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Abstract 

Model-Driven Engineering (MDE) is playing an increasingly more significant role in 

software development. An important aspect of software development is scaling software 

models in order to handle design forces, such as enlarging and upgrading system features, or 

allocating more resources to handle additional users. Model scalability is the ability to 

refactor a base model, by adding or replicating the base model elements, connections or 

substructures, in order to build a larger and more complex model to satisfy new design 

requirements. Although a number of modeling tools have been developed to create and edit 

models for different purposes, mechanisms to scale models have not been well-supported. In 

most situations, models are manually scaled using the basic point-and-click editing operations 

provided by the modeling environment.  

Manual model scaling is often tedious and error-prone, especially when the model to be 

scaled has hundreds or thousands of elements and the scaling process involves entirely 

manual operations. Although model scaling tasks can be automated by using model 

transformation languages, writing model transformation rules requires learning a model 

transformation language, as well as possessing a great deal of knowledge about the 

metamodel. Model transformation languages and metamodel concepts are often difficult for 

domain experts to understand. This requirement to learn a complex model transformation 

language exerts a negative influence on the usage of models by domain experts in software 

development. For instance, domain experts may be prevented from contributing to model 

scalability tasks from which they have significant domain experience. 

In order to automate model scalability tasks, this paper presents a demonstration-based 

approach to automate model scaling. Instead of writing model transformation rules explicitly, 

users demonstrate how to scale models by directly editing the concrete model instances and 

simulating the model replication processes. By recording a user’s operations, an inference 

engine analyzes the user’s intention and generates generic model transformation patterns 

automatically, which can be reused to scale up other model instances. Using this approach, 

users are able to automate scaling tasks without learning a complex model transformation 

language. In addition, because the demonstration is performed on model instances, users are 

isolated from the underlying abstract metamodel definitions. 
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1 Introduction 

Software systems often need to evolve in order to accommodate new features, to process 

larger workloads, or to handle other scaling issues [1]. Scaling a software system is crucial for 

its long-term success. With the increasing adoption of Model-Driven Engineering (MDE) [2], 

models are emerging as a high level abstraction of software systems. The focus on models as 

first-class entities in many domains (e.g., automotive and avionics domains) has promoted 

models to an important role in software development.  

When scaling a software system in the context of MDE, it is common to scale the related 

software models, rather than the low-level software artifacts (e.g., source code). For instance, 

feature models [34] are used as design models in software product-lines to configure the 

components of a software system, such that adding new product functionality often consists 

of adding new feature elements to a model. Domain-specific models [33] can be built to 

specify software systems and generate implementation code, which means that expanding the 

implementation of a software system is based on scaling the corresponding domain-specific 

models. Moreover, when a software system is about to be deployed, deployment models can 

be used to specify how to allocate software to the underlying hardware infrastructure [32] and 

to monitor and control the infrastructure at runtime [31]. In order to allocate additional 

infrastructure to handle larger workloads, the underlying deployment models must be scaled. 

Thus, model scalability [6] (i.e., the ability to build a complex model from a base model by 

adding, replicating, or modifying its model elements, connections or substructures) is an 

important aspect of MDE-based software evolution. 

To support model scalability, the host modeling tool must allow users to rapidly change the 

model representation [5]. Although manually editing and scaling models is the most direct 

approach, it is obviously laborious, time consuming and error prone, particularly when a large 

number of model elements and connections exist. Editing a large model may require a 

staggering amount of clicking and typing operations within the modeling tool [6]. Therefore, 

the process of scaling models can benefit immensely from automation. 

Model transformation has proven to be an effective approach to automate model scalability 

tasks [6]. Scaling a base model to a more complex model is a type of model transformation. 

More specifically, this type of scaling is an endogenous model transformation (i.e., model 

transformations within the same metamodel or the same domain) [7]. A number of executable 

Model Transformation Languages (MTLs) have been developed to assist users in specifying 



the transformation rules that describe how to scale a model from a base state to a desired more 

complex state. 

Although model transformation languages are powerful and expressive approaches to 

automating some model scalability tasks, adopting an MTL is not always the ideal solution. 

Firstly, even though most MTLs are high-level and declarative languages, they have a steep 

learning curve due to the complexity of their syntax, semantics, and other special features 

(e.g., OCL [30] specification is used in many MTLs). This learning curve is particularly 

apparent for domain experts, such as automotive engineers, who are not computer scientists 

and have not received training on the use of MTLs. Furthermore, model transformation rules 

are often defined at the metamodel level, rather than in the context of a concrete model 

instance, which exposes users to metamodel concepts not specific to the modeling language. 

Developing a deep and clear understanding of a metamodel is challenging, especially for 

large and complex domains. In some cases, domain concepts may be hidden in the metamodel 

and difficult to unveil [29], which makes comprehension more difficult. In the context of 

MDE, more general users (e.g., domain experts or non-programmers) can participate in 

building and using software models. The difficulties associated with using MTLs may prevent 

these users from contributing to certain model scaling tasks from which they have a large 

amount of domain experience. 

Our contribution in this paper is an innovative approach to automate model scalability tasks, 

so that domain experts are able to implement model evolution tasks without using a model 

transformation language and without having to understand the metamodel definition. The 

approach described in this paper extends our previous work, Model Transformation By 

Demonstration (MTBD) [10]. MTBD simplifies the implementation of model transformations 

by inferring transformation patterns from a user’s demonstrated operations to transform a 

concrete model instance. Several new extensions and features have been made to enhance our 

original approach (i.e., MT-Scribe, which is our implementation of the MTBD concept) so 

that it can be adapted to handle special needs related to model scalability. We have applied 

our approach to a number of model scalability scenarios that were previously performed by 

manually writing transformation rules to demonstrate the reduction in manual effort that our 

approach provides. Finally, we have created a new formal model of MTBD to precisely 

define its semantics and inference techniques. 

The rest of the paper is organized as follows. Three model scalability scenarios in different 

domains are presented in Section 2 to motivate the need to support software evolution by 

automating model scalability. In Section 3, the original MTBD project combined with its 

limitations in dealing with model scalability are introduced, followed by a presentation of 



new extensions and features that have been added to address those problems. The solutions to 

solve the three motivating examples using the extended MTBD are then given in Section 4. 

Section 5 evaluates the new approach, pointing out its advantages and limitations. Related 

works and techniques are compared in Section 6, with Section 7 offering concluding remarks. 

2 Motivating Examples Illustrating Model Scalability Issues 

This section presents three examples that motivate the need for automating model scalability 

to support software evolution in different phases of software development – design, 

implementation, and maintenance. For each of the three examples in Sections 2.1, 2.2 and 2.3, 

background information about the specific application domain and context will be given, 

followed by an illustration using a concrete model instance. Then, we present a typical scaling 

evolution scenario in the domain, as well as a desired model instance after the scaling process. 

The challenges of accomplishing these model scalability tasks will be summarized in Section 

2.4. The specific approach for using MTBD to address the needs arising from these examples 

will be given in Section 4. 

2.1 Adding New Event Types: Evolving Software Design Models 

Stochastic Reward Nets (SRNs) [13] can be used for evaluating the reliability of complex 

distributed systems. SRNs have been used extensively for designing and modeling reliability 

and performability of different types of systems. The Stochastic Reward Net Modeling 

Language (SRNML) was developed to describe SRN models of large distributed systems [6], 

which shares similar goals with performance-based modeling extensions for the UML, such 

as the schedulability, performance, and time profiles. For example, the SRN model defined by 

SRNML in Figure 1 depicts the Reactor pattern [21] in middleware for network services, 

providing mechanisms to handle synchronous event demultiplexing and dispatching.  

In the Reactor pattern, an application registers an event handler with the event demultiplexer 

and delegates the incoming events to it. On the occurrence of an event, the demultiplexer 

dispatches the event to its corresponding event handler by making a callback. An SRN model 

consists of two parts: the event types handled by a reactor and the associated execution 

snapshot. The execution snapshot depicts the underlying mechanism for handling the event 

types included in the top part, so any change made to the event types will require 

corresponding changes to the snapshot. In Figure 1, the original model has two event types, 1 

and 2, each from its arrival (e.g., A1), to queuing (e.g., Sn1) and finally service (e.g., Sr1) 

through the immediate transitions (e.g., B1, S1). It also models the process of taking 



successive snapshots and non-deterministic service of event handles in each snapshot through 

some snapshot transitions and places (e.g., StSnpSht, TStSnp1, TProcSnp1,2). 

