
1

•Present solutions
to common
software problems
arising within a
certain context

Overview of Patterns

•Capture recurring structures &
dynamics among software
participants to facilitate reuse of
successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Help resolve
key software
design
forces

•Flexibility
•Extensibility
•Dependability
•Predictability
•Scalability
•Efficiency

•Generally codify expert
knowledge of design strategies,
constraints & “best practices”

2

Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language,

system, or tool
Scoped locking

Design
patterns

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Active Object,
Bridge, Proxy,
Wrapper Façade,
& Visitor

Architectural
patterns

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Half-Sync/Half-
Async, Layers,
Proactor,
Publisher-
Subscriber, &
Reactor

Optimization
principle
patterns

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimize for
common case,
pass information
between layers

3

• Enables reuse of software
architectures & designs

• Improves development team
communication

• Convey “best practices” intuitively
• Transcends language-centric

biases/myopia
• Abstracts away from many

unimportant details

Benefits of Patterns

www.cs.wustl.edu/
~schmidt/patterns.html

Hardware (CPU, Memory, I/O)

Networking Interfaces

Operating System

Middleware Infrastructure

Mission Computing Services

GPS IFF FLIR

HUD
Nav WTS

Air Frame

Publishers

Subscribers

push(event)

push(event) Event
Channel

Broker

4

• Require significant tedious &
error-prone human effort to
handcraft pattern
implementations

• Can be deceptively simple

• Leaves some important details
unresolved

Limitations of Patterns

www.cs.wustl.edu/
~schmidt/patterns.html

Hardware (CPU, Memory, I/O)

Networking Interfaces

Operating System

Middleware Infrastructure

Mission Computing Services

GPS IFF FLIR

HUD
Nav WTS

Air Frame

Publishers

Subscribers

push(event)

push(event) Event
Channel

Broker

5

Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language,

system, or tool
Scoped locking

Design
patterns

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Active Object,
Bridge, Proxy,
Wrapper Façade,
& Visitor

Architectural
patterns

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Half-Sync/Half-
Async, Layers,
Proactor,
Publisher-
Subscriber, &
Reactor

Optimization
principle
patterns

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimize for
common case,
pass information
between layers

6

Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors
generate
data

Board 2

2: I/O via
interrupts

3: Sensor
proxies
process data
& pass to
missions
functions

4: Mission
functions
perform
avionics
operations

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

Avionics Mission
Computing Functions
•Weapons targeting
systems (WTS)

•Airframe & navigation
(Nav)

•Sensor control (GPS,
IFF, FLIR)

•Heads-up display
(HUD)

•Auto-pilot (AP)

7

Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors
generate
data

Board 2

2: I/O via
interrupts

3: Sensor
proxies
process data
& pass to
missions
functions

4: Mission
functions
perform
avionics
operations

Air
Frame

AP

Nav WTS

GPS IFF

FLIR

Cyclic
ExecLimitations with Legacy Avionics

Architectures
•Stovepiped
•Proprietary
•Expensive
•Vulnerable
•Tightly coupled
•Hard to schedule
•Brittle & non-adaptive

Key System Characteristics
•Hard & soft real-time deadlines

•~20-40 Hz
•Low latency & jitter between
boards
•~100 usecs

•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

8

Decoupling Avionics Components
Context Problems Solution
• I/O driven DRE
application

• Complex
dependencies

• Real-time constraints

• Tightly coupled
components

• Hard to schedule
• Expensive to evolve

• Apply the Publisher-
Subscriber architectural pattern
to distribute periodic, I/O-driven
data from a single point of
source to a collection of
consumers

Event
*

Subscriber

consume

creates receives

Event Channel
attachPublisher
detachPublisher
attachSubscriber
detachSubscriber
pushEvent

Filter

filterEvent

Publisher

produce

Structure

attachSubscriber
produce

pushEvent
event

event
pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Dynamics

9

Applying the Publisher-Subscriber
Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors
generate
data

Board 2

2: I/O via interrupts

4: Event Channel
pushes events
to
subscribers(s)

5: Subscribers
perform
avionics
operations

GPS IFF FLIR

HUD

Nav

WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event
Channel

3: Sensor
publishers
push events
to event
channel

Considerations for implementing the
Publisher-Subscriber pattern for
mission computing applications include:
• Event notification model

