Overview of Patterns

*Present solutions *Help resolve Flexibility
to common key software Extensibility
software problems design =) °Dependability
arising within a forces *Predictability
certain context «Scalability
*Efficiency
«Capture recurring structures & *Generally codify expert
dynamics among software knowledge of design strategies,
participants to facilitate reuse of constraints & “best practices”

successful designs dsigtems | Moo
Elements of Reusable
Object-Oriented Software:

JZEE Parremys

AbstractService
SERVER

. COMPONENT
service PATTERNS
Client [} -
""""""" PATTERN-ORIENTED
| | { SOFTWARE
. — ARCHITECTURE
Proxy Service PATTERN-ORIENTED
. 1 1 0 SOFTWARE ey
service service ARCHITECTURE b
Patterns lor Con ag Dauga € Schmide
. The Proxy Pattern

Taxonomy of Patterns & ldioms

Type Description Examples

Idioms Restricted to a particular language, Scoped locking
system, or tool

Design Capture the static & dynamic roles & Active Object,

patterns relationships in solutions that occur Bridge, Proxy,

repeatedly

Wrapper Facade,
& Visitor

Architectural

Express a fundamental structural

Half-Sync/Half-

patterns organization for software systems that | Async, Layers,
provide a set of predefined subsystems, | Proactor,
specify their relationships, & include the | Publisher-
rules and guidelines for organizing the | Subscriber, &
relationships between them Reactor

Optimization Document rules for avoiding common Optimize for

principle
patterns

design & implementation mistakes that
degrade performance

common case,
pass information
between layers

2

Benefits of Patterns

ﬂ”bs"”bers @@ - Enables reuse of software
5 architectures & designs

* Improves development team
communication

» Convey “best practices” intuitively

push(event) S

Channel

push(event)

* Transcends language-centric
biases/myopia

« Abstracts away from many
unimportant details

Publishers

Middleware Infrastructure

Operating System

] 4

/ [Networking Interfaces
\

Hardware (CPU, Memory, |/O)] //

Limitations of Patterns

/Subscribers Nay
WTS . . . g .
Cj:] « Require significant tedious &

error-prone human effort to
handcraft pattern

Implementations

push(event) S

Channel

push(event)

e Can be deceptively simple

Publishers

» Leaves some important details
unresolved

Middleware Infrastructure

www.cs.wustl.edu/

Operating System

~schmidt/patterns.html

: .
Networking Interfaces)|

\
S\ J_'\.l-’_"\

N

Hardware (CPU, Memory, 1/O) |

Taxonomy of Patterns & ldioms

Type Description Examples

Idioms Restricted to a particular language, Scoped locking
system, or tool

Design Capture the static & dynamic roles & Active Object,

patterns relationships in solutions that occur Bridge, Proxy,

repeatedly

Wrapper Facade,
& Visitor

Architectural

Express a fundamental structural

Half-Sync/Half-

patterns organization for software systems that Async, Layers,
provide a set of predefined subsystems, | Proactor,
specify their relationships, & include the | Publisher-
rules and guidelines for organizing the Subscriber, &
relationships between them Reactor

Optimization | Document rules for avoiding common Optimize for

principle
patterns

design & implementation mistakes that
degrade performance

common case,
pass information
between layers

Legacy Avionics Architectures

Key System Characteristics / \ 4: Mission
eHard & soft real-time deadlines Avionics Mission functions
«~20-40 Hz Computing Functions perform

. . «Weapons targeting avionics
It;OW (Ijatency & jitter between systems (WTS) operations
oaras *Airframe & navigation | 5 conco;
0~;|_OQ usecs o . (Nav) | proxies
* Periodic & aperiodic processing «Sensor control (GPS, process data
e Complex dependencies IFF, FLlR)d | & pass to
. . eHeads-u ISpla missions
Continuous platform upgrades (HUD) p dispiay functions

KAuto-pilot (AP) /
2: /0 via

interrupts
\& 1: Sensors
Bqatd 1

(— — enerate
[_— 1553 g
data
VME I
Board 2 —

Legacy Avionics Architectures

Key System Characteristics
*Hard & soft real-time deadlines
«~20-40 Hz
e Low latency & jitter between
boards
«~100 usecs
* Periodic & aperiodic processing
« Complex dependencies
« Continuous platform upgrades

