
A Demonstration-based Approach to Support Live

Transformations in a Model Editor

Yu Sun
1
, Jeff Gray

2
, Christoph Wienands

3
, Michael Golm

3
,

Jules White

4

1University of Alabama at Birmingham, Birmingham AL 35294

yusun@cis.uab.edu
2University of Alabama, Tuscaloosa, AL 35401

gray@cs.ua.edu
3Siemens Corporate Research, Princeton, NJ 08540

{christoph.wienands, michael.golm}@siemens.com
4Virginia Tech, Blacksburg, VA 24060

julesw@vt.edu

Abstract. Complex model editing activities are frequently performed to realize

various model evolution tasks (e.g., model scalability, weaving aspects into models,

and model refactoring). In order to automate and reuse patterns of model editing, an

editing process can be regarded as an endogenous model transformation and

specified as transformation rules. However, the use of traditional model

transformation languages often presents a steep learning curve. Other challenges in

using model transformations to automate editing tasks include insufficient support

for sharing the transformations that perform the editing tasks, and a lack of

automated guidance on how to use a specific transformation in some other modeling

context. This paper presents a live model transformation approach that can enhance

and assist model editing activities. By extending the Model Transformation By

Demonstration (MTBD) approach, LiveMTBD offers users flexibility in specifying

the transformation, a centralized repository to assist with transformation sharing, and

a live model transformation matching engine to suggest applicable transformations

during model-edit time.

Keywords: Model Editing, Live Model Transformation By Demonstration.

1 Introduction

With the ongoing adoption of Model-Driven Engineering (MDE) [1], models are

emerging as first-class entities in many domains and play an increasingly significant role

in every phase of software development. During the process of building models, editing

operations are constantly performed in the editor to create or change the model into the

desired state and configuration. For instance, a sequence of creational operations is needed

to construct a typical sub-structure in a certain domain; model refactoring actions might

be required occasionally to optimize the internal structure of the represented system; when

errors are detected in models, operations to fix errors should be carried out in a timely

manner; and with non-functional system requirements, aspect models may need to be

woven into the desired locations of the base models.

The editing activities mentioned above often integrate ideas of model evolution, which

involve composite editing operations on specific locations, and are very likely to be

repeated in different model instances by different users. Therefore, a mechanism to

automate and reuse frequently used editing patterns can benefit the model editing process.

One approach to support automation and reuse of editing activities is to apply model

transformation techniques. Any editing operation performed in the editor will change

specific model instances, which can be considered as an endogenous model

transformation process [9]. Thus, the sequence of editing operations for certain purposes

can be summarized and specified as a set of transformation rules using executable Model

Transformation Languages (MTLs) [4]. The rules may be directly reused in other model

instances in the same domain, such that executing the rules triggers the desired editing

activity automatically. However, although traditional MTLs are very powerful and

expressive for specifying many editing activities, several challenges have emerged in

using MTLs that prevent it from being a perfect solution:

Challenge 1. The steep learning curve of model transformation languages prevent

general end-users (e.g., domain experts, non-programmers) from contributing to the

editing or evolution tasks from which they have much domain experience.

Challenge 2. The abstraction gap between the concrete editing operations and the

metamodel level transformation rules make the specification of the desired editing activity

challenging and perhaps even impossible for certain classes of end-users.

Challenge 3. Most MTLs and their supporting tools lack a collaborative mechanism to

enable the sharing of the transformation rules among different model users, limiting the

opportunity for reuse and exchange of domain-specific editing patterns.

Challenge 4. Without correctly understanding the transformation rules at the

metamodel level or knowing the existence of the rules, novice users might miss the

correct situations on when to reuse a specified editing activity.