•Push control vs. pull data interactions
• Scheduling & synchronization
strategies
•e.g., priority-based dispatching &
preemption

• Event dependency management
•e.g.,filtering & correlation mechanisms

Bold Stroke uses the Publisher-
Subscriber pattern to decouple
sensor processing from mission
computing operations
• Anonymous publisher & subscriber
relationships

• Group communication
• Asynchrony

10

Pros & Cons of Pub/Sub Pattern
This pattern provides the following benefits:

•Separation of concerns
• This pattern decouples application-
independent dissemination from application-
specific functionality

•Flexibility on data dissemination
• The Pub/Sub pattern supports aggregating,
filtering, and prioritizing of data

•Scalability
• Since senders and receivers are decoupled,
applications can scale in the number of
receivers and senders

This pattern also incur liabilities:

•Complexity of debugging &
testing
• Applications written with this
pattern can be hard to debug
due its transparency

•Added overhead
• A pub/sub architecture can
increase overhead of system
management and data
delivery

12

Ensuring Platform-neutral & Network-
transparent Communication

operation (params) connect

send_request
marshal

unmarshal
dispatch

operation (params)

result
marshalreceive_reply

unmarshal
result

start_upregister_service
assigned
port

Dynamics

: Broker: Client Proxy : Object Adapter: Client : Server

Context Problems Solution
• Mission
computing
requires
remote IPC

• Stringent DRE
requirements

• Applications need capabilities to:
• Support remote communication
• Provide location transparency
• Handle faults
• Manage end-to-end QoS
• Encapsulate low-level system details

• Apply the Broker
architectural pattern to
provide platform-neutral
communication between
mission computing
boards

13

Pros & Cons of Broker Pattern
This pattern provides the following benefits:

•Separation of concerns
• This pattern decouples application-
independent object location & dispatching
mechanisms from application-specific
functionality

•Application programming simplicity
• The Broker pattern simplifies the
programming of business logic for the
application

•Reuse
• Since it’s application independent the
implementation can be reused in various
application domains or subsystems of the
same application

This pattern also incur liabilities:

•Complexity of debugging &
testing
• Applications written with this
pattern can be hard to debug
due its indirection and
transparency

•Added level of indirection
• A brokered architecture can
be less efficient than a
monolithic architecture

14

Solution
•Apply the Layers pattern (P1) to
create a multi-tier architecture that
separates concerns between
groups of tasks occurring at distinct
layers in the distributed system

Separating Concerns Between Tiers
Context
• Distributed systems are now
common due to the advent of
• The global Internet
• Ubiquitous mobile & embedded
devices

Problem
• It’s hard to build distributed systems
due to the complexity associated with
many capabilities at many levels of
abstraction

Services in the middle tier participate
in various types of tasks, e.g.,
• Workflow of integrated “business”

processes
• Connect to databases & other

backend systems for data storage
& access

Database Tier
• e.g., persistent
data

DB
Server

DB
Server

Middle Tier
• e.g., common
business logic

comp

comp

Application

Server

Presentation Tier
• e.g., thin client
displays

Client Client

15

Applying the Layers Pattern to
Image Acquisition

Image servers are middle tier entities that:
•Provide server-side functionality

•e.g., they are responsible for scalable concurrency & networking
•Can run in their own address space
•Are integrated into containers that hide low-level OS platform details

Image
Database

Patient
Database

Database Tier
•e.g., persistent
image data

Middle Tier
•e.g., image
routing, security,
& image transfer
logic

comp
comp

Image

Servers

Presentation Tier
•e.g., radiology
clients

Diagnostic
Workstations

Clinical
Workstations

Diagnostic & clinical
workstations are
presentation tier entities that:
•Typically represent
sophisticated GUI
elements

•Share the same address
space with their clients
• Their clients are containers
that provide all the
resources

•Exchange messages with
the middle tier components

16

Pros & Cons of the Layers Pattern
This pattern has four benefits:
•Reuse of layers

• If an individual layer embodies a well-
defined abstraction & has a well-defined &
documented interface, the layer can be
reused in multiple contexts

•Support for standardization
• Clearly-defined & commonly-accepted
levels of abstraction enable the
development of standardized tasks &
interfaces

