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Abstract. Complex model editing activities are frequently performed to realize 

various model evolution tasks (e.g., model scalability, weaving aspects into models, 

and model refactoring). In order to automate and reuse patterns of model editing, an 

editing process can be regarded as an endogenous model transformation and 

specified as transformation rules. However, the use of traditional model 

transformation languages often presents a steep learning curve. Other challenges in 

using model transformations to automate editing tasks include insufficient support 

for sharing the transformations that perform the editing tasks, and a lack of 

automated guidance on how to use a specific transformation in some other modeling 

context. This paper presents a live model transformation approach that can enhance 

and assist model editing activities. By extending the Model Transformation By 

Demonstration (MTBD) approach, LiveMTBD offers users  flexibility in specifying 

the transformation, a centralized repository to assist with transformation sharing, and 

a live model transformation matching engine to suggest applicable transformations 

during model-edit time.  
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1 Introduction 

With the ongoing adoption of Model-Driven Engineering (MDE) [1], models are 

emerging as first-class entities in many domains and play an increasingly significant role 

in every phase of software development. During the process of building models, editing 

operations are constantly performed in the editor to create or change the model into the 

desired state and configuration. For instance, a sequence of creational operations is needed 

to construct a typical sub-structure in a certain domain; model refactoring actions might 

be required occasionally to optimize the internal structure of the represented system; when 

errors are detected in models, operations to fix errors should be carried out in a timely 



manner; and with non-functional system requirements, aspect models may need to be 

woven into the desired locations of the base models. 

The editing activities mentioned above often integrate ideas of model evolution, which 

involve composite editing operations on specific locations, and are very likely to be 

repeated in different model instances by different users. Therefore, a mechanism to 

automate and reuse frequently used editing patterns can benefit the model editing process. 

One approach to support automation and reuse of editing activities is to apply model 

transformation techniques. Any editing operation performed in the editor will change 

specific model instances, which can be considered as an endogenous model 

transformation process [9]. Thus, the sequence of editing operations for certain purposes 

can be summarized and specified as a set of transformation rules using executable Model 

Transformation Languages (MTLs) [4]. The rules may be directly reused in other model 

instances in the same domain, such that executing the rules triggers the desired editing 

activity automatically. However, although traditional MTLs are very powerful and 

expressive for specifying many editing activities, several challenges have emerged in 

using MTLs that prevent it from being a perfect solution: 

Challenge 1. The steep learning curve of model transformation languages prevent 

general end-users (e.g., domain experts, non-programmers) from contributing to the 

editing or evolution tasks from which they have much domain experience. 

Challenge 2. The abstraction gap between the concrete editing operations and the 

metamodel level transformation rules make the specification of the desired editing activity 

challenging and perhaps even impossible for certain classes of end-users.  

Challenge 3. Most MTLs and their supporting tools lack a collaborative mechanism to 

enable the sharing of the transformation rules among different model users, limiting the 

opportunity for reuse and exchange of domain-specific editing patterns. 

Challenge 4. Without correctly understanding the transformation rules at the 

metamodel level or knowing the existence of the rules, novice users might miss the 

correct situations on when to reuse a specified editing activity.  

To address these challenges, this paper presents an enhanced demonstration-based 

model transformation approach – Live Model Transformation By Demonstration 

(LiveMTBD). The idea is an extension to the Model Transformation By Demonstration 

(MTBD) [2] approach, which was designed to simplify the implementation of model 

transformation tasks by inferring and generating model transformation patterns from user-

demonstrated behavior. The goal of MTBD is to enable general end-users in realizing 

their desired model transformation tasks without knowing a model transformation 

language or metamodel definitions. Applying MTBD to support automatic reuse of editing 

activities can assist end-users in avoiding the steep learning curve of MTLs and abstract 

metamodel definitions. By extending MTBD, LiveMTBD contains three new features: 1) 

Live Demonstration, provides a more general demonstration environment that allows 

users to specify editing activities based on their editing history; 2) in order to improve the 

sharing of editing activity knowledge among different users, Live Sharing – a centralized 

model transformation pattern repository has been built so that transformation patterns can 

be reused across different editors more efficiently; 3) a live model transformation 



matching engine – Live Matching has been developed to automatically match the saved 

transformation patterns at modeling time, and provides editing suggestions and guidance 

to users during the editing process. 

