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•Present solutions
to common 
software problems
arising within a 
certain context

Overview of Patterns

•Capture recurring structures & 
dynamics among software 
participants to facilitate reuse of 
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Help resolve 
key software 
design 
forces

•Flexibility
•Extensibility
•Dependability
•Predictability
•Scalability
•Efficiency

•Generally codify expert 
knowledge of design strategies, 
constraints & “best practices”
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Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language, 

system, or tool
Scoped locking

Design 
patterns

Capture the static & dynamic roles & 
relationships in solutions that occur 
repeatedly 

Active Object, 
Bridge, Proxy, 
Wrapper Façade, 
& Visitor

Architectural 
patterns

Express a fundamental structural 
organization for software systems that 
provide a set of predefined subsystems, 
specify their relationships, & include the 
rules and guidelines for organizing the 
relationships between them

Half-Sync/Half-
Async, Layers, 
Proactor, 
Publisher-
Subscriber, & 
Reactor

Optimization 
principle 
patterns

Document rules for avoiding common 
design & implementation mistakes that 
degrade performance

Optimize for 
common case, 
pass information 
between layers
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• Enables reuse of software 
architectures & designs

• Improves development team 
communication

• Convey “best practices” intuitively 
• Transcends language-centric 

biases/myopia
• Abstracts away from many 

unimportant details

Benefits of Patterns

www.cs.wustl.edu/ 
~schmidt/patterns.html

Hardware (CPU, Memory, I/O)

Networking Interfaces

Operating System

Middleware Infrastructure

Mission Computing Services

GPS IFF FLIR

HUD
Nav WTS

Air Frame

Publishers

Subscribers

push(event)  

push(event)  Event 
Channel

Broker
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• Require significant tedious & 
error-prone human effort to 
handcraft pattern 
implementations

• Can be deceptively simple

• Leaves some important details 
unresolved

Limitations of Patterns

www.cs.wustl.edu/ 
~schmidt/patterns.html

Hardware (CPU, Memory, I/O)

Networking Interfaces

Operating System

Middleware Infrastructure

Mission Computing Services

GPS IFF FLIR

HUD
Nav WTS

Air Frame

Publishers

Subscribers

push(event)  

push(event)  Event 
Channel

Broker
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Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language, 

system, or tool
Scoped locking

Design 
patterns

Capture the static & dynamic roles & 
relationships in solutions that occur 
repeatedly 

Active Object, 
Bridge, Proxy, 
Wrapper Façade, 
& Visitor

Architectural 
patterns

Express a fundamental structural 
organization for software systems that 
provide a set of predefined subsystems, 
specify their relationships, & include the 
rules and guidelines for organizing the 
relationships between them

Half-Sync/Half-
Async, Layers, 
Proactor, 
Publisher-
Subscriber, & 
Reactor

Optimization 
principle 
patterns

Document rules for avoiding common 
design & implementation mistakes that 
degrade performance

Optimize for 
common case, 
pass information 
between layers
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Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors  
generate 
data

Board 2

2: I/O via 
interrupts

3: Sensor 
proxies   
process data 
& pass to 
missions
functions

4: Mission 
functions 
perform 
avionics 
operations

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between 
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

Avionics Mission 
Computing Functions
•Weapons targeting 
systems (WTS)

•Airframe & navigation 
(Nav)

•Sensor control (GPS, 
IFF, FLIR)

•Heads-up display 
(HUD)

•Auto-pilot (AP)
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Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors  
generate 
data

Board 2

2: I/O via 
interrupts

3: Sensor 
proxies   
process data 
& pass to 
missions
functions

4: Mission 
functions 
perform 
avionics 
operations

Air
Frame

AP

Nav WTS

GPS IFF

FLIR

Cyclic 
ExecLimitations with Legacy Avionics 

Architectures
•Stovepiped
•Proprietary
•Expensive
•Vulnerable
•Tightly coupled
•Hard to schedule
•Brittle & non-adaptive

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between 
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades
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Decoupling Avionics Components
Context Problems Solution
• I/O driven DRE 
application

• Complex 
dependencies

• Real-time constraints

• Tightly coupled 
components

• Hard to schedule
• Expensive to evolve

• Apply the Publisher-
Subscriber architectural pattern 
to distribute periodic, I/O-driven
data from a single point of 
source to a collection of 
consumers