 

Figure 1. An SRN model before (top) and after (bottom) scaling 

Scalability Scenario in SRNML (Example 2.1): The scalability challenges of SRN models 

arise from the addition of new event types and connections between their corresponding event 

handlers. As shown in the bottom of Figure 1, when two new event types (3 and 4) need to be 

modeled, two new sets of event types and connections (i.e., from A3 to Sr3, from A4 to Sr4) 

should be added. Also, the snapshot model should be scaled accordingly by adding new 

snapshot places (i.e., SnpLnProg3, SnpLnProg4), transitions from starting place to end place 

(i.e., TStSnp3, TEnSnp3, TStSnp4, TEnSnp4), transitions between each new place and each 

existing place (i.e., TProcSnp3,1, TProcSnp1,3, TProcSnp3,2, TProcSnp2,3, TProcSnp4,1, 



TProcSnp1,4, TProcSnp4,2, TProcSnp2,4, TProcSnp3,4, TProcSnp4,3), as well as all the 

needed connections between places and transitions. 

 

2.2 Enlarging Event Services: Evolving Software Implementation Models 

The Event QoS Aspect Language (EQAL) [11] is a Domain-Specific Modeling Language 

(DSML) for graphically specifying publisher-subscriber service configurations for large-scale 

distributed systems. Publisher-subscriber mechanisms, such as event-based communication 

models, help to reduce software dependencies, enhance system composability and evolution, 

and allow application components to communicate anonymously and asynchronously, 

particularly in large-scale distributed and real-time embedded (DRE) systems (e.g., avionics 

mission computing, distributed interactive simulations). Several EQAL model translators 

have been implemented to take EQAL models as input and generate publisher-subscriber 

service configuration files, component property descriptions, and part of the underlying code 

to support system implementation. 

The top of Figure 2 illustrates a model defined by EQAL to specify a federation of event 

channels in different sites, which allows sharing of filtering information and event 

communications in the channels through CORBA gateways. A Site can contain an 

EventChannel, multiple Gateways, an EventConsumer, an EventSupporter, and multiple 

EventTypeRefs. Connections can be built between the EventChannel and Gateway, as well as 

EventConsumer, EventSupporter and EventTypeRef. 

Scalability Scenario in EQAL (Example 2.2): One complex scalability issue in EQAL 

arises when a small federation of event services must be scaled to a very large system, which 

usually accommodates a large number of publishers and subscribers. The bottom of Figure 2 

shows a federated event service with five Sites, which is scaled up from the federated event 

services with three Sites. The scaling process involves adding new Sites that contain an 

EventChannel, a number of Gateways (the number of Gateways depends on the number of 

existing Sites), an EventSupplier, an EventConsumer, two EventTypeRefs and the connections 

among them. In addition, new Gateways need to be added to each original Site and new 

connections need to be built to connect the new Site with original Sites. 



 

Figure 2. An EQAL model before (top) and after (bottom) scaling 

2.3 Replicating Overloaded Application Nodes: Evolving Software Maintenance Models  

Cloud computing shifts the computation from local, individual devices to distributed, virtual, 

and scalable resources, thereby enabling end-users to utilize the computation, storage, and 

other application resources on-demand [35]. A user can create, deploy, execute, and terminate 

the application instances in the cloud as needed, and pay for the cost of time and storage that 

the active instances use based on a utility cost model. 

Cloud Computing Management Modeling Language (C2M2L) [31] is a DSML constructed 

specifically to describe the deployment of application nodes in the cloud and monitor the 

running status of each node. For instance, the top of Figure 3 shows a diagram of an EJB 

cloud application deployed in Amazon EC2 [36], containing four Nodes – Web Tier Instance, 

Middle Tier Instance, Data Tier Instance and Load Balancer. NodeServices are included in 

each Node (e.g., Apache, Tomcat, MySQL, JBoss, OpenSSH) to define the services needed for 

each tier instance. A list of properties can be configured for each Node, such as the name of 

the host (i.e., HostName), the running status of the Node (i.e., IsWorking), the load of the 



CPU (i.e., CPULoad), and the changing rate of the CPU load (i.e., CPULoadRateOfChange). 

This model configures the deployment and execution parameters of an application in a cloud 

computing server. 

To facilitate the management of applications in the cloud, a causal relationship is built 

between the running applications and the model. Changes to the state of the cloud application 

must be communicated back to the modeling tool and translated into changes in the elements 

of the model, while changes from the model must also be pushed back into the cloud. 

Therefore, the models defined by C2M2L serve as an interface to deploy, monitor, and 

manage the applications in the cloud at runtime. 

 

Figure 3. A C2M2L model before (top) and after (bottom) scaling 

Scalability Scenario in C2M2L (Example 2.3): One essential task in the management of 

applications in the cloud is to ensure that each node is handling a proper amount of work load 

without being overloaded. For instance, if the CPULoad and CPULoadRateOfChange of a 

certain Node are both out of the normal range, more Nodes containing the same NodeServices 

and configuration need to be replicated in order to balance the work load. As shown in the 



bottom of Figure 3, one more Web Tier Instance Node is replicated to handle the increasing 

workload of the original single Node. To accomplish this task, creating the same Node and 

NodeServices are needed, as well as setting up all the properties to be the same as the 

previous Node, except balancing the CPULoad of both Nodes. In this scenario, the CPULoad 

and CPULoadRateOfChange properties must be checked before scaling, so that the new Node 

will be added only when the existing Node is really out of the normal range. This 

management task becomes challenging when a large number of application Nodes are running 

in the cloud. Automating the detection of overloaded Nodes and replicating them promptly is 

essential to ensure applications are running correctly and smoothly. 

2.4 Challenges of Model Scalability Current Practice 

For each of these model scalability scenarios, it is possible to edit the model manually to scale 

it from a simple state to another simple state (e.g., adding two new events in a 2-event SRN 

model, creating one event service for a 3-Site EQAL model, or replicating two new Nodes in 

a C2M2L model). However, it becomes extremely challenging to manually scale each of 

these scenarios from to a complex state when there are a large number of new elements that 

need to be added and connected. This challenge comes not only from the quantity of the 

required editing operations, but also the required accuracy and correctness, because a model 

scalability scenario often involves various types of error-prone activities: locating the correct 

part of a model to be scaled, creating proper elements and connections, precisely replicating 

elements and connections, setting up correct properties, and making accurate connections 

between existing elements and newly created ones. Some of these examples (i.e., from 

Sections 2.1 and 2.2) have been automated in the past using a model transformation language 

(MTL) [3][6]. However, the model end-users (e.g., domain experts, such as cloud computing 

administrators) might not have experience in using MTLs. A simpler approach is needed that 

assists general end-users in specifying model scalability scenarios. 

3 Automating Model Scalability Using MTBD 

In this section, we first give a brief introduction to the ideas behind Model Transformation By 

Demonstration (MTBD) (Section 3.1). Then, the key limitations that initially prevented 

MTBD from being applied to model scalability tasks are identified (Section 3.2), followed by 

the enhancements we have made to address these limitations (Section 3.3). 



3.1 Overview of MTBD 

MTBD is a model transformation approach motivated by the difficulties doman experts have 

with learning model transformation languages and understanding metamodel definitions. The 

basic idea (Figure 4) is that instead of manually writing transformation rules in a specific 

model transformation language, users demonstrate how a model transformation should be 

done by directly editing (e.g., add, delete, connect, update) a concrete model instance to 

simulate the desired model transformation process (i.e., User Demonstration). A recording 

and inference engine has been developed to capture all user operations performed during the 

demonstration (i.e., Operation Recording). After the recording process has completed, the 

engine optimizes the recorded operations (i.e., Operation Optimization) and infers a 

transformation pattern that specifies the precondition of the transformation and the sequence 

of actions needed to realize the transformation (i.e., Pattern Inference). This pattern can be 

reused by automatically matching the precondition in any model instance and replaying the 

actions to execute the intended model transformation (i.e., Pattern Execution). During the 

execution of a transformation pattern, constraint checking ensures that the execution does not 

violate the metamodel definition of the domain. 

 

Figure 4.Overview of MTBD 

The idea of MTBD has been implemented as an Eclipse plug-in for the Generic Eclipse 

Modeling System (GEMS) [19] called MT-Scribe. Without using any model transformation 

languages or the need to understand metamodels, general users are able to demonstrate 

endogenous model transformations and execute generated transformation patterns in a simple 

and automated manner. Similarly, this approach can be used to demonstrate how to scale 

models and infer corresponding patterns. This section presents a simple example based on 



EQAL to illustrate the basic idea of using MTBD to support automated model scalability. 

More details about MTBD can be found in [10]. 

Assume that for each Site in an EQAL model, we desire to add one more Gateway (called 

NewGateway). To accomplish this task using MTBD, a user needs to demonstrate the 

scalability task by finding a single Site, adding a Gateway to it, followed by changing the 

name of the new Gateway. Operations in List 1 represent the user-demonstrated actions that 

are performed in the demonstration (a Site called Site1 is selected in the demonstration, see 

Figure 5). 