The remainder of the paper is organized as follows: Section 2 explains the motivation 

and challenges with concrete examples borrowed from an industrial context; Section 3 

presents the solution by introducing the initial work on MTBD, followed by highlighting 

new extensions; Section 4 discusses the advantages and limitations of the solution; 

Section 5 compares the related techniques, and Section 6 offers concluding remarks. 

2 Motivating Example 

This section overviews the challenges of specifying, reusing and automating model 

editing activities using MTLs. The examples used in this paper are based on the 

Embedded Function Modeling Language (EmFuncML), which has been used to support 

modeling embedded control in automotive industry. EmFuncML enables the following: 1) 

model the internal computation process and data flow within functions; 2) model the high-

level assignment and configurations between functions and supporting hardware devices; 

3) generate platform-dependent implementation code; and 4) estimate the Worst Case 

Execution Time (WCET) for each function. 

The top of Figure 1 shows an excerpt of the model describing functions used in an 

automotive system. ReadAcc (i.e., Read Acceleration) reads output data from ADC (i.e. 

Analog-to-Digital Converter) and sends the processed data to the Analysis function, which 

then transmits messages to the Display function. The input/output ports of each function 

are given (e.g., ADC has four input ports: Resolution, SamplingRate, Downsampling, 

InterruptID; and one output port AnalogValue). The hardware devices (e.g., ADC, ECU) 

are presented, to which the corresponding functions are assigned. A tool has been 

developed to estimate the WCET of each function based on the internal computation 

logic. For the sake of ensuring a smooth data flow and quick processing time, the WCET 

of each function should be less than 300ms; otherwise it is defined as an occurrence of a 

WCET violation. 

One common practice occurring in the configuration of functions in EmFuncML is that 

if a WCET violation happens, a Buffering function can be added between the source 

function and the target function that receives data to ensure the correct data flow. At the 

bottom of Figure 1, Analysis sends message data to Display. However, the WCET of 

Analysis is 460ms, which is longer than the desired processing time. Therefore, a 

Buffering function is added between Analysis and Display, which serves as an 

intermediate storage for the transmitted data. 

Embedded software system engineers who are familiar with functional timing 

requirements may perform the Buffering editing activity in the editor very often whenever 

the WCET violation is detected. Therefore, this process can benefit from automation and 

reuse, which can be realized using MTLs to specify and summarize the result of the 

editing activity. Figure 2 shows the pseudo code of the transformation rules to accomplish 



the task of applying the Buffering function by locating functions with WCET violation, 

creating Buffering function and rerouting the data flow. 

 
Figure 1. EmFuncML models before (top) and after (bottom) applying Buffering function 

A number of MTLs and tools can be applied to implement the actual task, such as ATL 

[3], Epsilon [21], and C-SAW [5], which support expressive mechanisms to access and 

manipulate models. However, using these languages requires users to learn the syntax and 

execution semantics, as well as some additional concepts (e.g., OCL is often used to 

locate model elements) and libraries. In addition, because MTLs operate at the metamodel 

level, in order to summarize a specific editing activity, users need to think about the whole 

editing process at a more abstract level and then generalize it using correct metamodel 

definitions. Sometimes, the difference in the execution semantics of a MTL may lead to 

different implementation designs (e.g., imperative textual MTLs focus on specific model 

manipulate steps, while declarative graphical MTLs consider the editing change as a pair 

of source and target graphs), which requires extra consideration for users in the 

specification progress. 

In addition to the learning curve problem and abstraction gap when using MTLs, 

sharing the specified model transformations has not been taken into consideration in most 

MTLs and tools. For example, the left part of Figure 1 shows the ADC configuration, 

which is modeled through a sequence of approximately 20 editing operations to create the 



ADC function, input/output ports, set their names and types, and create the ADC hardware 

device with the assignment connection. Hardware engineers are more experienced than 

software engineers in this part of configuration. Thus, the complex editing operation of 

creating an ADC can be specified as a reusable model transformation by hardware 

engineers that can be used by different colleagues in their modeling process when the 