Event
*

Subscriber

consume

creates receives

Event Channel
attachPublisher 
detachPublisher
attachSubscriber
detachSubscriber
pushEvent

Filter

filterEvent

Publisher

produce

Structure 

attachSubscriber
produce

pushEvent
event

event
pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Dynamics 
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Applying the Publisher-Subscriber 
Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors  
generate 
data

Board 2

2: I/O via interrupts

4: Event Channel 
pushes events 
to 
subscribers(s)

5: Subscribers 
perform 
avionics 
operations

GPS IFF FLIR

HUD

Nav

WTS
Air 

Frame

Publishers

Subscribers

push(event)  

push(event)  

Event 
Channel

3: Sensor 
publishers   
push events 
to event 
channel

Considerations for implementing the 
Publisher-Subscriber pattern for 
mission computing applications include:
• Event notification model

•Push control vs. pull data interactions
• Scheduling & synchronization 
strategies
•e.g., priority-based dispatching & 
preemption

• Event dependency management
•e.g.,filtering & correlation mechanisms

Bold Stroke uses the Publisher-
Subscriber pattern to decouple 
sensor processing from mission 
computing operations
• Anonymous publisher & subscriber 
relationships

• Group communication
• Asynchrony
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Pros & Cons of Pub/Sub Pattern
This pattern provides the following benefits: 

•Separation of concerns
• This pattern decouples application-
independent dissemination from application-
specific functionality

•Flexibility on data dissemination
• The Pub/Sub pattern supports aggregating, 
filtering, and prioritizing of data

•Scalability
• Since senders and receivers are decoupled, 
applications can scale in the number of 
receivers and senders

This pattern also incur liabilities: 

•Complexity of debugging & 
testing 
• Applications written with this 
pattern can be hard to debug 
due its transparency

•Added overhead
• A pub/sub architecture can 
increase overhead of system 
management and data 
delivery
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Ensuring Platform-neutral & Network-
transparent Communication

operation (params) connect

send_request
marshal

unmarshal
dispatch

operation (params)

result
marshalreceive_reply

unmarshal
result

start_upregister_service
assigned 
port

Dynamics 

: Broker: Client Proxy : Object Adapter: Client : Server

Context Problems Solution
• Mission 
computing 
requires 
remote IPC

• Stringent DRE 
requirements

• Applications need capabilities to:
• Support remote communication
• Provide location transparency
• Handle faults
• Manage end-to-end QoS
• Encapsulate low-level system details

• Apply the Broker
architectural pattern to 
provide platform-neutral 
communication between 
mission computing 
boards
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Pros & Cons of Broker Pattern
This pattern provides the following benefits: 

•Separation of concerns
• This pattern decouples application-
independent object location & dispatching 
mechanisms from application-specific 
functionality

•Application programming simplicity
• The Broker pattern simplifies the 
programming of business logic for the 
application

•Reuse
• Since it’s application independent the 
implementation can be reused in various 
application domains or subsystems of the 
same application

This pattern also incur liabilities: 

•Complexity of debugging & 
testing 
• Applications written with this 
pattern can be hard to debug 
due its indirection and 
transparency

•Added level of indirection
• A brokered architecture can 
be less efficient than a 
monolithic architecture
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Solution
•Apply the Layers pattern (P1) to 
create a multi-tier architecture that 
separates concerns between 
groups of tasks occurring at distinct 
layers in the distributed system

Separating Concerns Between Tiers
Context
• Distributed systems are now 
common due to the advent of 
• The global Internet 
• Ubiquitous mobile & embedded 
devices

Problem
• It’s hard to build distributed systems 
due to the complexity associated with 
many capabilities at many levels of 
abstraction

Services in the middle tier participate 
in various types of tasks, e.g.,
• Workflow of integrated “business” 

processes
• Connect to databases & other 

backend systems for data storage 
& access 

Database Tier
• e.g., persistent 
data

DB
Server

DB
Server

Middle Tier
• e.g., common 
business logic

comp

comp

Application

Server

Presentation Tier
• e.g., thin client 
displays

Client Client
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Applying the Layers Pattern to 
Image Acquisition

Image servers are middle tier entities that:
•Provide server-side functionality

•e.g., they are responsible for scalable concurrency & networking
•Can run in their own address space
•Are integrated into containers that hide low-level OS platform details