List 1. Operations performed in the demonstration 

Sequence Operation Performed 

1 Add a Gatewayin EQALRoot.Site1 

2 Set EQALRoot.Site1.Gateway.name = “NewGateway” 

 

Figure 5. The EQAL model before (left) and after (right) the demonstration 

After the demonstration is completed, a transformation pattern can be inferred. This pattern 

specifies the precondition (List 2  – any Site in the model root), and the transformation actions 

(List 3 – adding a new Gateway and changing its name). These lists are abstract 

representations of how the pattern is saved, which are invisible to end-users.

List 2. Precondition – elements needed and corresponding metatypes 

Elements Needed for Operations 

elem1.elem2 

elem1.elem2.elem3 

 

Element MetaType 

elem1 ModelRoot 

elem2 Site 

elem3 Gateway 

List 3.Transformation actions 

Sequence Transformation Action 

1 Add elem3 in elem1.elem2 

2 Set elem1.elem2.elem3.name = “NewGateway” 



A user may then apply this pattern to any other EQAL model. The engine will traverse the 

model and match the precondition using a back-tracking algorithm, after which the 

transformation actions will be executed. In this example, all the Sites in the model will 

automatically have a new Gateway added with the name being “NewGateway” (Figure 6 

shows the pattern applied to an EQAL model containing six Sites). 

 

Figure 6. An EQAL model before (left) and after (right) applying the  

inferred scaling transformation pattern 

3.2 MTBD Formal Description 

Using the description of MTBD provided in Section 3.1, we can build a formal model of the 

process. Our formal model of MTBD is based on a 5-tuple:  

),,(),,(),,(),,(, TPMTPMMTGMtbd jmimim


   (1) 

where:  

1. Mi is a model conformant to the metamodel Metai  

2. Mj is a model also conformant to the metamodel Metai  

3. m


is a sequence of model modifications recorded during a user demonstration of a 

transformation on the model, Mi.  

4. ),( miMTG 


is a generalization function that produces a model transformation, T, 

that can be applied to any model conformant to Metai. The transformation is produced 

by generalizing the series of modifications, m


, that were applied to Mi.  

5. ),( miM 


  is an inference function that extracts the preconditions, P


, needed in 

order to generalize and apply the modifications, m


, to another model.  



6. ),( TP


  is an optional manual transformation and precondition refinement function 

that allows the domain expert to modify the transformation and preconditions inferred 

by TG and ϖ. This function produces a refined transformation, T  , and set of 

preconditions P

 .  

7. ),,( TPM j


 is a transformation function that applies the refined generalized 

transformation, T  , to a model, Mj, if the refined preconditions P



 
are met by Mj.  

3.2.1 Operation Recording 

The goal of MTBD is to allow users to express domain knowledge regarding a function, 

K(Mi). That is, the user is describing a domain-specific function that can be applied to a model 

in order to achieve a domain-specific goal. For example, the EQAL example in Section 2.2 

captured a domain function that expressed how to scale up a publisher/subscriber model by 

adding Sites, EventChannels, and Gateways. A critical component of MTBD is that the 

domain function (transformation) is expressed in terms of the notations in the modeling 

language and not the notations used to describe the metamodel, Metai.  

MTBD captures domain functions as transformations that can be applied to models that 

adhere to the metamodel, Metai, of the target domain. The first step in MTBD is for a user to 

apply the domain function, K(Mi) to a model, so that the MTBD engine can capture the set of 

model modifications, m


. The process begins by the user or an external signal initiating a 

recording process. During the recording process, the user applies the domain function, K(Mi), 

to the model, Mi: 

K(Mi) ⇒ Mj (2) 

K : Metai → Metai (3) 

 

The domain function takes an initial model, Mi, as input, and produces a new model, Mj, as 

output. Although it is possible that Mi and Mj are not conformant to the same metamodel, 

Metai, this paper explicitly focuses and enforces this assumption. Equation 3 shows that 

the domain function must represent an endogenous model transformation that maps a 

model in one metamodel domain to a model in the same metamodel domain. 

3.2.2 Pattern Inference  

After the recording process, the MTBD engine possesses a series of model modifications, 

m


that express the application of the domain function, K(Mi) to a specific model. The next 



step of MTBD is to use pattern inference to generalize and describe the domain function as a 

model transformation. A critical aspect of this process is that the transformation must be 

expressed in terms of the general metamodel notations captured in, Metai, rather than a 

specific model’s elements, Mi. The inference step produces a model transformation, which we 

describe as a tuple:  

TPtionTransforma ,


  (4) 

where P


 is a precondition that must be met in order to apply the transformation, and T is 

the set of generalized model modifications that transform the source model to the desired 

target model. In terms of the domain function, P


 describes the domain knowledge 

regarding the circumstances in which K(Mi) can be applied and T defines what to do when 

these circumstances are met. For example, in the cloud computing example from Section 

2.3, P


 is the precondition that the rate of change of CPU load is above a set threshold and 

T represents the modifications to the system needed in order to scale up the number of 

virtual machine instances to handle the load. 

3.2.2.1 Precondition Inference  

The preconditions can be subdivided into two types: 

1. Structural preconditions that govern the types of elements, the containment 

relationships, and connection relationships that must exist within the model. For 

example, in the EQAL motivating scenario, there must be an element of type Site 

contained within an element of type Root.  

2. Attribute preconditions specify the required values of attributes on the model 

elements. For example, in the cloud computing scenario, the 

CPULoadRateOfChange attribute of a Node element must be above a specified 

threshold. 

 

Structural Preconditions. The structural preconditions take the form of assertions on the 

hierarchy or connection relationships that must be present in the model. A hierarchical 

precondition, Pei, is described as a vector:  

Pei = T0, T1,..., Tn (5) 

where T0 is the type of an element that is directly modified by one or more operations in m


, 

T1 is the type of the parent of T0, T2 is the type of the parent of T1, and so forth to the root 

element. In order for this precondition to hold in an arbitrary model, Mj, an instance of the 

type T0, contained within an element of type T1,  must exist. More formally, given an element, 

ei, in a model Mj that conforms to the metamodel Metai, a hierarchical precondition, Pei, is 



satisfied by ei if:  

V (ei, Ti)=(type(ei) == Ti) ∧ (V(ei+1, Ti+1)) (6) 



 


falseotherwise

truetrueTeV
ePe

i

ii
,

),),((
)(

0
 (7) 

 

A connection precondition is another form of a structural precondition. Connection 

preconditions dictate the associations that must be present in the model. For example, in the 

EQAL example, a transformation that removes a connection between two Sites must have a 

precondition that there exist two Sites that are connected. A connection precondition, Pci, is 

defined as a 3-tuple:  

Pci =< Pej, Pek, Tl > (8) 

where Pej specifies a structural precondition that must be met for an element to be considered 

the source element of a connection to be modified; Pek is a precondition that must be met for 

an element to be considered the target element of the connection; and Tl is the type of 

connection that must exist between the elements that satisfy the source and target structural 

preconditions. In order for a connection, ci, between two elements, ei and ej, to satisfy Pci:  















falseotherwise

trueTctypeePeePe

trueTctypeePeePe

Pc liikjj

lijkij

i

,

),)(()()(

),)(()()(

 (9) 

The inference ),( miM 


 function evaluates each change in m that occurred. From these 

changes, structural preconditions are extracted as follows: 

 Added Elements. For each model element, ej, that is added to the model as a child 

of ei, a precondition, Pei, is created. The type vector for Pei captures the types of 

elements that are visited from traversing from ei to the root of the model. T0 is set 

to the type of ei. 

 Removed Elements. If an element, ei, is removed from the model, a precondition, 

Pek, is created. The type vector for Pek captures the types of elements that are 

visited from traversing from ei to the root of the model. T0 is set to the type of ei. 

 Added Connections. Each new connection, cj, that is added from model element 

ei to ej, produces a new precondition, Pci. The type vector for the source element, 

Pej, captures the types of elements that are visited from traversing from the source 

element to the root of the model. The type vector for the target element, Pek, 

captures the types of elements that are visited from traversing from the target 



element to the root of the model. Tl is set to 0 to indicate that no existing 

connection is required between the elements that satisfy Pej and Pek.  

 Removed Connections. Each deleted connection, cj, that previously started from 

model element ei and ended at model element ej, produces a new precondition, Pci. 

The type vector for the source element, Pej captures the types of elements that are 

visited from traversing from the source element to the root of the model. The type 

vector for the target element, Pek, captures the types of elements that are visited 

from traversing from the target element to the root of the model. Tl is set to the 

type of cj.  

 Changed Attributes. If an element, ei, has an attribute value changed, a pre-

condition, Pek, is created. The type vector for Pek captures the types of elements 

that are visited from traversing from ei to the root of the model. T0 is set to the 

type of ei.  