ADC needs to be modeled in other system contexts. Clearly, if model transformations can 

be shared among users with different expertise or levels of experience, the reuse captured 

in a transformation rule can contribute to a knowledge base, improving the collaborative 

construction of models in the same domain. 

foreach Output2Input connection : c     

    if (c.source.parent.WCET > 300)  

        create Function in EmFucnDSLFolder : tempFunc 

        set tempFunc.name = “Buffering” 

        create InputPort in tempFunc : tempInput 

        set tempInput.name = “In” 

        set tempInput.type = c.source.type 

        create OutputPort in tempFunc : tempOutput 

        set tempOutput.name = “Out” 

        set tempOutput.type = c.target.type 

        create Output2Input connection : c1 from c.source to tempInput 

        create Output2Input connection : c2 from tempOutput to c.target 

        create Func2HW connection : c3 

            from tempFunc to c.source.parent.mappedHW 

        remove Output2Input connection : c 

Figure 2. The pseudo code to specify ApplyBuffer editing activity 

Finally, archiving model transformation rules does not guarantee the appropriate and 

correct reuse of the rules, due to a lack of suggestion or guidance about when and where 

to apply the transformation rules, particularly when the rules are specified by other users. 

For instance, it is likely that hardware engineers fail to reuse the ApplyBuffer 

transformation although it has been specified by software engineers, because they do not 

realize the issues involving WCET. Likewise, when software engineers are trying to 

configure the correct ADC for their system, the ADC creation transformation specified by 

hardware engineers may not be reused either, simply because the software engineers are 

not aware of the existence of a model transformation that can fulfill their needs directly. 

Thus, the contribution of this paper focuses on providing an approach to improve 

specifying, reusing and automating the model editing activities. 

3 Solution: LiveMTBD 

Our solution to improve specification, reuse and automation of editing activities is to use a 

demonstration-based technique with three “live” features (i.e., active processes that 

monitor and respond to editing activities). In this section, we introduce MTBD in Section 

3.1, and then explain the extended new version LiveMTBD in Section 3.2. 



3.1 Introduction to MTBD 

The basic idea of MTBD is that rather than manually writing model transformation rules, 

users are asked to use concrete model instances and demonstrate how to transform a 

source model to a target model by directly editing and changing it. A recording and 

inference engine captures all of the user operations and automatically infers a 

transformation pattern that summarizes the changing process. This generated pattern can 

be executed in any model instance under similar circumstances to repeatedly carry out the 

desired transformation process. Figure 3 shows the overview of MTBD consisting of the 

following steps (the components with shaded background are new extensions to 

LiveMTBD that will be presented in Section 3.2). 

 
Figure 3. Overview of LiveMTBD (components with shaded background are new extensions to 

MTBD) (adapted from [2]) 

Step 1 – User Demonstration and Operation Recording. MTBD starts from a user 

demonstration about the model transformation process. A desired part of a model instance 

is located first as the source model, after which users perform basic editing operations 

(e.g., add a new model element, update its attributes) to change it into the desired target 

model. A recording engine stores all of the operations occurring in the editor, and saves 

the context information for all model elements and connections involved. We illustrate the 

MTBD idea using the motivating example ApplyBuffer. On the source model shown in the 

top of Figure 1, users can demonstrate the process of adding the new Buffering function 

and reconnecting the data flow. List 1 shows the operations performed to complete the 

demonstration. The bottom of Figure 1 shows the model after the demonstration. 

Step 2 – Operation Optimization. Meaningless operations are occasionally present 

due to a careless demonstration by the user (e.g., add one element and later remove it 

without using it in between). An algorithm [2] has been designed to eliminate meaningless 

operations. The operations in List 1 are all meaningful.  

Step 3 – Pattern Inference. In MTBD, the transformation process is specified and 

formalized as a transformation pattern, which is a 2-tuple <P, T>, where P is the 

precondition of the transformation specifying where to apply the transformation, and T is 



a sequence of transformation actions specifying how the transformation is done. Based on 

the optimized list of operations, an initial transformation pattern can be inferred, by 

summarizing all the involved model elements and connections in the demonstration and 

generalizing their meta types and relationships. The precondition P inferred from this step 

specifies the minimum structural constraints where the transformation can generally be 

applied, and the actions T composes of all the operations from the optimized list. 

