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Abstract 
In this project, we investigated congestion control synchronization in TCP senders.  

When multiple TCP flows are sharing the same bottleneck link, congestion of the link in 

a synchronized situation can cause an overreaction, with all or most of the senders 

backing off simultaneously.  A more appropriate response would be for the minimum 

number of senders to be affected by any given congestion event.  Our approach of 

varying the RTTs for each sender shows conclusively that dissimilar RTTs reduce 

synchronization, and thus reduce the magnitude of oscillations in the router queue size. 

Motivation 
TCP congestion control, although it has effectively reduced the dangers of congestion 

collapse, can cause dramatic underutilization of network bottleneck links.  This can have 

direct financial implications for the owners of those links, whether large or small.  In this 

project, we investigate the causes of congestion control synchronization, and approaches 

for mitigating its effects. 

Initial Directions 
Our initial approach was two-fold: 1) simulate a router in software and modify 

parameters to notice and affect flow synchronization within this bottleneck router and 2) 

model flow synchronization in the network simulation tool ns-2 and modify parameters to 

notice and affect flow synchronization in the ns-2 bottleneck router. 

 

The simulated router was designed to attach to the TCP senders and sinks from 

Assignment 2 in order to model a droptail queue for testing in a controlled network 

environment.  Although we were able to control the network using this method, the 

simulation was highly unpredictable, being subject to the whims of the kernel scheduler.  

We discussed the possibility of reimplementing this configuration in a single process, and 

decided that ns-2 provided exactly the framework that we were looking for. 

 

The initial focus with the ns-2 simulations was to reduce or eliminate the number and/or 

duration of empty queue events in the bottleneck router. This was motivated by wanting 

to reduce or eliminate underutilization of a bottleneck link. When a link’s router queue is 

empty, the link is “quiet.”  Assuming that there are TCP senders who could have 

transmitted during that time, this represents underutilization of the critical resource. 

 

The first goal with the ns-2 simulations was to create a scenario that caused empty 

bottleneck router queues. After trying a few different configurations we found the 

following scenario to produce over 10 empty router queue events in a 60 second period: 

a bottleneck router with a bandwidth of 0.3 Mb/s and latency of 200ms plus 10 

FTP/TCP/NewReno flows going into and out of the bottleneck router with a latency of 50 



ms on either side of the router. With this baseline configuration resolved, we began 

manipulating different parameters to see the effect on the number of empty queue events. 

 

The table below shows some of the different configurations that were tried. In short, we 

tried separately modifying the number of flows, the RTTs of the flows (first by 

modifying the RTT of a single flow while keeping the others constant then having 2 

groups with different RTTs), and the size of the bottleneck router queue. Relevant to the 

router queue size we tried setting the size based on the bit-rate delay product and the 

over-square-root formulae. Surprisingly, queue size based on these formulae did not 

decrease the number of empty router queue events. At a minimum this was conclusive 

evidence that these formulae are not necessarily good general purpose solutions even 

though there may be certain configurations for which they are well suited. Another 

surprising result was found using random early detection (RED) queues rather than 

droptail queues. We assumed using RED queues would decrease empty router queue 

events but this was not the case in the simulations we ran. Again, there may be certain 

configurations where RED queues reduce underutilization of bottleneck routers but this 

can not be said in all cases. 

 

# of 

flows 

buffer 

size 

empty 

queue 

events Notes 
10 10 10+ Baseline case 

5 15 10+ bit-rate delay product 

10 4, 5, 6 10+ used over-square-root, i.e., (RTT*C)/sqrt(n), not promising 

20 10 2 . 

20 20 0 . 

20 40 0  

15 15 2  

15 15(RED) 10+ Unexpected results w/ RED queue 

10 10 6 plus 200ms latency on one link 

10 10 10+ plus 300ms latency on one link 

10 10 10+ plus 120ms latency on 1/2 links 

10 10 3 plus 100ms latency on 1/2 source links 

10 9 10+ . 

10 15 3 up-front+short duration - promising 

10 20 3 up-front+short duration - promising 

10 25 1 up-front - promising 

10 11 10+ . 

10 12 8 up-front+short duration - markedly better than queue size of 11 

10 13 10+ markedly worse than queue size of 12 

10 14 4 almost as good as 15 

 

As can be seen from the table above the only promising results came from modifying the 

size of the router queue. The empty queue events were fewer and of shorter duration as 

the router queue size was increased to around 15 packets. However, at this point we were 

encouraged to redirect our efforts not looking at empty bottleneck queue events but rather 



focusing on router queue size oscillations. This lead to some promising results as outlined 

below. 

Methods 
All experiments described here were conducted using Network Simulator (ns-2).  Initial 

experiments were tried using separate processes running over loopback or LAN 

connections, but were too uncontrolled to be useful (although this tack provided useful 

input and direction for ns-2 simulations).  Similar problems arose with using PlanetLab as 

an experimental base.  ns-2 has the great advantage of being entirely deterministic, 

allowing us to create an entirely isolated experimental environment. 