•Dependencies are localized
• Standardized interfaces between layers
usually confine the effect of code changes
to the layer that is changed

•Exchangeability
• Individual layer implementations can be
replaced by semantically-equivalent
implementations without undue effort

This pattern also has liabilities:
•Cascades of changing behavior

• If layer interfaces & semantics
aren’t abstracted properly then
changes can ripple when behavior
of a layer is modified

•Higher overhead
• A layered architecture can be less
efficient than a monolithic
architecture

•Unnecessary work
• If some services performed by lower
layers perform excessive or
duplicate work not actually required
by the higher layer, performance
can suffer

•Difficulty of establishing the
correct granularity of layers
• It’s important to avoid too many &
too few layers

17

Scaling Up Performance via Threading
Context
• HTTP runs over TCP, which uses flow
control to ensure that senders do not
produce data more rapidly than slow
receivers or congested networks can
buffer & process

• Since achieving efficient end-to-end
quality of service (QoS) is important
to handle heavy Web traffic loads, a
Web server must scale up efficiently
as its number of clients increases

Problem
• Similarly, to improve QoS for all its connected clients, an entire Web server process
must not block while waiting for connection flow control to abate so it can finish
sending a file to a client

• Processing all HTTP GET requests reactively within a single-threaded process does
not scale up, because each server CPU time-slice spends much of its time blocked
waiting for I/O operations to complete

18

The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service
Layer

Queueing
Layer

<<read/write>> <<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

The Half-Sync/Half-Async
architectural pattern
decouples async & sync
service processing in
concurrent systems, to
simplify programming
without unduly reducing
performance

Solution
•Apply the Half-Sync/Half-
Async architectural
pattern (P2) to scale up
server performance by
processing different HTTP
requests concurrently in
multiple threads

This solution yields two benefits:
1. Threads can be mapped to separate

CPUs to scale up server performance
via multi-processing

2. Each thread blocks independently,
which prevents a flow-controlled
connection from degrading the QoS that
other clients receive

19

• This pattern defines two service
processing layers—one async &
one sync—along with a queueing
layer that allows services to
exchange messages between the
two layers

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message
work()

notification

Half-Sync/Half-Async Pattern Dynamics

• The pattern allows sync services,
such as HTTP protocol processing,
to run concurrently, relative both to
each other & to async services,
such as event demultiplexing

20

Pros & Cons of Half-Sync/Half-Async Pattern
This pattern has three benefits:
•Simplification & performance

• The programming of higher-level
synchronous processing services are
simplified without degrading the
performance of lower-level system
services

•Separation of concerns
• Synchronization policies in each
layer are decoupled so that each
layer need not use the same
concurrency control strategies

•Centralization of inter-layer
communication
• Inter-layer communication is
centralized at a single access point,
because all interaction is mediated
by the queueing layer

This pattern also incurs liabilities:
•A boundary-crossing penalty may
be incurred
• This overhead arises from context
switching, synchronization, & data
copying overhead when data is
transferred between the sync & async
service layers via the queueing layer

•Higher-level application services
may not benefit from the efficiency
of async I/O
• Depending on the design of operating
system or application framework
interfaces, it may not be possible for
higher-level services to use low-level
async I/O devices effectively

•Complexity of debugging & testing
• Applications written with this pattern can
be hard to debug due its concurrent
execution

21

Drawbacks with Half-Sync/Half-Async

Solution
•Apply the Leader/Followers
architectural pattern (P2) to
minimize server threading
overhead

Problem
•Although Half-Sync/Half-Async
threading model is more
scalable than the purely reactive
model, it is not necessarily the
most efficient design

•CPU cache updates

<<get>>
<<get>>

<<get>>

<<put>>

Worker
Thread 1

Worker
Thread 3

ACE_Reactor

Request Queue

HTTP AcceptorHTTP Handlers,

Worker
Thread 2

•e.g., passing a request
between the Reactor thread
& a worker thread incurs:

•This overhead makes JAWS’ latency
unnecessarily high, particularly on
operating systems that support the
concurrent accept() optimization

•Dynamic memory (de)allocation,

•A context switch, &
•Synchronization operations,

22

The Leader/Followers Pattern

This pattern eliminates the need for—&
the overhead of—a separate Reactor
thread & synchronized request queue
used in the Half-Sync/Half-Async pattern