List 1. Operations performed to demonstrate ApplyBuffer 

Sequence Operation Performed 

1 Add a Function  

2 Set Function.name = “Buffering” 

3 Add an InputPort in Buffering 

4 Set InputPort.name = “In” 

5 Set InputPort.type = Analysis.Message.type = “string” 

6 Add an OutputPort in Buffering 

7 Set OutputPort.name = “Out” 

8 Set OutputPort.type = Display.InputMessage.type = “string” 

9 Connect Analysis.Message to Buffering.In 

10 Connect Buffering.Out to Display.InputMessage 

11 Disconnect Analysis.Message to Display.InputMessage 

12 Connect Buffering to ECU2 

The initial precondition shown in Figure 4 is inferred from the operations list. It 

specifies that two connected functions, plus the hardware, must exist to ensure that the 

recorded operations can be executed with correct and sufficient operands. Then, the 

transformation actions are generalized operations based on the precondition. 

Precondition Precondition’ Actions 

  

1. Add Function newFunc 

2. Set newFunc.name = ”Buffer” 

3. Add InputPort newIP 

4. Set newIP.name = ”IN” 

5. Set newIP.type = op1.type 

6. Add OutputPort newOP 

7. Set newOP.name = ”OUT” 

8. Set newOP.type = ip1.type 

9. Connect op1 to newIN 

10. Connect newOP to ip1 

11. Connect newFunc to h1 

12. Remove c1  f1.WCET > 300 

Figure 4. Model transformation pattern after Step 3 (Precondition) and Step 4 (Precondition’)  

Step 4 – User Refinement. The initially inferred transformation pattern is sometimes 

not generic and accurate enough due to the limitations of the expressiveness of a user 

demonstration. For instance, the precondition P only reflects the structural constraints on 

the elements that are touched in the demonstration, ignoring the elements that were not 

directly edited in the demonstration as well as the attribute constraints. From Figure 4, it 

can be seen that the required assignment connection between the function f1 and the 



hardware h1 is missing, and the constraint on WCET is not specified. Thus, users can 

make refinements by either confirming more elements and connections to the structural 

precondition or specifying detailed constraints on the attribute precondition. In addition, 

user refinement can also be performed on the transformation actions to identify the 

generic operations, which should be executed repeatedly according to the actual number 

of available model elements and connections. The finalized transformation pattern after 

user refinement <P’, T’> is stored in the repository for future reuse. 

In our example, two additional operations in List 2 are carried out to refine the initial 

transformation pattern. The containment relationship is simply done by clicking on the 

desired connection and confirming its existence in the pattern. The attribute precondition 

is given through a dialog where users can choose any model elements and connections 

touched in the demonstration and specify the needed constraint expressions. No 

refinement is performed on actions in this case. The finalized pattern is shown in Figure 4. 

List 2. Operations performed for ApplyBuffer in the demonstration 

Sequence Operation Performed 

13 Confirm the containment of assignment between Analysis and ECU2 

14 Add an attribute constraint on Analysis – Analysis.WECT > 300 

Step 5 – Pattern Execution. The transformation patterns can be reused in any model 

instances at any time. The execution process can be formalized as a function with two 

parameters: EXECUTION (<P’, T’>, I), where <P’, T’> is a finalized transformation 

pattern, and I is the input candidate pool of model elements and connections to match the 

pattern. The execution process starts by matching precondition P’ in the candidate pool I, 

followed by executing transformation actions T’ in the matched locations. A back-tracking 

algorithm [2] has been implemented to realize the matching, and the execution of 

transformation actions is completed using model manipulation APIs. Users can customize 

the input candidate pool by either using the default full selection (all model elements and 

connections in the editor) or choosing specific model elements or connections. The 

execution of ApplyBuffer pattern will match all the function pairs based on the 

precondition and execute the actions to reconnect them though a Buffering function. 

Step 6 – Correctness Checking and Debugging. Because the precondition P’ does 

not ensure that the execution will not violate the syntax, semantics definitions or external 

constraints, the execution of each transformation action will be logged and the model 

instance correctness checking is performed after every execution. Whenever a violation 

occurs, all executed actions are undone and the whole transformation is cancelled. A high-

level debugger is under development to enable end-users to track the execution of the 

transformation pattern and prevent abstraction leaks. 