To address these challenges, this paper presents an enhanced demonstration-based

model transformation approach – Live Model Transformation By Demonstration

(LiveMTBD). The idea is an extension to the Model Transformation By Demonstration

(MTBD) [2] approach, which was designed to simplify the implementation of model

transformation tasks by inferring and generating model transformation patterns from user-

demonstrated behavior. The goal of MTBD is to enable general end-users in realizing

their desired model transformation tasks without knowing a model transformation

language or metamodel definitions. Applying MTBD to support automatic reuse of editing

activities can assist end-users in avoiding the steep learning curve of MTLs and abstract

metamodel definitions. By extending MTBD, LiveMTBD contains three new features: 1)

Live Demonstration, provides a more general demonstration environment that allows

users to specify editing activities based on their editing history; 2) in order to improve the

sharing of editing activity knowledge among different users, Live Sharing – a centralized

model transformation pattern repository has been built so that transformation patterns can

be reused across different editors more efficiently; 3) a live model transformation

matching engine – Live Matching has been developed to automatically match the saved

transformation patterns at modeling time, and provides editing suggestions and guidance

to users during the editing process.

The remainder of the paper is organized as follows: Section 2 explains the motivation

and challenges with concrete examples borrowed from an industrial context; Section 3

presents the solution by introducing the initial work on MTBD, followed by highlighting

new extensions; Section 4 discusses the advantages and limitations of the solution;

Section 5 compares the related techniques, and Section 6 offers concluding remarks.

2 Motivating Example

This section overviews the challenges of specifying, reusing and automating model

editing activities using MTLs. The examples used in this paper are based on the

Embedded Function Modeling Language (EmFuncML), which has been used to support

modeling embedded control in automotive industry. EmFuncML enables the following: 1)

model the internal computation process and data flow within functions; 2) model the high-

level assignment and configurations between functions and supporting hardware devices;

3) generate platform-dependent implementation code; and 4) estimate the Worst Case

Execution Time (WCET) for each function.

The top of Figure 1 shows an excerpt of the model describing functions used in an

automotive system. ReadAcc (i.e., Read Acceleration) reads output data from ADC (i.e.

Analog-to-Digital Converter) and sends the processed data to the Analysis function, which

then transmits messages to the Display function. The input/output ports of each function

are given (e.g., ADC has four input ports: Resolution, SamplingRate, Downsampling,

InterruptID; and one output port AnalogValue). The hardware devices (e.g., ADC, ECU)

are presented, to which the corresponding functions are assigned. A tool has been

developed to estimate the WCET of each function based on the internal computation

logic. For the sake of ensuring a smooth data flow and quick processing time, the WCET

of each function should be less than 300ms; otherwise it is defined as an occurrence of a

WCET violation.

One common practice occurring in the configuration of functions in EmFuncML is that

if a WCET violation happens, a Buffering function can be added between the source

function and the target function that receives data to ensure the correct data flow. At the

bottom of Figure 1, Analysis sends message data to Display. However, the WCET of

Analysis is 460ms, which is longer than the desired processing time. Therefore, a

Buffering function is added between Analysis and Display, which serves as an

intermediate storage for the transmitted data.

Embedded software system engineers who are familiar with functional timing

requirements may perform the Buffering editing activity in the editor very often whenever

the WCET violation is detected. Therefore, this process can benefit from automation and

reuse, which can be realized using MTLs to specify and summarize the result of the

editing activity. Figure 2 shows the pseudo code of the transformation rules to accomplish

the task of applying the Buffering function by locating functions with WCET violation,

creating Buffering function and rerouting the data flow.

Figure 1. EmFuncML models before (top) and after (bottom) applying Buffering function

A number of MTLs and tools can be applied to implement the actual task, such as ATL

[3], Epsilon [21], and C-SAW [5], which support expressive mechanisms to access and

manipulate models. However, using these languages requires users to learn the syntax and

execution semantics, as well as some additional concepts (e.g., OCL is often used to

locate model elements) and libraries. In addition, because MTLs operate at the metamodel

level, in order to summarize a specific editing activity, users need to think about the whole

editing process at a more abstract level and then generalize it using correct metamodel

definitions. Sometimes, the difference in the execution semantics of a MTL may lead to

different implementation designs (e.g., imperative textual MTLs focus on specific model

manipulate steps, while declarative graphical MTLs consider the editing change as a pair

of source and target graphs), which requires extra consideration for users in the

specification progress.