Image
Database

Patient
Database

Database Tier
•e.g., persistent 
image data

Middle Tier
•e.g., image 
routing, security,  
& image transfer 
logic

comp
comp

Image

Servers

Presentation Tier
•e.g., radiology 
clients

Diagnostic
Workstations

Clinical
Workstations

Diagnostic & clinical 
workstations are 
presentation tier entities that:
•Typically represent 
sophisticated GUI 
elements

•Share the same address 
space with their clients
• Their clients are containers 
that provide all the 
resources

•Exchange messages with 
the middle tier components 
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Pros & Cons of the Layers Pattern
This pattern has four benefits:
•Reuse of layers

• If an individual layer embodies a well-
defined abstraction & has a well-defined & 
documented interface, the layer can be 
reused in multiple contexts

•Support for standardization
• Clearly-defined & commonly-accepted 
levels of abstraction enable the 
development of standardized tasks & 
interfaces

•Dependencies are localized
• Standardized interfaces between layers 
usually confine the effect of code changes 
to the layer that is changed

•Exchangeability
• Individual layer implementations can be 
replaced by semantically-equivalent 
implementations without undue effort

This pattern also has liabilities:
•Cascades of changing behavior

• If layer interfaces & semantics 
aren’t abstracted properly then 
changes can ripple when behavior 
of a layer is modified

•Higher overhead
• A layered architecture can be less 
efficient than a monolithic 
architecture

•Unnecessary work
• If some services performed by lower 
layers perform excessive or 
duplicate work not actually required 
by the higher layer, performance 
can suffer

•Difficulty of establishing the 
correct granularity of layers
• It’s important to avoid too many & 
too few layers
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Scaling Up Performance via Threading 
Context
• HTTP runs over TCP, which uses flow 
control to ensure that senders do not 
produce data more rapidly than slow 
receivers or congested networks can 
buffer & process

• Since achieving efficient end-to-end 
quality of service (QoS) is important 
to handle heavy Web traffic loads, a 
Web server must scale up efficiently 
as its number of clients increases

Problem
• Similarly, to improve QoS for all its connected clients, an entire Web server process 
must not block while waiting for connection flow control to abate so it can finish 
sending a file to a client

• Processing all HTTP GET requests reactively within a single-threaded process does 
not scale up, because each server CPU time-slice spends much of its time blocked 
waiting for I/O operations to complete
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The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service 
Layer

Queueing
Layer

<<read/write>> <<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

The Half-Sync/Half-Async
architectural pattern 
decouples async & sync 
service processing in 
concurrent systems, to 
simplify programming 
without unduly reducing 
performance

Solution
•Apply the Half-Sync/Half-
Async architectural 
pattern (P2) to scale up 
server performance by 
processing different HTTP 
requests concurrently in 
multiple threads 

This solution yields two benefits:
1. Threads can be mapped to separate 

CPUs to scale up server performance 
via multi-processing

2. Each thread blocks independently, 
which prevents a flow-controlled 
connection from degrading the QoS that 
other clients receive
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• This pattern defines two service 
processing layers—one async & 
one sync—along with a queueing 
layer that allows services to 
exchange messages between the 
two layers

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message
work()

notification

Half-Sync/Half-Async Pattern Dynamics

• The pattern allows sync services, 
such as HTTP protocol processing, 
to run concurrently, relative both to 
each other & to async services, 
such as event demultiplexing
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Pros & Cons of Half-Sync/Half-Async Pattern
This pattern has three benefits:
•Simplification & performance

• The programming of higher-level 
synchronous processing services are 
simplified without degrading the 
performance of lower-level system 
services

•Separation of concerns
• Synchronization policies in each 
layer are decoupled so that each 
layer need not use the same 
concurrency control strategies

•Centralization of inter-layer 
communication
• Inter-layer communication is 
centralized at a single access point, 
because all interaction is mediated 
by the queueing layer

This pattern also incurs liabilities:
•A boundary-crossing penalty may 
be incurred
• This overhead arises from context 
switching, synchronization, & data 
copying overhead when data is 
transferred between the sync & async
service layers via the queueing layer

•Higher-level application services 
may not benefit from the efficiency 
of async I/O
• Depending on the design of operating 
system or application framework 
interfaces, it may not be possible for 
higher-level services to use low-level 
async I/O devices effectively