3.2 From MTBD to LiveMTBD 

LiveMTBD consists of three new components as shown in Figure 3. The contributions of 

LiveMTBD include new capabilities that improve the specification, sharing, and reuse of 

model transformation patterns within the MTBD framework. 



Live Demonstration. Although the specification of model transformation patterns 

using MTBD does not require the use of MTLs or the knowledge of metamodel definition, 

users must plan ahead and provide explicitly a demonstration that specifies the desired 

editing activity. A challenge is when a user does not realize the potential for reusing an 

editing activity until it is part-way through. For example, the hardware engineer 

configures ADC by performing a sequence of editing operations. After the editing is 

completed, the engineer may then think (post-editing) that because the ADC is a 

commonly used component in embedded systems, the editing activity just performed 

should be summarized and saved as a reusable model transformation pattern. Therefore, 

he or she may begin a demonstration and repeat exactly the same editing operations for 

the sake of inferring the transformation pattern. This repetition could be tedious and time-

consuming if the editing activity to demonstrate is complex. 

In order to enable a more flexible demonstration approach, live demonstration is 

implemented so that the recording engine works continuously to record every editing 

operation performed in the editor. Then, whenever a user realizes a need to specify and 

summarize a certain model transformation pattern for an editing activity, they can simply 

go back to the recording view and check all the operations that are related with the 

specific editing activity, after which the original MTBD inference engine infers the 

transformation from the archived editing events. In this way, users specify their desired 

editing activity by reflecting on their editing history, rather than by an intentional 

demonstration. 

 
Figure 5. Live demonstration enables demonstration by checking the editing history 

As can be seen in the example from Figure 5, a user creates the whole model by adding 

the ComputeAcc function, ADC function and hardware, and then ReadSpeed. After the 

complete model is specified, the user may check the related operations from the recording 

view and then generate the transformation pattern (e.g., the CreateADC transformation as 

shown in Figure 6). This pattern can be applied to any function, and changes the selected 

function into a fully configured ADC function by adding four input ports and one output 

port, as well as the corresponding ADC hardware. 



Precondition Actions 

 

1. Set f1.name = “ADC” 

2. Add InputPort ip1 

3. Set ip1.name = “Resolution” 

4. Set ip1.type = “double” 

5. Add InputPort ip2 

6. Set ip2.name = “Downsampling” 

7. Set ip2.type = “double” 

8. Add InputPort ip3 

9. Set ip3.name = “SampingRate” 

10. Set ip3.type = “double” 

11. Add InputPort ip4 

12. Set ip4.name = “InterruptID” 

13. Set ip4.type = “String” 

14. Add OutputPort op1 

15. Set op1.name = “AnalogValue” 

16. Set op1.type = “double” 

17. Add Hardware h1 

18. Set h1.name = “ADC” 

19. Connect f1 to h1 

Figure 6. Final transformation pattern for CreateADC 

Live Sharing. The original MTBD saves finalized patterns locally. To ease the sharing 

of patterns and enhance the editing activities, LiveMTBD changes the repository to a 

centralized repository, which can be accessed by any user at any time. The original 

transformation patterns are persisted as objects. The centralized repository is implemented 

using Java RMI, which makes the transmission of pattern objects simple and transparent. 

With the patterns being stored automatically in the centralized pattern repository, they 

are available for all users to choose in the pattern execution step, which provides a live 

collaborative environment. With this feature, various categories of end-users (e.g., 

software engineers and hardware engineers) can exchange and benefit from each other’s 

knowledge in model editing. 
Live Matching. Without a full understanding of all the model transformation patterns, 

users might miss reusing the correct transformation in the appropriate situation. Although 

executing all the transformation patterns can automatically match the applicable editing 

activities, it is very expensive to restore the model if some patterns change the model into 

an undesired configuration state. To address the problem, live matching in LiveMTBD 

offers users guidance about applicable model transformation patterns during the editing. 

Live matching is a function that takes two input parameters: MATCH(R, I), where R is the 

set of all available model transformation patterns <P’, T’> in the centralized repository, 

and I is from the user-selected input candidate pool of model elements and connections. 