 

Attribute Preconditions. Attribute preconditions specify the required values of properties on 

elements that a transformation will be applied to. The attribute preconditions, Ac, are 

specified as tuples: 

Aci =< Pei, Expr > (10) 

where Pei is a structural precondition specifying the source model element to which the 

attribute precondition must be checked. The Expr component specifies a mathematical 

expression over the attributes of an element that satisfies Pei. Currently, the attribute must be 

a primitive value and only arithmetic primitives (e.g., addition, multiplication, division, and 

subtraction) are supported.  

Attribute preconditions are difficult to infer automatically. Simple algorithms can extract 

preconditions that specify an exact value of one or more element attributes. However, these 

algorithms are often too exclusive and generate preconditions that require exact matching of 

all attribute values. Ideally, attribute preconditions are specified as expressions from domain 

knowledge covering the affected elements. Manual inference refinement is used to capture 

this type of attribute precondition. 

3.2.3 Manual Inference Refinement  

The goal of MTBD is to generate a transformation, T, that faithfully represents the domain 

function K(Mi). However, in many circumstances, the model that the function is demonstrated 

on, Mi, may lack sufficient information to infer preconditions accurately. For example, in the 

cloud computing example from Section 2.3, the cloud computing model does not have any 



information related to the CPU rate of change threshold at which scaling should occur. In this 

type of situation, the domain expert must be able to refine the inferred preconditions, by 

providing a CPU rate of change threshold value, in order to ensure that T accurately captures 

K(Mi). The optional manual inference function, ),( TP


 , allows the user to view the inferred 

transformation and preconditions produced by TG and ϖ. The following section describes in 

detail the need for a manual refinement step. 

3.3 Limitations of Original MTBD to Support Model Scalability 

Although the example in Section 3.1 is simple, it shows the potential for assisting general 

end-users in using MTBD to automate model scalability. However, this example is too simple 

to illustrate its real practicality. In fact, some key limitations existed in our previous 

implementation of MT-Scribe that prevented the MTBD concepts from being applied to 

complex model scalability tasks in practice. 

Specific and restricted specification of preconditions. To scale a model, a precise 

precondition is needed to specify exactly where to execute the model transformation. 

However, in the original implementation of MT-Scribe only the weakest precondition can be 

inferred from the demonstration, such that there was no way for the end-user to provide more 

restricted conditions. A model satisfying the weakest precondition is defined as the model 

containing the minimum sufficient elements for each operation to be correctly executed. In 

the previous example, the precondition inferred (List 2) is that a Site must exist in the Root, so 

that a Gateway can be added in this Site, and the name of the new Gateway can be updated 

later. 

The weakest precondition is insufficient in practice. In many cases, more specific restrictions 

are often required to provide more control on where to scale a model precisely. For example, 

users may want to add the new Gateway in the Site only if a certain attribute of the Site 

satisfies a specific condition (e.g., Site.capacity >= 100 as shown in Figure 7); or users may 

want to add the new Gateway only if the Site has no outgoing and incoming connections from 

it. These kinds of specific precondition requirements are frequently needed in model 

scalability tasks. Scaling a model by adding or replicating model elements or connections 

often requires the end-user to select specific locations to scale, rather than simply enlarging 

all the places that could fit and execute the recorded operation in a demonstration (e.g., 

Example 2.3 requires the creation of new Nodes only when the CPULoad and 

CPULoadRateOfChange are both out of the normal range). Therefore, enabling users to 

specify more restricted and specific preconditions was the first need for extending MT-Scribe. 



 

 

Figure 7. Scaling specific locations based on preconditions 

The inferred transformation actions are not generic. Besides the precondition, another part 

of the inferred transformation pattern is the list of transformation actions, which are extracted 

from the recorded operations. However, the inferred actions are specific to a user’s 

demonstration, which means that the sequence, the number and the type of inferred actions 

are exactly the same as the recorded operations. The consequence is that it is not generic 

enough to reflect a user’s real transformation intention. For instance, a user may want to 

replicate a Site (e.g., Site1 in Figure 8a) that contains an EventChannel and two Gateways. 

This would require that the operations in List 4 be performed in the demonstration. 

List 4.Operations performed to replicate a Site 

Sequence Operation Performed 

1 Add a Site in EQALRoot 

2 Set Site.name = EQALRoot.Site1.name 

3 Add an EventChannel in the new Site 

4 Set EventChannel.name = EQALRoot.Site1.EventChannel.name 

5 Add a Gateway in the new Site 

6 Set Gateway.name = EQALRoot.Site1.Gateway1.name 

7 Add a Gateway in the new Site 

8 Set Gateway.name = EQALRoot.Site1.Gateway2.name 

The real intention of this demonstration is to make an exact copy of Site1, including all the 

elements contained. However, the inferred transformation pattern only works correctly if the 

Site to be replicated contains exactly the same number of elements as the Site in the 

demonstration – one EventChannel and two Gateways. If there are more than two Gateways 

(e.g., Site3 in the left of Figure 8b), only two of them (i.e., Gateway1 and Gateway2) will be 

replicated, and Gateway3 and Gateway4 will not be copied (e.g., Site3 in the right of Figure 



8b is the Site created after executing the inferred replication pattern), because in the 

demonstration, the user only performed the necessary operations to add two Gateways, 

although his or her real intention was to copy all the available Gateways. If there are less than 

two Gateways (e.g., one Gateway1 is in the Site), the pattern will also fail to replicate the Site, 

because this Site does not satisfy the weakest precondition due to a lack of sufficient 

Gateways to execute the two replicating operations in the demonstration.  

 

a. Replicate a Site in a demonstration 

 

b. The inferred pattern failed to replicate all Gateways 

Figure 8. The inferred transformation actions are not generic 

The inability to infer generic actions may lead to a major problem when dealing with model 

scalability tasks. The number of specific elements or connections varies frequently in 

different scaling situations and the number will usually increase after each scaling process 

(e.g., Example 2.1 requires the creation of transitions between the new snapshot place and 

each of the existing snapshots, but the number of existing snapshots varies). Because of this, a 

specific and non-generic inferred transformation obviously cannot handle each scenario 

readily. Therefore, we needed to extend MT-Scribe to enable the inference of more generic 

transformation actions. 

More diverse options are required in attribute transformation. Enabling attribute 

transformation (e.g., transforming a specific attribute from one value to another value through 

arithmetic or string computations) in a user-friendly manner is an important innovation in 

MTBD. However, only simple computations such as basic arithmetic (i.e., +, -, *, /) and string 

concatenation were supported in earlier versions of MT-Scribe. To perform model scalability 

tasks, other operations are needed. For instance, the name of a certain element should be 

constructed based on a substring of the name of another element in the base model (e.g., 

Example 2.1 requires the creation of a new of snapshot transition by combing the names of 

the source and target snapshot places, such as TProcSnp1,3). However, obtaining the 

substring was not possible in previous versions of MT-Scribe. In other cases, the value of a 

certain attribute should be decided from the user’s input (e.g., Example 2.1 requires the name 

of the new event to be obtained by the end-user), which is independent of any attributes 

existing in the model. This required the addition of interactive user input to MT-Scribe. 



 

More options are needed to control the execution of transformation patterns. In the 

original version of our tool, when applying a generated transformation pattern, only a single 

pattern could be selected to execute only once. However, in the context of model scalability, 

scaling a base model to a complex model requires repeated execution of a transformation to 

avoid manual execution of the transformation multiple times. Additionally, to handle complex 

scalability requirements, more than one transformation pattern is needed to work in sequence 

to achieve the desired result. Therefore, users should be able to select and execute multiple 

patterns together in a composed pipeline sequence, realizing the execution of a transformation 

chain. 

3.4 New Extensions and Features to MTBD 

To address these limitations in the previous version of MT-Scribe, and adapt it to model 

scalability requirements, several new features and extensions have been made. 

 

Figure 9. The overview of extended MTBD 

A user-refinement step to specify preconditions. Inferring the specific preconditions from 

only the demonstration is difficult and inaccurate, because the performed operations only 

reflect the actions with very limited information about the precondition. Therefore, additional 

feedback should be given by users so that the engine can refine the generated pattern. In order 

to maintain the simplicity of MTBD, a user-friendly interface has been implemented to enable 

user selection of a specific element and specification of the desirable preconditions, without 

having to know model transformation languages or metamodel definitions. 



 

Figure 10. Precondition specification dialog 

Figure 10 shows the precondition specification dialog. The upper-left lists all the recorded 

operations in the demonstration. By clicking on a specific operation, all the model elements 

involved will be listed, so that a user can easily find the elements for which they want to 

provide more constraints. Similarly, by clicking on a certain element, all its attributes and 

associated values are listed. Users can select certain attributes and type the necessary 

restrictions. For example, the following additions could be made: “Site1.capacity >= 100”, 

“Site1.capacity == Site2.capacity == Site3.capacity”, “Node1.CPULoad > 80 && 

Node1.CPULoadChangeOfRate > 10”. Also, constraints can be given on the attributes that 

are not defined in the metamodel, such as the number of outgoing or incoming connections. 