In addition to the learning curve problem and abstraction gap when using MTLs,

sharing the specified model transformations has not been taken into consideration in most

MTLs and tools. For example, the left part of Figure 1 shows the ADC configuration,

which is modeled through a sequence of approximately 20 editing operations to create the

ADC function, input/output ports, set their names and types, and create the ADC hardware

device with the assignment connection. Hardware engineers are more experienced than

software engineers in this part of configuration. Thus, the complex editing operation of

creating an ADC can be specified as a reusable model transformation by hardware

engineers that can be used by different colleagues in their modeling process when the

ADC needs to be modeled in other system contexts. Clearly, if model transformations can

be shared among users with different expertise or levels of experience, the reuse captured

in a transformation rule can contribute to a knowledge base, improving the collaborative

construction of models in the same domain.

foreach Output2Input connection : c

 if (c.source.parent.WCET > 300)

 create Function in EmFucnDSLFolder : tempFunc

 set tempFunc.name = “Buffering”

 create InputPort in tempFunc : tempInput

 set tempInput.name = “In”

 set tempInput.type = c.source.type

 create OutputPort in tempFunc : tempOutput

 set tempOutput.name = “Out”

 set tempOutput.type = c.target.type

 create Output2Input connection : c1 from c.source to tempInput

 create Output2Input connection : c2 from tempOutput to c.target

 create Func2HW connection : c3

 from tempFunc to c.source.parent.mappedHW

 remove Output2Input connection : c

Figure 2. The pseudo code to specify ApplyBuffer editing activity

Finally, archiving model transformation rules does not guarantee the appropriate and

correct reuse of the rules, due to a lack of suggestion or guidance about when and where

to apply the transformation rules, particularly when the rules are specified by other users.

For instance, it is likely that hardware engineers fail to reuse the ApplyBuffer

transformation although it has been specified by software engineers, because they do not

realize the issues involving WCET. Likewise, when software engineers are trying to

configure the correct ADC for their system, the ADC creation transformation specified by

hardware engineers may not be reused either, simply because the software engineers are

not aware of the existence of a model transformation that can fulfill their needs directly.

Thus, the contribution of this paper focuses on providing an approach to improve

specifying, reusing and automating the model editing activities.

3 Solution: LiveMTBD

Our solution to improve specification, reuse and automation of editing activities is to use a

demonstration-based technique with three “live” features (i.e., active processes that

monitor and respond to editing activities). In this section, we introduce MTBD in Section

3.1, and then explain the extended new version LiveMTBD in Section 3.2.

3.1 Introduction to MTBD

The basic idea of MTBD is that rather than manually writing model transformation rules,

users are asked to use concrete model instances and demonstrate how to transform a

source model to a target model by directly editing and changing it. A recording and

inference engine captures all of the user operations and automatically infers a

transformation pattern that summarizes the changing process. This generated pattern can

be executed in any model instance under similar circumstances to repeatedly carry out the

desired transformation process. Figure 3 shows the overview of MTBD consisting of the

following steps (the components with shaded background are new extensions to

LiveMTBD that will be presented in Section 3.2).

Figure 3. Overview of LiveMTBD (components with shaded background are new extensions to

MTBD) (adapted from [2])

Step 1 – User Demonstration and Operation Recording. MTBD starts from a user

demonstration about the model transformation process. A desired part of a model instance

is located first as the source model, after which users perform basic editing operations

(e.g., add a new model element, update its attributes) to change it into the desired target

model. A recording engine stores all of the operations occurring in the editor, and saves

the context information for all model elements and connections involved. We illustrate the

MTBD idea using the motivating example ApplyBuffer. On the source model shown in the

top of Figure 1, users can demonstrate the process of adding the new Buffering function

and reconnecting the data flow. List 1 shows the operations performed to complete the

demonstration. The bottom of Figure 1 shows the model after the demonstration.

Step 2 – Operation Optimization. Meaningless operations are occasionally present

due to a careless demonstration by the user (e.g., add one element and later remove it

without using it in between). An algorithm [2] has been designed to eliminate meaningless

operations. The operations in List 1 are all meaningful.

Step 3 – Pattern Inference. In MTBD, the transformation process is specified and

formalized as a transformation pattern, which is a 2-tuple <P, T>, where P is the

precondition of the transformation specifying where to apply the transformation, and T is

a sequence of transformation actions specifying how the transformation is done. Based on

the optimized list of operations, an initial transformation pattern can be inferred, by

summarizing all the involved model elements and connections in the demonstration and

generalizing their meta types and relationships. The precondition P inferred from this step

specifies the minimum structural constraints where the transformation can generally be

applied, and the actions T composes of all the operations from the optimized list.