Limitations with Legacy Avionics
Architectures

« Stovepiped

* Proprietary

*Expensive

*Vulnerable

*Tightly coupled

Hard to schedule

*Brittle & non-adaptive

7

AP

Frame

FLIR

GPS

IFF

1553

: Mission

functions
perform
avionics
operations

: Sensor

proxies
process data
& passto
missions
functions

- 1/0O via

interrupts

: Sensors

generate
data

Decoupling Avionics Components

Context

« |/O driven DRE

application

- Complex
dependencies

« Real-time constraints

Problems

« Tightly coupled
components

- Hard to schedule
- Expensive to evolve

Solution

« Apply the Publisher-
Subscriber architectural pattern
to distribute periodic, I/O-driven
data from a single point of
source to a collection of

consumers
Structure Dynamics
Publisher Event Channel |_| Sulseiben : Publisher : Event Channel : Subscriber
attachPuin_sher _attachSubscriber
produce detachPublisher consume <
attachSubscriber produce > Event
: detachSubscriber L O : Event
: pushEvent : pushEvent _
e ; — | event|
: | | pushEvent
creates!| | | receives event
v i * v :lconsume
Event Filter
filterEvent p detachSubscriber

Applying the Publisher-Subscriber
Pattern to Bold Stroke

Bold Stroke uses the Publisher- S : 5: Subscribers
/ ubscribers \
HUD

: perform
Subscriber pattern to dec_ouple vionics
sensor processing from mission operations
computing operations

* Anonymous publisher & subscriber push(event)
relationships

e Group communication
* Asynchrony

4: Event Channel
pushes events
to
subscribers(s)

Event
Channel

3: Sensor
publishers
push events

FLIR/ to event

channel

push

[IFF]

Publishers

(even

Considerations for implementing the [e]

Publisher-Subscriber pattern for \

mission computing applications include:
« Event notification model

2: 1/0 via interrupts

« Push control vs. pull data interactions 1: Sensors
e Scheduling & synchronization 1553 gzp;rate
strategies -
*e.g., priority-based dispatching & LA+
preemption \

* Event dependency management
o *e.g. filtering & correlation mechanisms

Pros & Cons of Pub/Sub Pattern

This pattern provides the following benefits:

eSeparation of concerns
 This pattern decouples application-
independent dissemination from application-

specific functionality

*Flexibility on data dissemination
* The Pub/Sub pattern supports aggregating,
filtering, and prioritizing of data

«Scalability
 Since senders and receivers are decoupled,
applications can scale in the number of
receivers and senders

10

This pattern also incur liabilities:

«Complexity of debugging &
testing
 Applications written with this
pattern can be hard to debug
due its transparency

*Added overhead

A pub/sub architecture can
iIncrease overhead of system
management and data
delivery

Ensuring Platform-neutral & Network-
transparent Communication

Context Problems Solution
* Mission Applications need capabilities to: * Apply the Broker
computing e Support remote communication architectural pattern to
requires « Provide location transparency provide platform-neutral
remote IPC «Handle faults communication between
«Stringent DRE | «Manage end-to-end QoS EEZ‘:"dzn EROpUmng
requirements * Encapsulate low-level system details
: Client : Client Proxy : Object Adapter . Server
operation (params) _ < fegister_service : (m
> connect _ assigned
- port
] marshal] t
Dynamics SENG Teaues >
:| unmarshal
dispatch
operation (params)
| result |
receive_reply marshal

- <

unmarshal

12 result

Pros & Cons of Broker Pattern

This pattern provides the following benefits:

eSeparation of concerns
* This pattern decouples application-
independent object location & dispatching
mechanisms from application-specific
functionality

sApplication programming simplicity
* The Broker pattern simplifies the
programming of business logic for the
application

*Reuse
* Since it's application independent the
implementation can be reused in various
application domains or subsystems of the
same application

13

This pattern also incur liabilities:

«Complexity of debugging &
testing
 Applications written with this
pattern can be hard to debug
due its indirection and
transparency

«Added level of indirection
» A brokered architecture can

be less efficient than a
monolithic architecture

Separating Concerns Between Tiers

Context Problem
- Distributed systems are now «It's hard to build distributed systems
common due to the advent of due to the complexity associated with
- The global Internet many capabilities at many levels of
« Ubiquitous mobile & embedded abstraction
devices