Through this interface, users continue to work at the model instance level to give specific 

preconditions on the elements they considered in the demonstration. The meta-information 

and generic computation will be inferred and stored in the transformation pattern 

automatically. 

A new user-refinement step to identify generic operations. From the Site replication 

example in Section 3.1, it can be observed that the reason an inferred transformation pattern 

does not work correctly for the Sites containing more than two Gateways is that the inferred 

actions are specific to the user’s demonstration, failing to reflect the user’s real intention (i.e., 

copying all Gateways, no matter how many there are). However, from List 4, we can see that 

operations (5, 6) and (7, 8) have exactly the same meaning and the same purpose (i.e., adding 

a new Gateway in the new Site and setting its name to be the name of an existing Gateway 

being copied). In fact, only one set is enough, and we can just repeat their execution 



according to the number of available Gateways in the Site being copied. Therefore, to solve 

the problem, we implemented the idea that if certain operation(s) needs to be generic (i.e., 

needs to be executed or repeated for different times according to the number of available 

elements), a demonstration is only needed to be done once, followed by clearly identifying 

the operation(s) as generic or repeatable. 

 

Figure 11. Generic operations identification dialog 

Figure 11 shows the generic operations identification dialog. It simply lists all the operations 

performed during the demonstration process. Users may identify the generic operation(s) by 

selecting the checkbox. The new MT-Scribe inference engine will then mark the operations 

accordingly, and repeat them in the pattern execution according to the specific model 

instance. For example, to solve the problem in Example 2.2, instead of performing the 

operations listed in List 4, the user should do as specified in List 5. 

List 5. Demonstrate generic operations only once 

Sequence Operation Performed 

1 Add a Site in EQALRoot 

2 Set Site.name = EQALRoot.Site1.name 

3 Add an EventChannel in the new Site 

4 Set EventChannel.name = EQALRoot.Site1.EventChannel.name 

5 Add a Gateway in the new Site 

6 Set Gateway.name = EQALRoot.Site1.Gateway1.name 



After performing the above demonstration, the user must then mark operations 5 and 6 as 

generic (as shown in Figure 11). This sequence of demonstration and operation revision 

actions will generate a generic transformation pattern that is capable of replicating any Sites 

correctly, independent of the number of Gateways. With these enhancements, users still work 

at the model instance level when demonstrating the generic operations. 

An enhanced attribute refactoring editor. In the earlier version of MT-Scribe, we 

implemented an attribute refactoring editor, which allowed users access to all the attributes 

existing in the current model instance. Through this editor, users could calculate the needed 

attributes through arithmetic or string computations during the demonstration (e.g., users 

could just click on a certain attribute, retrieve the value, type the computation, and calculate 

the new value). All of the meta-information and computation details are stored in the inferred 

transformation. For instance, to set the capacity of the new Site to be 2 times the capacity of 

Site1 being copied, the user just clicks on the capacity of the Site being copied, and retrieves 

its current value (e.g., 100). Then, the user can type “/2” and click on “Calculate,” the result 

being that 50 is displayed and assigned as the capacity of the new Site while the computation 

“NewSite.capacity = Site1.capacity / 2” is stored in the transformation pattern. 

In order to enhance the attribute editor, new functions have been added. More diverse 

expressions, such as subString(), indexOf() can be used to specify the computation. 

In the new implementation of MT-Scribe, we applied the dynamic language Groovy [12] to 

parse and calculate the expressions. All of the Java expressions and functions supported by 

Groovy may be used in the attribute computation. 

Moreover, user input is also enabled in the attribute editing process. If a certain value is 

independent of any existing attributes and should be input by users, they can create a name 

and give its value in the demonstration, indicating that this is an input value, which is then 

visible in the rest of the demonstration. Later, when executing this pattern, the inference 

engine will automatically prompt an input box to ask the user to specify the value of this 

name. Thus, with the enhanced attribute refactoring editor, users have more options to specify 

and edit the attribute transformation in the demonstration of the scalability process. 

An enhanced pattern execution controller. Users can select the pattern in the dialog to 

execute an inferred transformation pattern from the repository. With the enhanced execution 

dialog, not only the selection of multiple patterns at the same time is enabled, but also the 

total times for executing a selected pattern(s) can be specified. The benefit is that users can 

separate a complex scalability task into several subtasks, and generate several patterns, then 

execute them all together in sequence. The model can then be scaled by executing the patterns 



for any number of times desired. In the next section, we illustrate how these new features 

work together to address the three model scalability examples presented in Section 2. 

4 Automated Model Scalability Case Studies 

In this section, we show how the concepts of MTBD can address the needs of the three 

motivating examples presented in Section 2. To minimize the effort of performing a 

scalability demonstration, we focus on a base model with a small number of elements, and 

demonstrate how to scale it by one degree (e.g., scale a SRN model from two events to three 

events; scale an EQAL model from three event services to four services). Then, by executing 

the inferred transformation pattern for any number of times, the model can be scaled to the 

desired state. In other words, the guidance of the approach can be summarized as 

“demonstrate one, scale multiple times.” 

Given a model scalability task, the main steps of a solution are: 1) analyze the process of 

scaling the model by one degree, so that the minimum and generalized operations needed by 

the scaling scenario can be clearly identified; 2) perform the demonstration of scaling the 

model by one degree; 3) specify preconditions and identify generic operations in the user 

refinement step; 4) scale the model to the desired state by executing the generated pattern for 

the desired number of times. 

The remainder of this section provides solutions to the scalability examples of Section 2 using 

the new additions to MT-Scribe. Video demonstrations of each of the examples in this section 

are available at the MT-Scribe web page [22]. 

4.1 Scaling SRN Models 

By analyzing the scalability needs of Example 2.1, the task of adding one more event type to 

an existing SRN model can be divided into the following three, sub-tasks as shown in Figure 

12: 

t1. Create a new set of places, transitions and connections for the new event type. Specify 

proper names for them based on the name of the event. 

t2. Create the TStSnp and TEnSnp snapshot transitions and the SnpInProg snapshot place, 

as well as the associated connections. 

t3. For each pair of <existing snapshot place, new snapshot place>, create two TProcSnp 

transitions and connect their SnpInProg places to these TProcSnp transitions. 



To give this demonstration, we choose the 2-event SRN model as shown in the top of Figure 

1. Then, we manually edit the model and demonstrate the three sub-tasks. To demonstrate t1, 

the operations identified in List 6 are performed. 

List 6. Operations for sub-task t1 of Example 2.1 

Sequence Operation Performed 

1 Add a Place in SRNRoot 

2 Create an artificial name with the value: EventName = “3” 

3 Set SRNRoot.Place.name = “A” + EventName = “A3” 

4 Add a Transition in SRNRoot 

5 Set SRNRoot.Transition.name = “B” + EventName = “B3” 

6 Add a Place in SRNRoot 

7 Set SRNRoot.Place.name = “Sn” + EventName = “Sn3” 

8 Add a Transition in SRNRoot 

9 Set SRNRoot.Transition.name = “S” + EventName = “S3” 

10 Add a Place in SRNRoot 

11 Set SRNRoot.Place.name = “Sr” + EventName = “Sr3” 

12 Connect SRNRoot.A3 and SRNRoot.B3 

13 Connect SRNRoot.B3 and SRNRoot.A3 

14 Connect SRNRoot.B3 and SRNRoot.Sn3 

15 Connect SRNRoot.Sn3 and SRNRoot.S3 

16 Connect SRNRoot.S3 and SRNRoot.Sr3 

17 Connect SRNRoot.A3 and SRNRoot.B3 

Operation 2 is used to manually create a name for a certain value, which can be reused later in 

the rest of the demonstration to setup the desired name for each element (e.g., the new event 

is called “3”, so the places and transitions are named as “A3”, “B3”, “Sn3”, etc.). The 

operation also indicates that the value of this name should be given by the user, which will 

invoke to an input box when the final generated transformation pattern is executed on other 

model instances. When setting up the attribute in operations 3, 5, 7, 9, 11, users just need to 

give the specific composition of the attributes by using the artificial names and constants, or 

simply select an existing attribute value in the attribute refactoring editor. After applying 

these operations, the top model will have a new event type, as shown in Figure 12 (Sub-task 

1). 



 

Figure 12. The process of scaling a SRN model from two events to three events 

To demonstrate t2, the necessary snapshot places and transitions in sub-task 2 are added for 

the new event type by performing the operations indicated in List 7. Figure 12 (Sub-task t2) 

shows the model after these operations. 