The Leader/Followers architectural
pattern (P2) provides an efficient
concurrency model where multiple
threads take turns sharing event
sources to detect, demux, dispatch, &
process service requests that occur on
the event sources

Handles

Handle Sets
Concurrent Handles Iterative Handles

Concurrent
Handle Sets

UDP Sockets +
WaitForMultipleObjects()

TCP Sockets +
WaitForMultpleObjects()

Iterative
Handle Sets

UDP Sockets +
select()/poll()

TCP Sockets +
select()/poll()

Handle
uses

demultiplexes

*

*

Handle Set
handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler
handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer

23

Leader/Followers Pattern Dynamics
: Concrete

Event Handler

join()

handle_event()

: Thread
Pool

: Handle
Set

join()

thread 2 sleeps
until it becomes
the leader

event

thread 1 sleeps
until it becomes
the leader

deactivate_
handle()

join()

Thread 1 Thread 2

handle_
events() reactivate_

handle()

handle_event()

event

thread 2
waits for a
new event,
thread 1
processes
current
event

deactivate_
handle()

handle_events()

new_leader()

1.Leader
thread
demuxing

2.Follower
thread
promotion

3.Event
handler
demuxing &
event
processing

4.Rejoining the
thread pool

promote_

24

Pros & Cons of Leader/Followers Pattern
This pattern provides two benefits:
•Performance enhancements

• This can improve performance as follows:
• It enhances CPU cache affinity &
eliminates the need for dynamic memory
allocation & data buffer sharing between
threads

• It minimizes locking overhead by not
exchanging data between threads, thereby
reducing thread synchronization

• It can minimize priority inversion because
no extra queueing is introduced in the
server

• It doesn’t require a context switch to
handle each event, reducing dispatching
latency

•Programming simplicity
• The Leader/Follower pattern simplifies the
programming of concurrency models where
multiple threads can receive requests,
process responses, & demultiplex
connections using a shared handle set

This pattern also incur liabilities:
• Implementation complexity

• The advanced variants of the
Leader/ Followers pattern are
hard to implement

•Lack of flexibility
• In the Leader/ Followers
model it is hard to discard or
reorder events because there
is no explicit queue

•Network I/O bottlenecks
• The Leader/Followers pattern
serializes processing by
allowing only a single thread
at a time to wait on the handle
set, which could become a
bottleneck because only one
thread at a time can
demultiplex I/O events

25

Decoupling Event Demuxing, Connection
Management, & Protocol Processing (1/2)

Context
•Web servers can be accessed
simultaneously by multiple
clients

Client

Client

Client

HTTP GET
request

Connect
request

HTTP GET
request

Web Server
Socket
Handles

•They must demux & process
multiple types of indication
events arriving from clients
concurrently

Event Dispatcher

Sockets

select()

•A common way to demux events
in a server is to use select()

•Thus, changes to event-demuxing & connection
code affects server protocol code directly & may
yield subtle bugs, e.g., when porting to use TLI or
WaitForMultipleObjects()

select (width, &read_handles, 0, 0, 0);
if (FD_ISSET (acceptor, &ready_handles)) {

int h;

do {
h = accept (acceptor, 0, 0);
char buf[BUFSIZ];
for (ssize_t i; (i = read (h, buf, BUFSIZ)) > 0;)

write (1, buf, i);
} while (h != -1);

Problem
•Developers often couple
event-demuxing &
connection code with
protocol-handling code

•This code cannot then be
reused directly by other
protocols or by other
middleware & applications

26

Solution
Apply the Reactor architectural pattern (P2) & the Acceptor-Connector
design pattern (P2) to separate the generic event-demultiplexing &
connection-management code from the web server’s protocol code

Decoupling Event Demuxing, Connection
Management, & Protocol Processing (2/2)

Handle
owns

dispatches
*

notifies*

*

handle set

Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

ConnectorSynchronous
Event Demuxer

select ()

<<uses>>

Acceptor

Service
Handler

27

The Reactor Pattern
The Reactor architectural pattern allows event-driven applications to
demultiplex & dispatch service requests that are delivered to an
application from one or more clients

Handle
owns

dispatches
*

notifies*

*

handle set

Reactor

handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>

28

Reactor Pattern Dynamics
: Main Program : Concrete

Event Handler
: Reactor : Synchronous

Event
Demultiplexer

register_handler()
get_handle()

handle_events() select()
handle_event()

Handle

Handles

Handles

Con. Event
Handler Events

service()

event

Observations
•Note inversion of control

•Also note how long-running event handlers can
degrade the QoS since callbacks steal the
reactor’s thread!