List 1. Operations performed to demonstrate ApplyBuffer

Sequence Operation Performed

1 Add a Function

2 Set Function.name = “Buffering”

3 Add an InputPort in Buffering

4 Set InputPort.name = “In”

5 Set InputPort.type = Analysis.Message.type = “string”

6 Add an OutputPort in Buffering

7 Set OutputPort.name = “Out”

8 Set OutputPort.type = Display.InputMessage.type = “string”

9 Connect Analysis.Message to Buffering.In

10 Connect Buffering.Out to Display.InputMessage

11 Disconnect Analysis.Message to Display.InputMessage

12 Connect Buffering to ECU2

The initial precondition shown in Figure 4 is inferred from the operations list. It

specifies that two connected functions, plus the hardware, must exist to ensure that the

recorded operations can be executed with correct and sufficient operands. Then, the

transformation actions are generalized operations based on the precondition.

Precondition Precondition’ Actions

1. Add Function newFunc

2. Set newFunc.name = ”Buffer”

3. Add InputPort newIP

4. Set newIP.name = ”IN”

5. Set newIP.type = op1.type

6. Add OutputPort newOP

7. Set newOP.name = ”OUT”

8. Set newOP.type = ip1.type

9. Connect op1 to newIN

10. Connect newOP to ip1

11. Connect newFunc to h1

12. Remove c1 f1.WCET > 300

Figure 4. Model transformation pattern after Step 3 (Precondition) and Step 4 (Precondition’)

Step 4 – User Refinement. The initially inferred transformation pattern is sometimes

not generic and accurate enough due to the limitations of the expressiveness of a user

demonstration. For instance, the precondition P only reflects the structural constraints on

the elements that are touched in the demonstration, ignoring the elements that were not

directly edited in the demonstration as well as the attribute constraints. From Figure 4, it

can be seen that the required assignment connection between the function f1 and the

hardware h1 is missing, and the constraint on WCET is not specified. Thus, users can

make refinements by either confirming more elements and connections to the structural

precondition or specifying detailed constraints on the attribute precondition. In addition,

user refinement can also be performed on the transformation actions to identify the

generic operations, which should be executed repeatedly according to the actual number

of available model elements and connections. The finalized transformation pattern after

user refinement <P’, T’> is stored in the repository for future reuse.

In our example, two additional operations in List 2 are carried out to refine the initial

transformation pattern. The containment relationship is simply done by clicking on the

desired connection and confirming its existence in the pattern. The attribute precondition

is given through a dialog where users can choose any model elements and connections

touched in the demonstration and specify the needed constraint expressions. No

refinement is performed on actions in this case. The finalized pattern is shown in Figure 4.

List 2. Operations performed for ApplyBuffer in the demonstration

Sequence Operation Performed

13 Confirm the containment of assignment between Analysis and ECU2

14 Add an attribute constraint on Analysis – Analysis.WECT > 300

Step 5 – Pattern Execution. The transformation patterns can be reused in any model

instances at any time. The execution process can be formalized as a function with two

parameters: EXECUTION (<P’, T’>, I), where <P’, T’> is a finalized transformation

pattern, and I is the input candidate pool of model elements and connections to match the

pattern. The execution process starts by matching precondition P’ in the candidate pool I,

followed by executing transformation actions T’ in the matched locations. A back-tracking

algorithm [2] has been implemented to realize the matching, and the execution of

transformation actions is completed using model manipulation APIs. Users can customize

the input candidate pool by either using the default full selection (all model elements and

connections in the editor) or choosing specific model elements or connections. The

execution of ApplyBuffer pattern will match all the function pairs based on the

precondition and execute the actions to reconnect them though a Buffering function.

Step 6 – Correctness Checking and Debugging. Because the precondition P’ does

not ensure that the execution will not violate the syntax, semantics definitions or external

constraints, the execution of each transformation action will be logged and the model

instance correctness checking is performed after every execution. Whenever a violation

occurs, all executed actions are undone and the whole transformation is cancelled. A high-

level debugger is under development to enable end-users to track the execution of the

transformation pattern and prevent abstraction leaks.