Similar to pattern execution (Step 5), I includes all the model elements and connections in 

the current editor by default, or a sub-part of the model based on a user’s selection. The 

function returns all the patterns that their precondition P’ can be satisfied in I, as well as 

the number of matched locations. Different from the pattern execution, live matching does 

not execute the pattern until a user’s approval. 

To enable live matching, the MATCH function is triggered during two occasions: 1) the 

selected input model candidate pool I changes, or 2) the available pattern set R in the 

repository changes. 

As an example shown in the top of Figure 7, after we finalize the two transformation 

patterns – CreateADC and ApplyBuffer, if the users do not select any part of the model, 

the whole model instance is included in I, and live matching indicates that both patterns 

can be applied. Because there are five functions available in the current editor, 

CreateADC is matched 5 times; while the ApplyBuffer can be matched to the ReadSpeed 



function whose WCET is greater than 300. Double-clicking on any of the matched 

patterns triggers its execution directly. 

At the bottom of Figure 7, a user may change the selections on the model from the 

default to the single function newly added to the model. At this point, only CreateADC 

can be matched, and the precondition of ApplyBuffer cannot be satisfied due to the 

insufficient model elements and connections in the input candidate pool. Executing 

CreateADC can automatically transform this function to a fully configured ADC function. 

 
Figure 7. Live matching suggests applicable transformations in the current selection 

4 Discussion 

LiveMTBD has been implemented by extending the original MTBD tool, which is a plug-

in to the Generic Eclipse Modeling Systems (GEMS) [20]. Based on the challenges 

identified in Section 1, it can be seen that LiveMTBD offers the following advantages. 

Simplified specification of desired editing activities. In LiveMTBD, no model 

transformation languages and tools are used in the process, so that users are completely 

isolated from the need to know and learn MTLs. The only steps that a user is involved are 

demonstrating the editing process (Step 1) and making refinements (Step 4). All of the 

other procedures (i.e., optimization, inference, generation, execution, and correctness 



checking) are fully automated. In addition, information exposed to users is at the model 

instance level in the editor, rather than the metamodel level. The generated patterns are 

invisible to users (Figure 4 and 6 are presented for the sake of explanation, which are not 

visible to users when using LiveMTBD). Therefore, users are prevented from knowing 

metamodel definitions and implementation details. With the live demonstration feature, 

the specification of model transformation patterns can be realized at any moment of the 

editing task by reflecting and checking the editing history, providing a more flexible 

environment to summarize and specify the desired editing activities. 

Improved collaborative editing environment. With live sharing, different users in 

different distributed locations may contribute their modeling knowledge and experience 

seamlessly, such that users in one area can reuse the expertise from those in another, or 

inexperienced novice users can benefit from the practical experiences of more 

knowledgeable users.  

The more guided editing experience. With live model transformation, users are 

prompted with guidance about the applicable model transformations during model edit-

time, the result being that users can be aware of the available and applicable model 

transformation patterns and decrease missing reuse opportunities. The specified and 

summarized model transformation patterns can aid users by facilitating various 

transformation tasks, such as model creation, error detection and correction [18], aspect-

oriented modeling [19], layout configuration [17] and other general model evolution tasks.  

On the other hand, although LiveMTBD has the potential to improve reuse and 

automate the editing activities, several limitations are still present. 

The need to ensure the correctness of a live demonstration. Forming the 

transformation pattern from the editing history is very flexible compared with the explicit 

demonstration, but it also leads to a possibility that the selected editing operations from 

the history may not be accurate. For instance, without a mechanism to guide the selection 

of operations related with certain model elements, extra unnecessary operations could be 

added accidentally to the pattern, which cannot be filtered by the optimization algorithm; 

or an incomplete pattern is inferred due to the insufficient operations chosen from the 

view. Therefore, a crucial aspect for the future work is how to ensure the correctness of 

the selections from using live demonstration. 

Lack of a management feature in the centralized pattern repository. The current 

implementation of the pattern repository simply stores all the patterns together without 

classification. This could lead to matching transformation patterns that are not designed 

for the current modeling language. Therefore, categorizing the patterns is an essential part 

of the repository management in the future. In addition, the visibility, priority, and 

authorization of the patterns should also be taken into consideration. 