1. Initialize
phase

2. Event
handling
phase

29

Pros & Cons of the Reactor Pattern
This pattern offers four benefits:
•Separation of concerns

• This pattern decouples application-
independent demuxing & dispatching
mechanisms from application-specific hook
method functionality

•Modularity, reusability, & configurability
• This pattern separates event-driven
application functionality into several
components, which enables the configuration
of event handler components that are loosely
integrated via a reactor

•Portability
• By decoupling the reactor’s interface from
the lower-level OS synchronous event
demuxing functions used in its
implementation, the Reactor pattern
improves portability

•Coarse-grained concurrency control
• This pattern serializes the invocation of event
handlers at the level of event demuxing &
dispatching within an application process or
thread

This pattern can incur liabilities:
•Restricted applicability

• This pattern can be applied
efficiently only if the OS supports
synchronous event demuxing on
handle sets

•Non-pre-emptive
• In a single-threaded application,
concrete event handlers that
borrow the thread of their reactor
can run to completion & prevent the
reactor from dispatching other
event handlers

•Complexity of debugging &
testing
• It is hard to debug applications
structured using this pattern due to
its inverted flow of control, which
oscillates between the framework
infrastructure & the method call-
backs on application-specific event
handlers

30

Using Asynchronous I/O Effectively
Context
•Synchronous multi-threading may not be the
most scalable way to implement a Web server
on OS platforms that support async I/O more
efficiently than synchronous multi-threading

passive-mode
socket handle

AcceptEx()
AcceptEx()
AcceptEx()

I/O Completion
Port

GetQueued
CompletionStatus()

GetQueued
CompletionStatus()

GetQueued
CompletionStatus()

•When these async operations complete, WinNT
1.Delivers the associated completion events

containing their results to the Web server
2.Processes these events & performs the appropriate

actions before returning to its event loop

•For example, highly-efficient Web servers can
be implemented on Windows NT by invoking
async Win32 operations that perform the
following activities:
•Processing indication events, such as TCP
CONNECT & HTTP GET requests, via
AcceptEx() & ReadFile(), respectively

•Transmitting requested files to clients
asynchronously via WriteFile() or
TransmitFile()

31

The Proactor Pattern
Problem
•Developing software that achieves
the potential efficiency & scalability
of async I/O is hard due to the
separation in time & space of async
operation invocations & their
subsequent completion events

Solution
•Apply the Proactor architectural pattern
(P2) to make efficient use of async I/O

Handle

<<executes>>

*

<<uses>>
is associated with

<<enqueues>>

<<dequeues>>

<<uses>> <<uses>>
Initiator

<<demultiplexes
& dispatches>>

<<invokes>>

Event Queue
Completion

Asynchronous
Operation Processor
execute_async_op()

Asynchronous
Operation

async_op()

Asynchronous
Event Demuxer

get_completion_event()

Proactor

handle_events()

Completion
Handler

handle_event()

Concrete
Completion

Handler

This pattern allows event-driven
applications to efficiently demultiplex &
dispatch service requests triggered by the
completion of async operations, thereby
achieving the performance benefits of

concurrency
without incurring
its many liabilities

32

Proactor Pattern Dynamics

Result

Completion
Handler

Completion

: Asynchronous
Operation

: Proactor Completion
Handler

exec_async_

handle_

Result

service()

: Asynchronous
Operation
Processor

: Initiator

async_operation()

Result

handle_events()

event

event

Ev. Queue

operation ()

: Completion
Event Queue

Result

event()

1. Initiate
operation

2. Process
operation

3. Run event
loop

4. Generate
& queue
completion
event

5. Dequeue
completion
event &
perform
completion
processing Note similarities & differences with the Reactor pattern, e.g.:

•Both process events via callbacks
•However, it’s generally easier to multi-thread a proactor

33

Pros & Cons of Proactor Pattern
This pattern offers five benefits:
•Separation of concerns