•Complexity of debugging & testing 
• Applications written with this pattern can 
be hard to debug due its concurrent 
execution



21

Drawbacks with Half-Sync/Half-Async

Solution
•Apply the Leader/Followers
architectural pattern (P2) to 
minimize server threading 
overhead 

Problem
•Although Half-Sync/Half-Async 
threading model is more 
scalable than the purely reactive 
model, it is not necessarily the 
most efficient design

•CPU cache updates

<<get>>
<<get>>

<<get>>

<<put>>

Worker 
Thread 1

Worker 
Thread 3

ACE_Reactor

Request Queue

HTTP AcceptorHTTP Handlers, 

Worker 
Thread 2

•e.g., passing a request 
between the Reactor thread 
& a worker thread incurs:

•This overhead makes JAWS’ latency 
unnecessarily high, particularly on 
operating systems that support the 
concurrent accept() optimization

•Dynamic memory (de)allocation,

•A context switch, &
•Synchronization operations,



22

The Leader/Followers Pattern

This pattern eliminates the need for—& 
the overhead of—a separate Reactor 
thread & synchronized request queue 
used in the Half-Sync/Half-Async pattern

The Leader/Followers architectural 
pattern (P2) provides an efficient 
concurrency model where multiple 
threads take turns sharing event 
sources to detect, demux, dispatch, & 
process service requests that occur on 
the event sources

Handles

Handle Sets
Concurrent Handles Iterative Handles

Concurrent 
Handle Sets

UDP Sockets + 
WaitForMultipleObjects()

TCP Sockets + 
WaitForMultpleObjects()

Iterative 
Handle Sets

UDP Sockets + 
select()/poll()

TCP Sockets + 
select()/poll()

Handle
uses

demultiplexes

*

*

Handle Set
handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler
handle_event ()
get_handle()

Concrete Event 
Handler B

handle_event ()
get_handle()

Concrete Event 
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer
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Leader/Followers Pattern Dynamics
: Concrete

Event Handler

join()

handle_event()

: Thread
Pool 

: Handle
Set

join()

thread 2 sleeps
until it becomes
the leader

event

thread 1 sleeps
until it becomes
the leader

deactivate_
handle()

join()

Thread 1 Thread 2

handle_
events() reactivate_

handle()

handle_event()

event

thread 2
waits for a
new event,
thread 1
processes
current
event

deactivate_
handle()

handle_events()

new_leader()

1.Leader 
thread 
demuxing

2.Follower 
thread 
promotion

3.Event 
handler 
demuxing & 
event 
processing

4.Rejoining the 
thread pool

promote_
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Pros & Cons of Leader/Followers Pattern
This pattern provides two benefits: 
•Performance enhancements

• This can improve performance as follows: 
• It enhances CPU cache affinity & 
eliminates the need for dynamic memory 
allocation & data buffer sharing between 
threads

• It minimizes locking overhead by not 
exchanging data between threads, thereby 
reducing thread synchronization

• It can minimize priority inversion because 
no extra queueing is introduced in the 
server

• It doesn’t require a context switch to 
handle each event, reducing dispatching 
latency

•Programming simplicity
• The Leader/Follower pattern simplifies the 
programming of concurrency models where 
multiple threads can receive requests, 
process responses, & demultiplex 
connections using a shared handle set

This pattern also incur liabilities: 
• Implementation complexity

• The advanced variants of the 
Leader/ Followers pattern are 
hard to implement

•Lack of flexibility
• In the Leader/ Followers 
model it is hard to discard or 
reorder events because there 
is no explicit queue 

•Network I/O bottlenecks
• The Leader/Followers pattern 
serializes processing by 
allowing only a single thread 
at a time to wait on the handle 
set, which could become a 
bottleneck because only one 
thread at a time can 
demultiplex I/O events 
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Decoupling Event Demuxing, Connection 
Management, & Protocol Processing (1/2)

Context
•Web servers can be accessed 
simultaneously by multiple 
clients

Client

Client

Client

HTTP GET
request

Connect
request

HTTP GET
request

Web Server
Socket 
Handles

•They must demux & process 
multiple types of indication 
events arriving from clients 
concurrently

Event Dispatcher

Sockets

select()

•A common way to demux events 
in a server is to use select()