The performance issue of live matching. Matching patterns is expensive in the 

current implementation of LiveMTBD, which applies a back-tracking algorithm to 

traverse the selected input candidate pool. This will lead to a performance issue when a 

large number of transformation patterns are matched by live matching in the editor. 

Therefore, how to optimize the matching algorithm and improve the performance deserves 

a deeper investigation. 



5 Related Works 

The challenges of using MTLs to implement model transformation have been identified 

previously [10]. Much work has been done to simplify the model transformation 

implementation processes. Model Transformation By Example (MTBE) was the first 

attempt in this direction [10]. The idea of MTBE is that instead of writing transformation 

rules manually, users are asked to build a prototypical set of interrelated mappings 

between the source and target model instances, and then the metamodel-level 

transformation rules are semi-automatically generated using a logical programming 

engine [11]. This approach simplifies model transformation implementation, but is not 

appropriate for assisting editing acitvities because: 1) it focuses on direct concept mapping 

between two different domains rather than changing models within the same domain; 2) 

they do not support attribute transformation, which is an indispensible editing operation in 

the modeling process.  

Similarly, Brosch et al. introduced a method for specifying composite operations within 

the user’s modeling language and environment of choice [12][13]. The user models the 

composite operation by-example, changing a source model into the desirable target model. 

By comparing the source and target states, the specific changes can be summarized by a 

model difference algorithm, and transformation rules can be generated. This approach 

focuses on endogenous model transformation, which can be used to assist editing 

activities. However, attribute transformation has not been considered, and live model 

transformation and sharing is not currently supported in both these related approaches. 

Some works have been done to realize automatic model completion features to create 

and modify the existing model elements automatically from an incomplete state to a 

complete state. Sen et al. proposed to transform the metamodel and associated instance 

models to an Alloy specification, including static semantics [14]. Then, the partial model 

can be completed automatically by applying a SAT solver. This approach provides 

guidance to end-users in the model editors, but the limitation is that the inferred complete 

models are mainly based on the input constraints, rather than enabling end-users to 

customize their own scenario fully. 

Maznek et al. implemented an auto-completion feature for diagram editors [15][16]. 

Their approach was based on graph grammars. Given an incomplete graph (model) in the 

editor, all possible graphs that can be generated using the grammar production rules will 

be suggested to users. Although this is a runtime and live suggestion feature, the 

suggestions are totally depended on the grammar, the negative consequence is that users 

need to specify a number to restrict the times of production and avoid infinite loops. Also, 

the graph grammar may not be fully compatible to process domain-specific modeling 

languages, and this approach cannot express user-customized editing activities (e.g., the 

WECT must be greater than 300). 

General MTLs, particularly graphical MTLs [9] based on left- and right- hand side 

patterns, can all be extended with a live model transformation feature without much 

modification, although this is still not a common practice. VIATRA2 [6] already supports 



live model transformation matching features. For instance, triggers can be defined as 

special rules to execute certain model transformations at modeling time. However, a 

suggestion or guidance before applying the transformation is not available in the editor 

compared with our approach. 

Based on graphical MTLs, Rath et al. performed a detailed investigation on live model 

transformations using incremental pattern matching techniques [7][8]. They applied the 

Rete algorithm to preserve the full transformation context in the form of pattern matches 

that improved the performance of the live transformation. Different from our focus, their 

live model transformation was mainly aimed at supporting incremental model 

transformations and model synchronization between source and target models, although it 

could be applied to automate the editing activities as well. In addition, the full 

implementation of their approach is based on VIATRA2, which requires the usage of 

graph transformation rules at the metamodel level. The matching technique they used can 

be helpful to improve the live matching feature in our approach. 

6 Conclusion 

In this paper, we presented an extended model transformation environment called 

LiveMTBD, which supports the specification and reuse of automated model editing 

activities. Compared with our previous work with MTBD and other by-demonstration and 

by-example approaches, the main contributions of the current paper are: 1) a 

demonstration-based transformation inference process that allows a user to identify 

transformation patterns from the previous edit history using live demonstration; 2) a 

centralized pattern repository to enable transparent sharing of the transformation patterns; 

3) a live model transformation matching engine to provide modeling-time suggestions and 

user guidance of reusable patterns that match the current modeling context. Our approach 

is fully implemented and integrated to GEMS. 
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