3.2 From MTBD to LiveMTBD

LiveMTBD consists of three new components as shown in Figure 3. The contributions of

LiveMTBD include new capabilities that improve the specification, sharing, and reuse of

model transformation patterns within the MTBD framework.

Live Demonstration. Although the specification of model transformation patterns

using MTBD does not require the use of MTLs or the knowledge of metamodel definition,

users must plan ahead and provide explicitly a demonstration that specifies the desired

editing activity. A challenge is when a user does not realize the potential for reusing an

editing activity until it is part-way through. For example, the hardware engineer

configures ADC by performing a sequence of editing operations. After the editing is

completed, the engineer may then think (post-editing) that because the ADC is a

commonly used component in embedded systems, the editing activity just performed

should be summarized and saved as a reusable model transformation pattern. Therefore,

he or she may begin a demonstration and repeat exactly the same editing operations for

the sake of inferring the transformation pattern. This repetition could be tedious and time-

consuming if the editing activity to demonstrate is complex.

In order to enable a more flexible demonstration approach, live demonstration is

implemented so that the recording engine works continuously to record every editing

operation performed in the editor. Then, whenever a user realizes a need to specify and

summarize a certain model transformation pattern for an editing activity, they can simply

go back to the recording view and check all the operations that are related with the

specific editing activity, after which the original MTBD inference engine infers the

transformation from the archived editing events. In this way, users specify their desired

editing activity by reflecting on their editing history, rather than by an intentional

demonstration.

Figure 5. Live demonstration enables demonstration by checking the editing history

As can be seen in the example from Figure 5, a user creates the whole model by adding

the ComputeAcc function, ADC function and hardware, and then ReadSpeed. After the

complete model is specified, the user may check the related operations from the recording

view and then generate the transformation pattern (e.g., the CreateADC transformation as

shown in Figure 6). This pattern can be applied to any function, and changes the selected

function into a fully configured ADC function by adding four input ports and one output

port, as well as the corresponding ADC hardware.

Precondition Actions

1. Set f1.name = “ADC”

2. Add InputPort ip1

3. Set ip1.name = “Resolution”

4. Set ip1.type = “double”

5. Add InputPort ip2

6. Set ip2.name = “Downsampling”

7. Set ip2.type = “double”

8. Add InputPort ip3

9. Set ip3.name = “SampingRate”

10. Set ip3.type = “double”

11. Add InputPort ip4

12. Set ip4.name = “InterruptID”

13. Set ip4.type = “String”

14. Add OutputPort op1

15. Set op1.name = “AnalogValue”

16. Set op1.type = “double”

17. Add Hardware h1

18. Set h1.name = “ADC”

19. Connect f1 to h1

Figure 6. Final transformation pattern for CreateADC

Live Sharing. The original MTBD saves finalized patterns locally. To ease the sharing

of patterns and enhance the editing activities, LiveMTBD changes the repository to a

centralized repository, which can be accessed by any user at any time. The original

transformation patterns are persisted as objects. The centralized repository is implemented

using Java RMI, which makes the transmission of pattern objects simple and transparent.

With the patterns being stored automatically in the centralized pattern repository, they

are available for all users to choose in the pattern execution step, which provides a live

collaborative environment. With this feature, various categories of end-users (e.g.,

software engineers and hardware engineers) can exchange and benefit from each other’s

knowledge in model editing.
Live Matching. Without a full understanding of all the model transformation patterns,

users might miss reusing the correct transformation in the appropriate situation. Although

executing all the transformation patterns can automatically match the applicable editing

activities, it is very expensive to restore the model if some patterns change the model into

an undesired configuration state. To address the problem, live matching in LiveMTBD

offers users guidance about applicable model transformation patterns during the editing.

Live matching is a function that takes two input parameters: MATCH(R, I), where R is the

set of all available model transformation patterns <P’, T’> in the centralized repository,

and I is from the user-selected input candidate pool of model elements and connections.

Similar to pattern execution (Step 5), I includes all the model elements and connections in

the current editor by default, or a sub-part of the model based on a user’s selection. The

function returns all the patterns that their precondition P’ can be satisfied in I, as well as

the number of matched locations. Different from the pattern execution, live matching does

not execute the pattern until a user’s approval.