•Thus, changes to event-demuxing & connection 
code affects server protocol code directly & may 
yield subtle bugs, e.g., when porting to use TLI  or 
WaitForMultipleObjects()

select (width, &read_handles, 0, 0, 0);
if (FD_ISSET (acceptor,  &ready_handles)) {

int h;

do {
h = accept (acceptor, 0, 0);
char buf[BUFSIZ];
for (ssize_t i;  (i = read (h, buf, BUFSIZ)) > 0; ) 

write (1, buf, i);
} while (h != -1);

Problem
•Developers often couple 
event-demuxing & 
connection code with 
protocol-handling code

•This code cannot then be 
reused directly by other 
protocols or by other 
middleware & applications



26

Solution
Apply the Reactor architectural pattern (P2) & the Acceptor-Connector
design pattern (P2) to separate the generic event-demultiplexing & 
connection-management code from the web server’s protocol code

Decoupling Event Demuxing, Connection 
Management, & Protocol Processing (2/2)

Handle
owns

dispatches
*

notifies*

*

handle set

Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

ConnectorSynchronous
Event Demuxer

select ()

<<uses>>

Acceptor

Service 
Handler
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The Reactor Pattern
The Reactor architectural pattern allows event-driven applications to 
demultiplex & dispatch service requests that are delivered to an 
application from one or more clients

Handle
owns

dispatches
*

notifies*

*

handle set

Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event 
Handler A

handle_event ()
get_handle()

Concrete Event 
Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>
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Reactor Pattern Dynamics
: Main Program : Concrete

Event Handler
: Reactor : Synchronous 

Event
Demultiplexer

register_handler()
get_handle()

handle_events() select()
handle_event()

Handle

Handles

Handles

Con. Event
Handler Events

service()

event

Observations
•Note inversion of control

•Also note how long-running event handlers can 
degrade the QoS since callbacks steal the 
reactor’s thread!

1. Initialize   
phase

2. Event 
handling 
phase
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Pros & Cons of the Reactor Pattern
This pattern offers four benefits:
•Separation of concerns

• This pattern decouples application-
independent demuxing & dispatching 
mechanisms from application-specific hook 
method functionality

•Modularity, reusability, & configurability
• This pattern separates event-driven 
application functionality into several 
components, which enables the configuration 
of event handler components that are loosely 
integrated via a reactor

•Portability
• By decoupling the reactor’s interface from 
the lower-level OS synchronous event 
demuxing functions used in its 
implementation, the Reactor pattern 
improves portability

•Coarse-grained concurrency control
• This pattern serializes the invocation of event 
handlers at the level of event demuxing & 
dispatching within an application process or 
thread

This pattern can incur liabilities:
•Restricted applicability

• This pattern can be applied 
efficiently only if the OS supports 
synchronous event demuxing on 
handle sets

•Non-pre-emptive
• In a single-threaded application, 
concrete event handlers that 
borrow the thread of their reactor 
can run to completion & prevent the 
reactor from dispatching other 
event handlers

•Complexity of debugging & 
testing
• It is hard to debug applications 
structured using this pattern due to 
its inverted flow of control, which 
oscillates between the framework 
infrastructure & the method call-
backs on application-specific event 
handlers
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Using Asynchronous I/O Effectively
Context
•Synchronous multi-threading may not be the 
most scalable way to implement a Web server 
on OS platforms that support async I/O more 
efficiently than synchronous multi-threading 

passive-mode
socket handle

AcceptEx()
AcceptEx()
AcceptEx()

I/O Completion
Port

GetQueued
CompletionStatus()

GetQueued
CompletionStatus()

GetQueued
CompletionStatus()

•When these async operations complete, WinNT
1.Delivers the associated completion events 

containing their results to the Web server
2.Processes these events & performs the appropriate 

actions before returning to its event loop

•For example, highly-efficient Web servers can 
be implemented on Windows NT by invoking 
async Win32 operations that perform the 
following activities:
•Processing indication events, such as TCP 
CONNECT & HTTP GET requests, via 
AcceptEx() & ReadFile(), respectively

•Transmitting requested files to clients 
asynchronously via WriteFile() or 
TransmitFile()
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The Proactor Pattern
Problem
•Developing software that achieves 
the potential efficiency & scalability 
of async I/O is hard due to the 
separation in time & space of async 
operation invocations & their 
subsequent completion events