 

The baseline network layout was as follows: the set of N senders each have individual 

links connecting them to router A, at one end of the bottleneck link, with bandwidth W.  

Router B, at the other end of the link, has individual links to each of the N receivers.  All 

data transfers were one-way and continuous over the measurement period, with payload 

sizes of 1500 bytes (packetsize of 1460 bytes + header size of 40 bytes).  The baseline 

situation had all RTTs identical, equal to 600ms (200 ms for the bottleneck router link 

and 50 ms on each side of the router, or 300ms each direction) and the size of the 

bottleneck router queue was 45 packets. This size is particularly large so that we would 

be better able to notice oscillations in the router’s buffer size. 

 

All senders and receivers modeled the TCP New Reno protocol.  The router was modeled 

as a droptail queue, which is the most common policy among existing devices.  ns-2 logs 

router and cwnd data with a granularity of 5ms.  

 

Our first promising approach was to assign RTTs to each of the N flows in sequence, 

starting at 600ms, in steps of 5ms.  Thus, no two flows would have an identical RTT.  

This is called the “stepped” approach below.  We expected this to decrease the degree of 

synchronization of the senders by staggering the times at which they would be sending.   

 

The second approach assigned RTTs at random from a linear distribution between 600 

and 700ms.  This is called the “random” approach below.  It is similar to the “stepped” 

approach, but allows for the possibility of applying it to a large number of flows.  In such 

a situation, always separating RTTs by 5ms would not be possible or desirable, but the 

linear distribution would ensure as much separation as possible within the given 

constraints. 

Results 
The data from our baseline case is shown in figures 1 and 2.  The baseline case involved 

N=10 flows, with all RTTs equal to 600ms.  Data was collected for 2 minutes using ns-2.  

The router buffer was 45 packets.  Figure 1 shows the congestion window for each of the 

10 senders.  It is readily obvious that the senders are moving through the stages of TCP 

congestion control simultaneously, all reacting to congestion events at the same time.  

Figure 2 shows the router queue size over the same period of time.  The impact of the 

synchronized congestion reactions can be seen in the magnitude of the drops in the router 

queue level. 



 

The data from using the “stepped” approach are seen in figures 3 and 4.  With N=10 

flows, the RTTs were assigned from 600ms to 690ms.  Figure 3 clearly shows that the 

congestion windows for the individual senders are no longer moving in tandem, and the 

impact of this can be seen on the router queue level fluctuations in figure 4.  While the 

number of congestion events is the same, the magnitude of the oscillations has been 

significantly reduced. 

 

We determined that the beneficial impact of the “stepped” approach significantly drops 

off when the step size is reduced to 1ms or below, which is the case seen in figure 7.  

However, a step size of 2ms produces results comparable to the step size of 5ms shown in 

figures 3 and 4. 

 

The data from using the “random” approach is seen in figures 5 and 6.  With N=10 flows, 

the RTTs were assigned from a linear distribution between 600ms and 700ms.  Once 

again, the congestion control states of the senders have been desynchronized, reducing 

the magnitude of oscillations in the router queue.  However, the impact is not 

significantly different from the stepped approach.  The major benefit of the random 

approach is that it can be applied to any number of connections, whereas separating every 

RTT by 5ms is impractical for large numbers of connections. 

 

Another improvement of the random approach over the stepped is in the area of fairness.  

Since all links have an equal chance of receiving a given RTT, no one connection is 

favored over another.  Combined with a periodic reassignment of RTTs, fairness can be 

assured in the average case. 

Conclusions 
The degree of congestion control synchronization has a measurable impact on the 

utilization of the bottleneck link in a system.  Modifying the RTTs in a synchronized 

system is sufficient to desynchronize the system, resulting in smaller oscillations in the 

router queue level.  Doing so in a random fashion appears to be the best approach, since it 

can be scaled to any number of connections, and theoretically allows for a degree of 

fairness by averaging the additional delays across all senders.  Further work would be 

necessary to analyze the scalability of this solution, however. 



Figures 
Figure 1: qm baseline 

Figure 2: cwnd baseline 

Figure 3: qm stepped5ms 

Figure 4: cwnd stepped5ms 

Figure 5: qm random 

Figure 6: cwnd random 

Figure 7: qm stepped1ms 

Figure 8: cwnd stepped1ms 
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Figure 1: qm baseline 
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Figure 2: cwnd baseline 
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Figure 3: qm stepped5ms 
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Figure 4: cwnd stepped5ms 
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Figure 5: qm random 
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Figure 6: cwnd random 
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Figure 7: qm stepped1ms 
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Figure 8: cwnd stepped1ms 