List 7. Operations for sub-task t2 of Example 2.1 

Sequence Operation Performed 

18 Add a SnpPlace in SRNRoot 

19 SetSRNRoot.SnpPlace.name= 

“SnpLnProg”+EventName = “SnpLnProg3” 

20 Add a SnpTransition in SRNRoot 

21 Set SRNRoot.SnpTransition.name = 

“TStSnp” + EventName = “TStSnp3” 

22 Add a SnpTransition in SRNRoot 

23 Set SRNRoot.SnpTransition.name = 

 “TEnSnp” + EventName = “TEnSnp3” 

24 Connect SRNRoot.StSnpSht and SRNRoot.TStSnp3 

25 Connect SRNRoot.TStSnp3 and SRNRoot.SnpLnProg3 

26 Connect SRNRoot.SnpLnProg3 and SRNRoot.TEnSnp3 

27 Connect SRNRoot.TEnSnp3 and SRNRoot.StSnpSht 



To demonstrate t3, two snapshot transitions for each <existing snapshot place, new snapshot 

place> are created. This sub-task involves using generic operations mentioned in Section 3.3, 

because the number of existing snapshot places may vary in different model instances. This 

number will also increase after each scaling process. Therefore, in the demonstration, users 

only need to create two snapshot transitions for just one set of <existing snapshot place, new 

snapshot place>, followed by identifying these operations as generic after the demonstration, 

so that the engine will generate the correct transformation pattern to repeat these operations 

when needed. The operations performed are shown in List 8. We select SnpLnProg2 as the 

existing snapshot place, and demonstrate the creation of snapshot transitions TProcSnp2,3 and 

TProcSnp3, 2. 

List 8. Operations for sub-task 3 of Example 2.1 

(* represents generic operations to be identified) 

Sequence Operation Performed 

28
* 

Add a SnpTransition in SRNRoot 

29
* 

Set SRNRoot.SnpTransition.name = “TProcSnp” +  

SRNRoot.SnpLnProg2.name.subString(9) + “,” + EventName 

= “TProcSnp” + “2” + “,” + “3” = “TProcSnp2,3” 

30
*
 Add a SnpTransition in SRNRoot 

31
*
 Set SRNRoot.SnpTransition.name = “TProcSnp” +  

EventName + “,” + SRNRoot.SnpLnProg3.name.subString(9) 

= “TProcSnp” + “3” + “,” + “2” = “TProcSnp3,2” 

32
*
 Connect SRNRoot.SnpLnProg2 and SRNRoot.TProcSnp2,3 

33
*
 Connect SRNRoot.TProcSnp2,3 and SRNRoot.SnpLnProg3 

34
*
 Connect SRNRoot.SnpLnProg3 and SRNRoot.TProcSnp3,2 

35
*
 Connect SRNRoot.TProcSnp3,2 and SRNRoot.SnpLnProg2 

When specifying the name attributes, complex String composition can be given using the Java 

APIs, as done in operations 29 and 31. After the demonstration is completed and generic 

operations are identified in the user refinement step (i.e., checking the generic operations in 

the dialog as shown in Figure 11), the inference engine automatically infers and generates the 

transformation pattern. After the inferred transformation is saved, a user may select any 

model instance and a desired transformation pattern, and the selected model will be scaled by 

adding a new event type. An execution controller has been implemented to enable execution 

of a pattern multiple times. The bottom of Figure 1 is the result of adding two event types 

using the inferred pattern. 



4.2 Scaling the EQAL Models 

Example 2.2 focuses on increasing event services. The scaling process of adding one more 

event service includes four sub-tasks, as illustrated in Figure 13: 

t1. Add a new Gateway to each original Site, and connect it to its EventChannel. 

t2. Add a new Site, containing an EventChannel, EventSupplier, EventConsumer, 

EventTypeRefs, Gateways, and necessary connections. 

t3. Make connections from the EventChannel in the new Site to each new Gateway in 

other Sites. 

t4. Make connections from the EvenChannel in each original Site to a new Gateway in the 

new Site. 

  

  

Figure 13. The process of scaling an EQAL model from three event services to four 

We give the demonstration on the model instance shown in the top of Figure 2. The first sub-

task t1 is to add a new Gateway to each original Site and connect it to the EventChannel. 

Obviously, this is another case of generic operations, because the number of current existing 

Sites is unfixed (e.g., there are three Sites in this case, but there could be more or less in other 

models). Therefore, in the demonstration, we only demonstrate adding one Gateway and 

making the connection in one of the Sites, and then, identify them as generic. The operations 

performed for t1 are shown in List 9. 



List 9. Operation for sub-task t1 of Example 2.2 

Sequence Operation Performed 

1
* 

Add a Gateway in EQALRoot.Site1 

2
*
 Connect EQALRoot.Site1.EventChannel to EQALRoot.Site1.Gateway 

To demonstrate t2, we need to create a new Site. Again, adding one Site and its 

EventChannel, EventSuppiler, EventConsumer, and EventTypeRefs are only needed once for 

each scaling process, while adding new Gateways and connecting them to the EventChannel 

in the new Site should be generic and correspond to the number of existing Gateways in the 

original Sites. List 10 shows the operations performed to add a new Site and its internal 

structure. 

List 10. Operations for sub-task 2 of Example 2.2 

Sequence Operation Performed 

3
 

Add a Site in EQALRoot 

4 Add an EventChannel in EQALRoot.Site 

5 Add a EventSupplier in EQALRoot.Site 

6 Add a EventConsumer in EQALRoot.Site 

7 Add a EventTypeRef in EQALRoot.Site 

8 Add a EventTypeRef in EQALRoot.Site 

9 Connect EQALRoot.Site.EventSupplier to EQALRoot.Site.EventTypeRef 

10 Connect EQALRoot.Site.EventConsumer to EQALRoot.Site.EventTypeRef 

11 Connect EQALRoot.Site.EventSupplier to EQALRoot.Site.EventChannel 

12 Connect EQALRoot.Site.EventConsumer to EQALRoot.Site.EventChannel 

13
* 

Add a Gateway in EQALRoot.Site 

14
*
 Connect EQALRoot.Site.EventChannel to EQALRoot.Site.Gateway 

To demonstrate t3, multiple connections have to be made to connect the new EventChannel in 

the new Site to each new Gateway in the other Sites. In this step, a user should not only 

demonstrate a single generic connecting operation, but also give additional constraints on the 

source and target elements of this connection, because there are so many EventChannels and 

Gateways available (List 11). Without a user’s restriction, the inference engine may choose 

the wrong source and target to make the connection when the pattern is executed. The 

precondition on the source EventChannel is that it initially has no outgoing and incoming 

connections, because it is a newly created EventChannel in the new Site. The extra 

precondition on the target Gateway is that it has only one outgoing and no incoming 

connections. 



List 11. Operations for sub-task t3 of Example 2.2 (“p” represents the precondition) 

Sequence Operation Performed 

15
* 

Connect EQALRoot.Site.EventChannel and EQALRoot.Site1.Gateway 

p1
EQALRoot.Site.EventChannel.outgoingConns = 0 

p2
EQALRoot.Site.EventChannel.incomingConns = 0 

p3
 EQALRoot.Site1.Gateway.outgoingConns = 0 

p4
 EQALRoot.Site1.Gateway.incomingConns = 1 

The final sub-task t4 is to connect each original EventChannel to a new Gateway in the new 

Site. Again, the Gateway in the new Site should have only one incoming connection from its 

own EventChannel (List 12). 

List 12. Operations for sub-task t4 of Example 2.2 

Sequence Operation Performed 

16
* 

Connect EQALRoot.Site1.EventChannel and EQALRoot.Site.Gateway 

p1
EQALRoot.Site.Gateway.outgoingConns = 0 

p2
EQALRoot.Site.Gateway.incomingConns = 1 

After the demonstration, generic operations are identified, and preconditions are given in the 

user refinement step through the interface shown in Figure 10. Precondition specification 

dialog. Users give the preconditions to the elements he or she just touched in the 

demonstration, without being exposed to any metamodel information. The model can be 

scaled by adding any number of new Sites by applying the pattern multiple times. The bottom 

of Figure 2 is the result of applying the inferred pattern to scale the model by adding three 

new event services. 

4.3 Scaling the C2M2L Models 

Replicating a Node in Example 2.3 includes two sub-tasks: 

t1. Replicate the overloaded Node, and balance the CPULoad by setting the CPULoad 

attribute for both the new Node and the original Node. 

t2. Replicate all the NodeServices contained in the original Node to the new Node. 

Replicating a model element involves creating the same type of element and setting up the 

same attribute values. To demonstrate t1, we can create one Node and set all its attributes to 

be the same as those in the original overloaded Node, except CPULoad (List 13). An 

important set of preconditions should be specified to ensure that the Node is actually 



overloaded, which in this case occurs when the CPULoad is greater than 100 and 

CPULoadRateOfChange is greater than 10. 