• Decouples application-independent async
mechanisms from application-specific
functionality

•Portability
• Improves application portability by allowing its
interfaces to be reused independently of the OS
event demuxing calls

•Decoupling of threading from
concurrency
• The async operation processor executes long-
duration operations on behalf of initiators so
applications can spawn fewer threads

•Performance
• Avoids context switching costs by activating
only those logical threads of control that have
events to process

•Simplification of application
synchronization
• If concrete completion handlers spawn no
threads, application logic can be written with
little or no concern for synchronization issues

This pattern incurs some liabilities:
•Restricted applicability

• This pattern can be applied most
efficiently if the OS supports
asynchronous operations
natively

•Complexity of programming,
debugging, & testing
• It is hard to program applications
& higher-level system services
using asynchrony mechanisms,
due to the separation in time &
space between operation
invocation & completion

•Scheduling, controlling, &
canceling asynchronously
running operations
• Initiators may be unable to
control the scheduling order in
which asynchronous operations
are executed by an
asynchronous operation
processor

Architectural Patterns Resources

34

http://www.enterpriseintegrationpatterns.com/ - patterns for enterprise
systems and integrations

•Books

•Web sites

http://www.cs.wustl.edu/~schmidt/POSA/ - patterns for distributed computing
systems

http://www.hillside.net/patterns/ - a catalog of patterns and pattern languages

http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html -
architectural patterns

http://www.enterpriseintegrationpatterns.com/�
http://www.cs.wustl.edu/~schmidt/POSA/�
http://www.hillside.net/patterns/�
http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html�

35

Solution
•Aggregate classes at the same
level of abstraction into layers.

Layers Pattern Revisited
Context
• A large system that requires
decomposition

Problem
•Managing a “sea of classes” that
addresses various levels of
abstraction

36

Applying the Layers Pattern to
Image Acquisition

Image servers are middle tier entities that:
•Provide server-side functionality

•e.g., they are responsible for scalable concurrency & networking
•Can run in their own address space
•Are integrated into containers that hide low-level OS platform details

Image
Database

Patient
Database

Database Tier
•e.g., persistent
image data

Middle Tier
•e.g., image
routing, security,
& image transfer
logic

comp
comp

Image

Servers

Presentation Tier
•e.g., radiology
clients

Diagnostic
Workstations

Clinical
Workstations

Diagnostic & clinical
workstations are
presentation tier entities that:
•Typically represent
sophisticated GUI
elements

•Share the same address
space with their clients
• Their clients are containers
that provide all the
resources

•Exchange messages with
the middle tier components

37

Solution
•Decouple core data and
functionality from output
representations or input behavior

Model View Controller Revisited
Context
• Interactive applications with a
flexible human-computer interface

Problem
•Managing different & changing
presentations of the same data

•Updating the presentations when the
data changes

38

Applying the Layers & MVC Patterns to
Image Acquisition

Image
Database

Patient
Database

Database Tier
•e.g., persistent
image data

Middle Tier
•e.g., image routing,
security, & image
transfer logic

comp
comp

Image

Servers

Presentation Tier
•e.g., radiology clients

Diagnostic
Workstations

Clinical
Workstations

Model in MVC pattern

Views/Controllers
in MVC pattern

Layer 2

Layer 3

Layer 1

39

Patterns Are More Than Structure

Pattern A?

Pattern B?

Intent: Define a family of
algorithms, encapsulate each
one, and make them
interchangeable. Let the
algorithm vary independently
from clients that use it.

Intent: Allow an object to
alter its behavior when its
internal state changes.
The object will appear to
change its class.

40

Patterns Are Abstract

- Design Patterns: Elements of Reusable Object-Oriented Software

41

Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language,

system, or tool
Scoped locking

Design
patterns

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Active Object,
Bridge, Proxy,
Wrapper Façade,
& Visitor

Architectural
patterns

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Half-Sync/Half-
Async, Layers,
Proactor,
Publisher-
Subscriber, &
Reactor

Optimization
principle
patterns

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimize for
common case,
pass information
between layers

42

Seminal Design Patterns Book

Design Patterns: Elements of
Reusable Object-Oriented Software
by Erich Gamma, Richard Helm, Ralph
Johnson, & John Vlissides (“Gang of
Four”)