Solution
•Apply the Proactor architectural pattern 
(P2) to make efficient use of async I/O

Handle

<<executes>>

*

<<uses>>
is associated with

<<enqueues>>

<<dequeues>>

<<uses>> <<uses>>
Initiator

<<demultiplexes 
& dispatches>>

<<invokes>>

Event Queue
Completion

Asynchronous
Operation Processor
execute_async_op()

Asynchronous
Operation

async_op()

Asynchronous
Event Demuxer

get_completion_event()

Proactor

handle_events()

Completion
Handler

handle_event()

Concrete
Completion

Handler

This pattern allows event-driven 
applications to efficiently demultiplex & 
dispatch service requests triggered by the 
completion of async operations, thereby 
achieving the performance benefits of

concurrency 
without incurring 
its many liabilities
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Proactor Pattern Dynamics

Result

Completion
Handler

Completion

: Asynchronous
Operation

: Proactor Completion
Handler

exec_async_

handle_

Result

service()

: Asynchronous
Operation
Processor

: Initiator

async_operation()

Result

handle_events()

event

event

Ev. Queue

operation ()

: Completion
Event Queue

Result

event()

1. Initiate 
operation

2. Process 
operation

3. Run event 
loop

4. Generate 
& queue 
completion 
event

5. Dequeue 
completion 
event & 
perform 
completion 
processing Note similarities & differences with the Reactor pattern, e.g.:

•Both process events via callbacks
•However, it’s generally easier to multi-thread a proactor
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Pros & Cons of Proactor Pattern
This pattern offers five benefits:
•Separation of concerns

• Decouples application-independent async 
mechanisms from application-specific 
functionality 

•Portability
• Improves application portability by allowing its 
interfaces to be reused independently of the OS 
event demuxing calls

•Decoupling of threading from 
concurrency
• The async operation processor executes long-
duration operations on behalf of initiators so 
applications can spawn fewer threads

•Performance
• Avoids context switching costs by activating 
only those logical threads of control that have 
events to process

•Simplification of application 
synchronization
• If concrete completion handlers spawn no 
threads, application logic can be written with 
little or no concern for synchronization issues

This pattern incurs some liabilities:
•Restricted applicability

• This pattern can be applied most 
efficiently if the OS supports 
asynchronous operations 
natively 

•Complexity of programming, 
debugging, & testing
• It is hard to program applications 
& higher-level system services 
using asynchrony mechanisms, 
due to the separation in time & 
space between operation 
invocation & completion

•Scheduling, controlling, & 
canceling asynchronously 
running operations
• Initiators may be unable to 
control the scheduling order in 
which asynchronous operations 
are executed by an 
asynchronous operation 
processor
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http://www.enterpriseintegrationpatterns.com/ - patterns for enterprise 
systems and integrations

•Books

•Web sites

http://www.cs.wustl.edu/~schmidt/POSA/ - patterns for distributed computing 
systems

http://www.hillside.net/patterns/ - a catalog of patterns and pattern languages

http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html -
architectural patterns

http://www.enterpriseintegrationpatterns.com/�
http://www.cs.wustl.edu/~schmidt/POSA/�
http://www.hillside.net/patterns/�
http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html�
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Solution
•Aggregate classes at the same 
level of abstraction into layers.

Layers Pattern Revisited
Context
• A large system that requires 
decomposition

Problem
•Managing a “sea of classes” that 
addresses various levels of 
abstraction
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Applying the Layers Pattern to 
Image Acquisition

Image servers are middle tier entities that:
•Provide server-side functionality

•e.g., they are responsible for scalable concurrency & networking
•Can run in their own address space
•Are integrated into containers that hide low-level OS platform details

Image
Database

Patient
Database

Database Tier
•e.g., persistent 
image data

Middle Tier
•e.g., image 
routing, security,  
& image transfer 
logic

comp
comp

Image

Servers

Presentation Tier
•e.g., radiology 
clients

Diagnostic
Workstations

Clinical
Workstations

Diagnostic & clinical 
workstations are 
presentation tier entities that:
•Typically represent 
sophisticated GUI 
elements

•Share the same address 
space with their clients
• Their clients are containers 
that provide all the 
resources

•Exchange messages with 
the middle tier components 
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Solution
•Decouple core data and 
functionality from output 
representations or input behavior

Model View Controller Revisited
Context
• Interactive applications with a 
flexible human-computer interface