To enable live matching, the MATCH function is triggered during two occasions: 1) the

selected input model candidate pool I changes, or 2) the available pattern set R in the

repository changes.

As an example shown in the top of Figure 7, after we finalize the two transformation

patterns – CreateADC and ApplyBuffer, if the users do not select any part of the model,

the whole model instance is included in I, and live matching indicates that both patterns

can be applied. Because there are five functions available in the current editor,

CreateADC is matched 5 times; while the ApplyBuffer can be matched to the ReadSpeed

function whose WCET is greater than 300. Double-clicking on any of the matched

patterns triggers its execution directly.

At the bottom of Figure 7, a user may change the selections on the model from the

default to the single function newly added to the model. At this point, only CreateADC

can be matched, and the precondition of ApplyBuffer cannot be satisfied due to the

insufficient model elements and connections in the input candidate pool. Executing

CreateADC can automatically transform this function to a fully configured ADC function.

Figure 7. Live matching suggests applicable transformations in the current selection

4 Discussion

LiveMTBD has been implemented by extending the original MTBD tool, which is a plug-

in to the Generic Eclipse Modeling Systems (GEMS) [20]. Based on the challenges

identified in Section 1, it can be seen that LiveMTBD offers the following advantages.

Simplified specification of desired editing activities. In LiveMTBD, no model

transformation languages and tools are used in the process, so that users are completely

isolated from the need to know and learn MTLs. The only steps that a user is involved are

demonstrating the editing process (Step 1) and making refinements (Step 4). All of the

other procedures (i.e., optimization, inference, generation, execution, and correctness

checking) are fully automated. In addition, information exposed to users is at the model

instance level in the editor, rather than the metamodel level. The generated patterns are

invisible to users (Figure 4 and 6 are presented for the sake of explanation, which are not

visible to users when using LiveMTBD). Therefore, users are prevented from knowing

metamodel definitions and implementation details. With the live demonstration feature,

the specification of model transformation patterns can be realized at any moment of the

editing task by reflecting and checking the editing history, providing a more flexible

environment to summarize and specify the desired editing activities.

Improved collaborative editing environment. With live sharing, different users in

different distributed locations may contribute their modeling knowledge and experience

seamlessly, such that users in one area can reuse the expertise from those in another, or

inexperienced novice users can benefit from the practical experiences of more

knowledgeable users.

The more guided editing experience. With live model transformation, users are

prompted with guidance about the applicable model transformations during model edit-

time, the result being that users can be aware of the available and applicable model

transformation patterns and decrease missing reuse opportunities. The specified and

summarized model transformation patterns can aid users by facilitating various

transformation tasks, such as model creation, error detection and correction [18], aspect-

oriented modeling [19], layout configuration [17] and other general model evolution tasks.

On the other hand, although LiveMTBD has the potential to improve reuse and

automate the editing activities, several limitations are still present.

The need to ensure the correctness of a live demonstration. Forming the

transformation pattern from the editing history is very flexible compared with the explicit

demonstration, but it also leads to a possibility that the selected editing operations from

the history may not be accurate. For instance, without a mechanism to guide the selection

of operations related with certain model elements, extra unnecessary operations could be

added accidentally to the pattern, which cannot be filtered by the optimization algorithm;

or an incomplete pattern is inferred due to the insufficient operations chosen from the

view. Therefore, a crucial aspect for the future work is how to ensure the correctness of

the selections from using live demonstration.

Lack of a management feature in the centralized pattern repository. The current

implementation of the pattern repository simply stores all the patterns together without

classification. This could lead to matching transformation patterns that are not designed

for the current modeling language. Therefore, categorizing the patterns is an essential part

of the repository management in the future. In addition, the visibility, priority, and

authorization of the patterns should also be taken into consideration.

The performance issue of live matching. Matching patterns is expensive in the

current implementation of LiveMTBD, which applies a back-tracking algorithm to

traverse the selected input candidate pool. This will lead to a performance issue when a

large number of transformation patterns are matched by live matching in the editor.

Therefore, how to optimize the matching algorithm and improve the performance deserves

a deeper investigation.