Written in 1995

Documents 23 design patterns outlining:
• Intent
• Motivation
• Applicability
• Structure
• Collaborations
• Consequences
• Implementation
• Known uses
• Related patterns

Patterns grouped as:
• Creational,
• Structural, or
• Behavioral

Managing Global Objects Effectively

Goals:
– Centralize access to

objects that should be
visible globally, e.g.:
- command-line options

that parameterize the
behavior of the program

- The object (Reactor) that
drives the main event
loop

Constraints/forces:
– Only need one instance

of the command-line
options & Reactor

– Global variables are
problematic in C++

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

% tree-traversal
> 1+4*3/2
7

Verbose mode

Succinct mode

43

Solution: Centralize Access to Global Instances
Rather than using global variables, create a central access point to global
instances, e.g.:
int main (int argc, char *argv[])
{
// Parse the command-line options.
if (!Options::instance ()->parse_args (argc, argv))
return 0;

// Dynamically allocate the appropriate event handler
// based on the command-line options.
Expression_Tree_Event_Handler *tree_event_handler =
Expression_Tree_Event_Handler::make_handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.
Reactor::instance ()->register_input_handler
(tree_event_handler);

// ...

44

Singleton object creational
Intent

ensure a class only ever has one instance & provide a global point of access
Applicability

– when there must be exactly one instance of a class, & it must be
accessible from a well-known access point

– when the sole instance should be extensible by subclassing, & clients
should be able to use an extended instance without modifying their
code

Structure

If (uniqueInstance == 0)
uniqueInstance = new Singleton;

return uniqueInstance;

45

Singleton Description (1/2)

Consequences
+ reduces namespace pollution
+makes it easy to change your mind &

allow more than one instance
+allow extension by subclassing
– same drawbacks of a global if misused
– implementation may be less efficient

than a global
– concurrency pitfalls strategy creation &

communication overhead
Implementation
– static instance operation
– registering the singleton instance
– deleting singletons

Known Uses
– Unidraw's Unidraw object
– Smalltalk-80 ChangeSet,

the set of changes to code
– InterViews Session object
See Also
– Double-Checked Locking

Optimization pattern from
POSA2

– “To Kill a Singleton”
www.research.ibm.com/
designpatterns/pubs/
ph-jun96.txt

Singleton object creational

46

Singleton Description (2/2)

	Overview of Patterns
	Taxonomy of Patterns & Idioms	
	Slide Number 3
	Slide Number 4
	Taxonomy of Patterns & Idioms	
	Legacy Avionics Architectures
	Legacy Avionics Architectures
	Decoupling Avionics Components
	Applying the Publisher-Subscriber Pattern to Bold Stroke
	Pros & Cons of Pub/Sub Pattern
	Ensuring Platform-neutral & Network-transparent Communication
	Pros & Cons of Broker Pattern
	Separating Concerns Between Tiers
	Applying the Layers Pattern to �Image Acquisition
	Pros & Cons of the Layers Pattern
	Scaling Up Performance via Threading
	The Half-Sync/Half-Async Pattern
	Slide Number 19
	Pros & Cons of Half-Sync/Half-Async Pattern
	Drawbacks with Half-Sync/Half-Async
	The Leader/Followers Pattern
	Leader/Followers Pattern Dynamics
	Pros & Cons of Leader/Followers Pattern
	Decoupling Event Demuxing, Connection Management, & Protocol Processing (1/2)
	Decoupling Event Demuxing, Connection Management, & Protocol Processing (2/2)
	The Reactor Pattern
	Reactor Pattern Dynamics
	Pros & Cons of the Reactor Pattern
	Using Asynchronous I/O Effectively
	The Proactor Pattern
	Proactor Pattern Dynamics
	Pros & Cons of Proactor Pattern
	Architectural Patterns Resources
	Layers Pattern Revisited
	Applying the Layers Pattern to �Image Acquisition
	Model View Controller Revisited
	Applying the Layers & MVC Patterns to �Image Acquisition
	Patterns Are More Than Structure
	Patterns Are Abstract
	Taxonomy of Patterns & Idioms	
	Seminal Design Patterns Book
	Managing Global Objects Effectively
	Solution: Centralize Access to Global Instances
	Singleton object creational
	Singleton object creational