Problem
•Managing different & changing 
presentations of the same data

•Updating the presentations when the 
data changes
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Applying the Layers & MVC Patterns to 
Image Acquisition

Image
Database

Patient
Database

Database Tier
•e.g., persistent 
image data

Middle Tier
•e.g., image routing, 
security,  & image 
transfer logic

comp
comp

Image

Servers

Presentation Tier
•e.g., radiology clients

Diagnostic
Workstations

Clinical
Workstations

Model in MVC pattern

Views/Controllers
in MVC pattern

Layer 2

Layer 3

Layer 1
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Patterns Are More Than Structure

Pattern A?

Pattern B?

Intent: Define a family of 
algorithms, encapsulate each 
one, and make them 
interchangeable. Let the 
algorithm vary independently 
from clients that use it.

Intent: Allow an object to 
alter its behavior when its 
internal state changes. 
The object will appear to 
change its class.
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Patterns Are Abstract

- Design Patterns: Elements of Reusable Object-Oriented Software
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Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language, 

system, or tool
Scoped locking

Design 
patterns

Capture the static & dynamic roles & 
relationships in solutions that occur 
repeatedly 

Active Object, 
Bridge, Proxy, 
Wrapper Façade, 
& Visitor

Architectural 
patterns

Express a fundamental structural 
organization for software systems that 
provide a set of predefined subsystems, 
specify their relationships, & include the 
rules and guidelines for organizing the 
relationships between them

Half-Sync/Half-
Async, Layers, 
Proactor, 
Publisher-
Subscriber, & 
Reactor

Optimization 
principle 
patterns

Document rules for avoiding common 
design & implementation mistakes that 
degrade performance

Optimize for 
common case, 
pass information 
between layers
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Seminal Design Patterns Book

Design Patterns: Elements of 
Reusable Object-Oriented Software
by Erich Gamma, Richard Helm, Ralph 
Johnson, & John Vlissides (“Gang of 
Four”)

Written in 1995

Documents 23 design patterns outlining:
• Intent
• Motivation
• Applicability
• Structure
• Collaborations
• Consequences
• Implementation
• Known uses
• Related patterns

Patterns grouped as:
• Creational,
• Structural, or
• Behavioral 



Managing Global Objects Effectively

Goals:
– Centralize access to 

objects that should be 
visible globally, e.g.:
- command-line options 

that parameterize the 
behavior of the program

- The object (Reactor) that 
drives the main event 
loop

Constraints/forces:
– Only need one instance 

of the command-line 
options & Reactor

– Global variables are 
problematic in C++

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

% tree-traversal
> 1+4*3/2
7

Verbose mode

Succinct mode
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Solution: Centralize Access to Global Instances
Rather than using global variables, create a central access point to global 
instances, e.g.:  
int main (int argc, char *argv[])
{
// Parse the command-line options.
if (!Options::instance ()->parse_args (argc, argv))
return 0;

// Dynamically allocate the appropriate event handler 
// based on the command-line options.
Expression_Tree_Event_Handler *tree_event_handler =
Expression_Tree_Event_Handler::make_handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.  
Reactor::instance ()->register_input_handler
(tree_event_handler);

// ...  

44



Singleton                       object creational
Intent

ensure a class only ever has one instance & provide a global point of access 
Applicability

– when there must be exactly one instance of a class, & it must be 
accessible from a well-known access point

– when the sole instance should be extensible by subclassing, & clients 
should be able to use an extended instance without modifying their 
code

Structure

If (uniqueInstance == 0)
uniqueInstance = new Singleton;

return uniqueInstance;
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Consequences
+ reduces namespace pollution
+makes it easy to change your mind & 

allow more than one instance
+allow extension by subclassing
– same drawbacks of a global if misused
– implementation may be less efficient 

than a global 
– concurrency pitfalls strategy creation & 

communication overhead
Implementation
– static instance operation
– registering the singleton instance
– deleting singletons 

Known Uses
– Unidraw's Unidraw object
– Smalltalk-80 ChangeSet, 

the set of changes to code
– InterViews Session object
See Also
– Double-Checked Locking 

Optimization pattern from 
POSA2

– “To Kill a Singleton” 
www.research.ibm.com/ 
designpatterns/pubs/     
ph-jun96.txt

Singleton                       object creational
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