5 Related Works

The challenges of using MTLs to implement model transformation have been identified

previously [10]. Much work has been done to simplify the model transformation

implementation processes. Model Transformation By Example (MTBE) was the first

attempt in this direction [10]. The idea of MTBE is that instead of writing transformation

rules manually, users are asked to build a prototypical set of interrelated mappings

between the source and target model instances, and then the metamodel-level

transformation rules are semi-automatically generated using a logical programming

engine [11]. This approach simplifies model transformation implementation, but is not

appropriate for assisting editing acitvities because: 1) it focuses on direct concept mapping

between two different domains rather than changing models within the same domain; 2)

they do not support attribute transformation, which is an indispensible editing operation in

the modeling process.

Similarly, Brosch et al. introduced a method for specifying composite operations within

the user’s modeling language and environment of choice [12][13]. The user models the

composite operation by-example, changing a source model into the desirable target model.

By comparing the source and target states, the specific changes can be summarized by a

model difference algorithm, and transformation rules can be generated. This approach

focuses on endogenous model transformation, which can be used to assist editing

activities. However, attribute transformation has not been considered, and live model

transformation and sharing is not currently supported in both these related approaches.

Some works have been done to realize automatic model completion features to create

and modify the existing model elements automatically from an incomplete state to a

complete state. Sen et al. proposed to transform the metamodel and associated instance

models to an Alloy specification, including static semantics [14]. Then, the partial model

can be completed automatically by applying a SAT solver. This approach provides

guidance to end-users in the model editors, but the limitation is that the inferred complete

models are mainly based on the input constraints, rather than enabling end-users to

customize their own scenario fully.

Maznek et al. implemented an auto-completion feature for diagram editors [15][16].

Their approach was based on graph grammars. Given an incomplete graph (model) in the

editor, all possible graphs that can be generated using the grammar production rules will

be suggested to users. Although this is a runtime and live suggestion feature, the

suggestions are totally depended on the grammar, the negative consequence is that users

need to specify a number to restrict the times of production and avoid infinite loops. Also,

the graph grammar may not be fully compatible to process domain-specific modeling

languages, and this approach cannot express user-customized editing activities (e.g., the

WECT must be greater than 300).

General MTLs, particularly graphical MTLs [9] based on left- and right- hand side

patterns, can all be extended with a live model transformation feature without much

modification, although this is still not a common practice. VIATRA2 [6] already supports

live model transformation matching features. For instance, triggers can be defined as

special rules to execute certain model transformations at modeling time. However, a

suggestion or guidance before applying the transformation is not available in the editor

compared with our approach.

Based on graphical MTLs, Rath et al. performed a detailed investigation on live model

transformations using incremental pattern matching techniques [7][8]. They applied the

Rete algorithm to preserve the full transformation context in the form of pattern matches

that improved the performance of the live transformation. Different from our focus, their

live model transformation was mainly aimed at supporting incremental model

transformations and model synchronization between source and target models, although it

could be applied to automate the editing activities as well. In addition, the full

implementation of their approach is based on VIATRA2, which requires the usage of

graph transformation rules at the metamodel level. The matching technique they used can

be helpful to improve the live matching feature in our approach.

6 Conclusion

In this paper, we presented an extended model transformation environment called

LiveMTBD, which supports the specification and reuse of automated model editing

activities. Compared with our previous work with MTBD and other by-demonstration and

by-example approaches, the main contributions of the current paper are: 1) a

demonstration-based transformation inference process that allows a user to identify

transformation patterns from the previous edit history using live demonstration; 2) a

centralized pattern repository to enable transparent sharing of the transformation patterns;

3) a live model transformation matching engine to provide modeling-time suggestions and

user guidance of reusable patterns that match the current modeling context. Our approach

is fully implemented and integrated to GEMS.

Acknowledgement

This work is supported by NSF CAREER award CCF-1052616.