List 13. Operations for sub-task t1 of Example 2.3 

Sequence Operation Performed 

1
 

Add a Node in C2M2LRoot 

2 Set Node.Name = PetStoreWebTierInstance1.Name = 

“PetStoreWebTierInstance1” 

3 Set Node.AMI = PetStoreWebTierInstance1.AMI = “ami-45e7002c” 

4 Set Node.Annotation = PetStoreWebTierInstance1.Annotation =  

“WebTier for PetStore” 

5 Set Node.HeartbeatURI = PetStoreWebTierInstance1.HeartbeatURI = 

 “http://ps01.aws.amazon.com/hb” 

6 Set Node.HostName = PetStoreWebTierInstance1.HostName = 

 “http://ps01.aws.amazon.com/hb” 

7 Set Node.IsWorking = PetStoreWebTierInstance1.IsWorking = true 

8
 

Set PetStoreWebTierInstance1.CPULoad (old) = 

PetStoreWebTierInstance1.CPULoad (old) / 2 = 105 / 2 = 52.5 

9 Set PetStoreWebTierInstance1.CPULoad (new) = 

PetStoreWebTierInstance1.CPULoad (old) = 52.5 
p1

PetStoreWebTierInstance1.CPULoad (old)> 100 
p2

PetStoreWebTierInstance1.CPULoadRateOfChange (old)> 10 

 

To demonstrate t2, because the number of NodeServices in a Node varies, the operations of 

replicating the NodeService should be generic and demonstrated only once (List 14). 

List 14. Operations for sub-task t2 of Example 2.3 

Sequence Operation Performed 

10
*
 Add a NodeService in the new C2M2LRoot.PetStoreWebTierInstance1 

11
*
 Set NodeService.Name = 

PetStoreWebTierInstance1.BootstrapWarCopyFromS3.Name = 

“BootstrapWarCopyFromS3” 

12
*
 Set NodeService.ResponseTime = 

PetStoreWebTierInstance1.BootstrapWarCopyFromS3. 

ResponseTime =0.14 

13
*
 Set NodeService.ResponseTimeRateOfChange = 

PetStoreWebTierInstance1.BootstrapWarCopyFromS3. 

ResponseTimeRateOfChange = 0.001 

The generated pattern can be executed by cloud computing administrators to automatically 

detect the overloaded Nodes and replicate the necessary number of new ones. 



5 Evaluation 

In this section, the MTBD approach is first evaluated using the three desired characteristics of 

model scalability proposed by [3] and [6]. Then, we compare scalability scenarios using 

traditional model transformation languages to that of the MTBD approach advocated in this 

paper. Finally, the main limitations of MTBD are discussed at the end of this section. 

5.1 Evaluation on the Desired Characteristics of a Replication Approach 

This section compares the scalability solution offered by MTBD to a set of proposed 

desiderata described in [3] and [6]. 

Retain the benefits of modeling. The power of modeling comes from the ability to explore 

various design alternatives and perform system analysis or development at a higher level of 

abstraction. A model scaling technique should not inhibit this ability. For instance, a model 

translator can translate a model into some other artifacts (e.g., code, simulation scripts). 

Instead of scaling the original model, some scalability approaches may integrate the 

scalability task into the generation of final artifacts or other intermediate representations. The 

disadvantage of such an approach is that models are not the catalyst for representing the 

scalability result (i.e., the scalability is not represented directly in a model, but in the 

generated artifact), which inhibits the benefit of using models. By contrast, the MTBD 

approach directly operates on model instances, retaining all of the benefits of modeling. 

General across multiple modeling languages. This characteristic ensures that the scaling 

approach should be applicable to different modeling languages. The MTBD implementation 

is a plug-in to GEMS, and triggered in the model editor. Thus, any modeling language 

defined in GEMS that can be edited in the model editor can apply MTBD to address the 

scalability transformation problems, which means MTBD is a general solution that can be 

applied across multiple domain-specific modeling languages. 

Flexible to support user extensions. The desired scaling process should allow alteration of 

the semantics of the replication more directly using a language that can be manipulated easily 

by an end-user. The current generated transformation pattern is not editable, and therefore 

does not allow direct extension or reuse on an existing pattern. However, we believe that the 

user-focus of MTBD allows a user to re-demonstrate a new task in a manner that is better than 

editing existing model transformation code. If the end-user has no idea of programming or 

model transformation languages, user extension by altering the model transformation is 

simply not even possible. 



5.2 The Benefits of Automating Model Scalability using MTBD 

The benefits of MTBD can be compared with writing model transformation rules to solve the 

same problems, as was done in [3] and [6]. In these earlier works, we used a model 

transformation engine called C-SAW, which processed a transformation language called the 

Embedded Constraint Language (ECL). We used ECL to perform the same model scalability 

tasks that were introduced in Sections 2.1 and 2.2. Although ECL is specific to model 

transformation tasks and is at a higher level than general-purpose programming languages, its 

usage still requires that a user learn the syntax of the language. The use of ECL also requires a 

deep understanding of the metamodel for the domain being scaled. Additionally, ECL 

requires understanding of basic programming concepts such as variable declaration, branch 

statements, and even recursion. Thus, for a general domain expert who does not have any 

programming language knowledge or experience, ECL is often too challenging to use as a 

model scalability solution. In fact, our understanding of this problem came after performing 

the work described in [3] and [6], leading us to the realization that a new automation approach 

was needed, which motivated our work on MTBD. 

Comparatively, MTBD does not use any model transformation language. Users only need to 

perform a single case of the scaling process on a concrete model instance. Every operation or 

user refinement is done at the concrete model instance level, not at the metamodel level, as 

needed with traditional transformation languages. MTBD enables users to solve complex 

scaling problems while being ignorant of the underlying metamodel definition. 

To better compare the efforts of automating model scalability tasks using MTLs and MTBD, 

Figure 14 shows part of the model transformation rules written in ECL to implement sub-task 

t1 of Example 2.2. To add a Gateway, the necessary objects should be declared first, followed 

by calling creational APIs to create the correct type of elements and the connections. 

However, the same task could be accomplished by only two operations in the demonstration, 

as shown in List 9. 

 

//add one CORBA_Gateway and connect it to Event_Channel 

strategy addGateWay(j: integer) 

{ 

  declare ec, site_gw : object; 

  addAtom("CORBA_Gateway", "CORBA_Gateway");  

  ec := findModel("Event_Channel");  

  site_gw := findAtom("CORBA_Gateway"); 

  addConnection("LocalGateway_EC", site_gw, ec); 

} 

Figure 14. An excerpt of transformation rule written in ECL to accomplish  

sub-task t1 of Example 2.2 



In addition, to add the Gateway to each existing Site, and control the number of execution 

times, recursive calls are used in the ECL transformation rules as shown in Figure 15. In 

MTBD, a user simply identifies the two operations in List 9 as generic after the 

demonstration. The inferred transformation can then be executed as many times as needed. 

//traverse the original sites to add CORBA_Gateways 

//n is the number of the original sites 

//m is the total number of sites after scaling 

strategy traverseSites(n, i, m, j : integer) 

{ 

  declare id_str : string; 

  if (i <= n) then 

    id_str := intToString(i); 

    rootFolder().findModel("NewGateway_Federation"). 

    findModel("Site " + id_str).addGateWay_r(m, j); 

    traverseSites(n, i+1, m, j); 

  endif; 

} 

 

//recursively add CORBA_Gateways to each existing site 

strategy addGateWay_r(m, j: integer) 

{ 

  if (j<=m) then 

    addGateWay(j); 

    addGateWay_r(m, j+1); 

  endif; 

} 

Figure 15. An excerpt of transformation rule written in ECL to enable adding a Gateway to 

each existing Site, while controling the number of execution times 

We have not done a formal user study on the comparison between the two approaches. 

However, Table 1 lists some of the results of the comparative effort, indicating that [6] used 

over 170 lines of ECL code to address Example 2.1. We performed the same task with MTBD 

by demonstrating 35 editing operations on a concrete model instance, and identifying one 

generic operation. Similarly, the solution of Example 2.2 using ECL requires 32 lines of ECL 

[3], while our MTBD-based scalability solution required 16 direct editing operations, one 

generic operation identification and two precondition refinements. 

Model Scalability Example MTBD ECL Rules 

Example 2.1 35 operations 

1 generic operation refinement 

170 SLOC 

Example 2.2 16 Operations 

2 precondition refinement 

1 generic operation refinement 

124 SLOC 

Table 1. The comparison of effort to solve model scalability tasks 

using MTBD and a model transformation language (ECL) 

5.3 Current Limitations of MTBD and Future Work 



When designing and implementing MT-Scribe, a tradeoff existed between simplicity and 

functionality, because a user’s demonstration and refinement are not as expressive and 

accurate as the same transformation task written in an MTL. Some tasks could be easily 

specified by a transformation language, but turn out to be very difficult to demonstrate. For 

instance, scaling an element having the maximum value of a specific attribute is currently not 

possible in MT-Scribe. The same task could be implemented by function calls, selection or 

iteration facilities available in most MTLs. Although these kinds of functions could be 

extended to MTBD by designing some other user-friendly refinement interfaces, its simplicity 

after adding many user feedback steps would probably be undermined.  

