysis and Software Development: Architectures and Functions, IGI

Global, Hershey, PA (2009)

32. White, J., Czarnecki, K., Schmidt, D., Lenz, G., Wienands, C., Wuchner, E., Fiege, L.: Automated

Model-based Configuration of Enterprise Java Applications. Enterprise Distributed Object

Computing (EDOC), October, 2007, pp. 301-312, Annapolis, Maryland (2007)

33. Gray, J., Tolvanen, J., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-Specific Modeling.

Handbook of Dynamic System Modeling, CRC Press, Chapter 7, pages 7-1 through 7-20 (2007)

34. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented Domain Analysis

(FODA) Feasibility Study. Software Engineering Institute, Technical Report CMU-SEI-90-TR21,

Carnegie Mellon University. (1990)

35. Hayes, B: Cloud Computing. Communications of the ACM, vol. 51, no. 7, pp. 9-11. (2008)

36. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/ (2010)