References

1. Schmidt, D.: Model-Driven Engineering. IEEE Computer, vol. 39, no. 2, pp. 25-32 (2006)

2. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. Model Driven

Engineering Languages and Systems (MoDELS), Springer-Verlag LNCS 5795, Denver, CO,

October 2009, pp. 712-726 (2009)

3. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Science

of Computer Programming, vol. 72, nos. 1/2, pp. 31-39 (2008)

4. Sendall, S., Kozaczynski, W.: Model transformation - The Heart and Soul of Model-Driven

Software Development. IEEE Software, Special Issue on Model Driven Software

Development, vol. 20, no. 5 , pp. 42–45 (2003)

5. Gray, J., Lin, Y., Zhang, J.: Automating Change Evolution in Model-Driven Engineering. IEEE

Computer, Special Issue on Model-Driven Engineering, vol. 39, no. 2, pp. 51-58 (2006)

6. Balogh, Z., Varró, D.: Advanced Model Transformation Language Constructs in the VIATRA2

Framework. Symposium on Applied Computing (SAC), Dijon, France, April 2006, pp. 1280-

1287 (2006)

7. Rath, I., Bergmann, G., Okros, A., Varro, D.: Live Model Transformations Driven by

Incremental Pattern Matching. International Conference on Model Transformation, Springer

LNCS, vol. 5063, Zurich, Switzerland, pp. 107–121 (2008)

8. Bergmann, G., Rath, I., Varro, D.: Parallelization of Graph Transformation based on

Incremental Pattern Matching. Electronic Communications of EASST 18 (2009)

9. Mens, T., Gorp, P.: A Taxonomy of Model Transformation and its Application to Graph

Transformation. The 1st International Workshop on Graph and Model Transformation,

GraMoT’05, Tallinn, Estonia (2005)

10. Varró, D.: Model Transformation by Example. Model-Driven Engineering Languages and

Systems, Springer-Verlag LNCS 4199, Genova, Italy, October 2006, pp. 410–424 (2006)

11. Balogh, Z., Varró, D.: Model Transformation by Example using Inductive Logic Programming.

Software and Systems Modeling, vol. 8, no. 3, pp. 347-364 (2009)

12. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Retschitzegger, W.,

Schwinger, W.: An Example is Worth a Thousand Words: Composite Operation Modeling By-

Example. International Conference on Model Driven Engineering Languages and Systems

(MoDELS), Spring-Verlag LNCS 5795, Denver, CO, October, 2009, pp. 271-285 (2009)

13. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: The Operation Recorder:

Specifying Model Refactorings By-example. International Conference on Object-Oriented

Programming Systems Languages and Applications (OOPSLA) – Tool Demonstration,

Orlando, FL, October 2009, pp. 791-792 (2009)

14. Sen, S., Baudry, B., and Vandheluwe, H.: Towards Domain-specific Model Editors with

Automatic Model Completion. SIMULATION, vol. 86, no. 2, pp. 109-126 (2010)

15. Mazanek, S. and Minas, M.: Business Process Models as a Showcase for Syntax-Based

Assistance in Diagram Editors. International Conference on Model Driven Engineering

Languages and Systems (MoDELS), Spring-Verlag LNCS 5795, Denver, CO, October, 2009,

pp. 322-336 (2009)

16. Mazanek, S., Maier, S., and Minas, M.: Auto-completion for Diagram Editors based on Graph

Grammars. In Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-

Centric Computing. IEEE Computer Society, Washington, DC, 242-245 (2008)

17. Sun, Y, Gray, J., Langer, P., Wimmer, M., and White, J., “A WYSIWYG Approach for

Configuring Model Layout using Model Transformations,” 10th Workshop on Domain-

Specific Modeling, held at SPLASH 2010, Reno, NV (2010)

18. Sun, Y., White, J., Gray, J., Gokhale, A. “Model-Driven Automated Error Recovery in Cloud

Computing,” Model-driven Analysis and Software Development: Architectures and Functions,

IGI Global, Hershey, PA, pp. 136-154 (2009)

19. Sun, Y., Gray, J., Delamare, R., Baudry, B., and White, J.: Automating the Management of

Non-functional System Properties using Demonstration-based Model Transformation.

Computer Science - Research and Development, Springer-Verlag, 2011 (Under review)

20. Generic Eclipse Modeling System (GEMS). http://www.eclipse.org/gmt/gems/ (2011)

21. Eclipse Epsilon. http://www.eclipse.org/gmt/epsilon/ (2011)