Therefore, since it is not easy to make MTBD a fully complete replacement to a well-defined 

model transformation language to support all possible model scalability tasks, our initial focus 

has been toward making MT-Scribe practical for most scenarios. When encountering 

difficulties in using MTBD to solve common model scalability problems in practice, the most 

needed and essential features and functions will be selected and added into MT-Scribe by 

designing user-friendly and user-centric interfaces and mechanisms that are capable of 

implementing the desired function. By such an incremental and selective extension process, 

we believe a proper balance can be achieved between simplicity, functionality, and 

practicality. 

6 Related Work 

Software scalability in computer systems has been well-recognized and defined. Bondi [1] 

provided a comprehensive analysis on the characteristics of software scalability and the 

impact on performance. However, automating scalability on models in the context of MDE 

has not been widely investigated. Gray et al. investigated model scalability [3] and proposed 

the use of ECL to automate model scalability tasks [3][6]. They point out that model 

scalability is an endogenous model transformation task and other model transformation 

languages (MTLs) and tools can be used to automate model scalability tasks. In this summary 

of related work, we analyze the traditional model transformation approaches that can be used 

to automate model scalability in Section 6.1. In Section 6.2, we overview some innovative 

approaches that can potentially simplify the automation of model scalability tasks using 

approaches similar to our own work on MTBD. 

6.1 Traditional model transformation approaches that can support automating model 

scalability 



One of the most direct ways to automate model scalability tasks is to use General-purpose 

Programming Languages (GPLs). Most modeling tools provide APIs that assist in the direct 

manipulation of an internal representation of the model instance. The model scalability 

procedures can be encoded in a GPL, such as Java and C++, which developers are generally 

comfortable and familiar with, avoiding extra training to write transformations. However, the 

power of transformations is often restricted by the APIs. Furthermore, GPLs lack the high-

level abstractions to specify models and scaling transformation rules, making the GPL-based 

transformations difficult to write, understand, and maintain [4]. 

Because many modeling tools support importing and exporting model instances in the form of 

XMI, it is possible to use the existing XML tools such as XSLT [23] to scale models outside 

of the modeling tool infrastructure. Although XSLT is specifically used to transform models 

and has a higher level of abstraction compared with GPLs, it is tightly coupled to XML, 

forcing the specification of transformations using concepts at a lower level of abstraction. In 

addition, transformations performed outside of a modeling tool exert a potential risk that the 

models being transformed cannot be correctly imported or exported with future versions of 

the tool. 

Currently, the most mature approach to automate model scalability tasks is to specify the 

transformation rules by using specialized MTLs [5]. A specialized transformation language 

provides a set of constructs for explicitly specifying the behavior of the transformation, which 

can typically be written more concisely than GPL and XML-based transformation 

approaches. There are two major types of MTLs in this category: textual hybrid MTLs and 

graphical MTLs. The former type usually combines both declarative and imperative 

constructs to perform a transformation. Declarative constructs are used to specify source and 

target patterns as direct mapping rules, and imperative constructs are used to implement 

sequences of instructions (e.g., explicitly specifying how the scaling process should be 

realized). ATL [8] and ECL [6] are examples of textual hybrid MTLs. By comparison, 

graphical MTLs convert the task of scaling a model into a graph transformation problem by 

utilizing graph matching and rewriting techniques. A typical graphical MTL usually defines a 

transformation rule as a LHS (left-hand side) graph representing the source model and a RHS 

(right-hand side) graph representing the target model. Then, the engine automatically matches 

the LHS graph in a model and changes it into the desired RHS graph. Compared with textual 

hybrid MTLs, it is easier to define specific model patterns using graphs, leading to a 

simplification of the transformation rules in many cases. However, graphical MTLs are not as 

expressive as textual definitions, resulting in less powerful functionality in some model 

scalability scenarios. Typical MTLs in this category are GreAT [24], and VIATRA [25]. 

However, whether a MTL has a high level of abstraction, graphical or textual, its usage on 



automating model scalability always suffers from the challenges mentioned in Section 1 (i.e., 

the steep learning curve and need to understand the details of the underlying metamodel), 

preventing a wide range of end-users from contributing to model scalability tasks using their 

expertise. 

6.2 Innovative model transformation approaches that can potentially simplify the model 

scalability tasks 

Some innovative model transformation approaches have been proposed and developed as 

alternatives to MTLs. These new approaches share a similar goal of making the specification 

of model transformation easier and more user-friendly, requiring less knowledge of MTLs 

and metamodels. These innovations provide strong potential to simplify the automation of 

model scalability tasks. 

Model Transformation By Example (MTBE) [16] is an innovative approach to address the 

challenges inherent from using model transformation languages. Instead of writing 

transformation rules manually, MTBE enables users to define a prototypical set of interrelated 

mappings between the source and target model instances, and then the metamodel-level 

transformation rules can be inferred and generated semi-automatically. In this context, users 

work directly at the model instance level and configure the mappings without knowing any 

details about the metamodel definition or the hidden concepts. With the semi-automatically 

generated rules, the simplicity of specifying model transformations is greatly improved. As 

first introduced by Varró [16], the prototypical transformation rules of MTBE can be 

generated partially from the user-defined mappings by conducting source and target model 

context analysis. Varró later proposed a way to realize MTBE by using inductive logic 

programming [26]. Similarly, Strommer and Wimmer implemented an Eclipse prototype to 

enable generation of ATL rules from the semantic mappings between domain models 

[17][27]. Instead of using logic programming engines, the inference and reasoning process is 

based on pattern matching. 

However, the current state of MTBE research still has some limitations and is not very 

appropriate to automate model scalability tasks. The semi-automatic generation often leads to 

an iterative manual refinement of the generated rules; therefore, the model evolution 

designers are not isolated completely from knowing the transformation languages and the 

metamodel definitions. In addition, the inference of transformation rules depends on the given 

sets of mapping examples. In order to obtain a complete and precise inference result, one or 

more representative examples must be available for users to setup the prototypical mappings, 

but seeding the process with the proper scalability examples is not always an easy task. 

Furthermore, current MTBE approaches focus on mapping the corresponding domain 



concepts between two different metamodels without handling complex attribute 

transformations. Therefore, it is impossible to automate the configuration of attributes in the 

scaling process, which is commonly required in practice. Furthermore, current MTBE 

approaches fit the exogenous model transformation concept very well to map the concepts 

between two different domains, but they are not very practical when it comes to endogenous 

model transformations, which presents limitations in supporting model scalability evolution 

activities. 

Brosch et al. introduced a method for specifying composite operations within the user’s 

modeling language and environment of choice [18][28]. The user models the composite 

operation by-example, changing a source model into the desirable target model. By 

comparing the source and target states, the specific changes can be summarized by a model 

difference algorithm. After giving additional specification of the pre-condition and post-

condition, an Operation Specification Model (OSM) can be generated that represents the 

composite operation scenario and can be used to generate other transformation artifacts. 

Similar to MTBE, users can work on the concrete model instance level without knowing 

about the metamodel to define composite operations through examples. Although user 

refinement (e.g., specification of pre- and post- conditions) is also needed to make the 

generated transformation complete and accurate, the refinement is done at the example level 

through the given interfaces rather than at the generated transformation rule when using 

MTBE. In addition, the composite operation focuses on endogenous model transformation, 

which could be potentially used to support automating model scalability tasks. However, the 

major limitations with this approach are: 1) Even though the refinement process is not on the 

level of generated model transformation rules, some programming concepts are involved, 

making this process dependent on technical skills that some domain experts may not possess; 

2) Attribute transformation has not been considered and implemented, which shares the same 

problem as MTBE; 3) In the generation of artifacts for a certain scenario, a manual binding 

process is required to map the elements in the OSM to the new concrete model. Although a 

user-friendly interface has been developed to simplify the procedure, the manual binding 

process would become a problem when a large number of model elements and connections 

are present in a scaling scenario. 

7 Conclusion 

This paper introduces a demonstration-based model transformation approach to automate 

model scalability tasks in order to support software evolution. Compared with our previous 

work on using model transformation languages to scale models [3][6], we believe that MTBD 



offers several advantages supporting ease of use. The demonstration focus allows users to be 

ignorant of both the details of the transformation language, as well as the structure of the 

metamodel for the language being used. The paper presented a new formal model of MTBD 

and summarized the changes that were needed to evolve an earlier version of our approach 

(MT-Scribe) to address challenges related to precondition extraction, attribute refactoring, 

and transformation site matching. Three case studies were used to demonstrate the application 

of our improved technique in order to address a variety of scalability scenarios. We believe 

that scalability issues will become more prominent as the concepts of MDE are integrated 

further into development processes. The key contribution of this paper is an approach for 

helping to overcome the challenges associated with scaling models in MDE processes. 
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