*e.g., thin client

- Presentation Tier
Solution {

*Apply the Layers pattern (P1) to displays
create a multi-tier architecture that
separates concerns between Application
groups of tasks occurring at distinct | \riqdie Tier "
layers in the distributed system -€.g., common {
business logic

Services in the middle tier participate
In various types of tasks, e.g.,
» Workflow of integrated “business”
Processes Database Tier
» Connect to databases & other .e.g., persistent { DB
backend systems for data storage | data Server
& access

Server

Applying the Layers Pattern to
Image Acquisition

Presentation Tier) BEsEGLEET: Clinical Diagnostic & clinical
*e.g., radiology WIS EGER RICITSEUCHEN Workstations are
clients presentation tier entities that:
* Typically represent
Middle Tier sophisticated GUI
«e.g., image elements

*Share the same address
space with their clients
* Their clients are containers
that provide all the

routing, security,
& image transfer
logic

Database Tier

Servers

resources
*e.g., persistent e Exchange messages with
Image data Image Patient the middle tier components

Database Database

Image servers are middle tier entities that:
* Provide server-side functionality
*e.g., they are responsible for scalable concurrency & networking
«Can run in their own address space
 Are integrated into containers that hide low-level OS platform details

15

Pros & Cons of the Layers Pattern

This pattern has four benefits:
*Reuse of layers

o If an individual layer embodies a well-
defined abstraction & has a well-defined &
documented interface, the layer can be

reused in multiple contexts
eSupport for standardization

* Clearly-defined & commonly-accepted

levels of abstraction enable the

development of standardized tasks &

interfaces
Dependencies are localized

» Standardized interfaces between layers
usually confine the effect of code changes

to the layer that is changed
Exchangeability

* Individual layer implementations can be

replaced by semantically-equivalent

implementations without undue effort

16

This pattern also has liabilities:

«Cascades of changing behavior
« If layer interfaces & semantics
aren’t abstracted properly then
changes can ripple when behavior
of a layer is modified
Higher overhead
A layered architecture can be less
efficient than a monolithic
architecture
Unnecessary work
* If some services performed by lower
layers perform excessive or
duplicate work not actually required
by the higher layer, performance
can suffer
Difficulty of establishing the

correct granularity of layers
e [t's important to avoid too many &
too few layers

Scaling Up Performance via Threading

Context

* HTTP runs over TCP, which uses flow
control to ensure that senders do not
produce data more rapidly than slow
receivers or congested networks can
buffer & process

» Since achieving efficient end-to-end
guality of service (Qo0S) is important
to handle heavy Web traffic loads, a
Web server must scale up efficiently
as its number of clients increases

Problem

 Similarly, to improve QoS for all its connected clients, an entire Web server process
must not block while waiting for connection flow control to abate so it can finish

sending a file to a client

* Processing all HTTP GET requests reactively within a single-threaded process does
not scale up, because each server CPU time-slice spends much of its time blocked

] waiting for 1/O operations to complete

1

The Half-Sync/Half-Async Pattern

Solution

* Apply the Half-Sync/Half-
Async architectural
pattern (P2) to scale up
server performance by
processing different HTTP
requests concurrently in
multiple threads

Sync
Sgrvice Sync Service 1 Sync Service 2 Sync Service 3
Layer ! ' T
7 : <<read/write>> .
<<read/write>>
Queueing L — — > ' - =
Layer | Queue <<read/write>>
\
Async <<dequeue/enqueue>> 8 <<interrupt>>
1
Service : External
Layer Async Service é_ | Event Source

The Half-Sync/Half-Async
architectural pattern
decouples async & sync
service processing in
concurrent systems, to
simplify programming
without unduly reducing
performance

18

This solution yields two benefits:

1. Threads can be mapped to separate
CPUs to scale up server performance

via multi-processing

2. Each thread blocks independently,
which prevents a flow-controlled
connection from degrading the QoS that

other clients receive

Half-Sync/Half-Async Pattern Dynamics

. External Event : Async Service : Queue : Sync Service
Source
notification |
| Ll
read()
|
E:I_ Y —— g > work()
|message | E]_\
‘_5
message
notification
enqueue() -
T .<read()
| _ work()
|message | [~
="
 This pattern defines two service » The pattern allows sync services,
processing layers—one async & such as HTTP protocol processing,
one sync—along with a queueing to run concurrently, relative both to
layer that allows services to each other & to async services,
exchange messages between the such as event demultiplexing

two layers

Pros & Cons of Half-Sync/Half-Async Pattern

This pattern has three benefits:

«Simplification & performance

* The programming of higher-level
synchronous processing services are
simplified without degrading the
performance of lower-level system

services

eSeparation of concerns

« Synchronization policies in each
layer are decoupled so that each
layer need not use the same
concurrency control strategies

«Centralization of inter-layer
communication
e Inter-layer communication is
centralized at a single access point,

because all interaction is mediated
by the queueing layer

20

This pattern also incurs liabilities:

*A boundary-crossing penalty may

be incurred
 This overhead arises from context
switching, synchronization, & data
copying overhead when data is
transferred between the sync & async
service layers via the queueing layer
Higher-level application services
may not benefit from the efficiency

of async I/O

* Depending on the design of operating
system or application framework
interfaces, it may not be possible for
higher-level services to use low-level
async /O devices effectively

«Complexity of debugging & testing

 Applications written with this pattern can
be hard to debug due its concurrent
execution

Drawbacks with Half-Sync/Half-Async

Problem Worker Worker Worker
 Although Half-Sync/Half-Async [Thread 1 > Thread 2 Thread 3
threading model is more = = - : b
scalable than the purely reactive E ceget> >% <> <get>> <
model, it is not necessarily the - — — —>RequestQueue -
most efficient design ==> <<put>> I\
*e.g., passing a request —>| HTTPHandlers, HTTP Acceptor
between the Reactor thread

& a worker thread incurs:

*Dynamic memory (de)allocation,
e Synchronization operations,

* A context switch, &

*CPU cache updates

*This overhead makes JAWS'’ latency

unnecessarily high, particularly on
operating systems that support the
concurrent accept() optimization

21

kg ACE_Reactor

Solution

* Apply the Leader/Followers
architectural pattern (P2) to
minimize server threading

overhead

The Leader/Followers Pattern

demultiplexes

The Leader/Followers architectural Thread Pool <
pattern (P2) provides an efficient synchronizer §
concurrency model where multiple join() = g
threads take turns sharing event plfelvieils ety feetlel) N
sources to detect, demux, dispatch, & <> \l/ Event Handler
process service requests that occur on Handle ——1H handle_event ()
get_handle()
the event sources *
) %
This pattern eliminates the need for—& Nandle Set =
the overhead of—a separate Reactor handle_events() Coggﬁle;\ée”t
thread & synchronized request queue SEEINIELS PECIEL,
. reactivate_handle() handle_event ()
used in the Half-Sync/Half-Async pattern |||select(get_handle()
Handles Concrete Event
Concurrent Handles Iterative Handles Handler A
Handle Sets handle_event ()

get_handle()

Concurrent UDP Sockets + TCP Sockets +

Handle Sets WaitForMultipleObjects() | WaitForMultpleObjects()

lterative UDP Sockets + TCP Sockets +
Handle Sets select()/poll () select()/poll ()

Leader/Followers Pattern Dynamics

1.Leader
thread
demuxing

2.Follower
thread
promotion

3.Event
handler
demuxing &
event
processing

4.Rejoining the
thread pool

-P'gﬂllﬂad_; g Thread - Thread Handle - Concrete
' Ll Pool Set Event Handler
|
|
handle_events()
join() | < event
handle_event()
-
py deactivate
thread , sleeps handle()
until it becomes i
romote Iy
the leader ﬁew_leaaer() =
thread B
rea -
waits for a - — >
thread , events() reactivate_
processes | handle()
current o ————— |
event - =
- | |l = | | {3
ioin | event
join() - -
<44 handle_event()
thread ; sleeps g
until it becomes deactivate
the leader handle()
-
- - - — 9

23

Pros & Cons of Leader/Followers Pattern

This pattern provides two benefits:
ePerformance enhancements

» This can improve performance as follows:

* It enhances CPU cache affinity &

eliminates the need for dynamic memory
allocation & data buffer sharing between

threads

e [t minimizes locking overhead by not
exchanging data between threads, thereby

reducing thread synchronization

* [t can minimize priority inversion because
no extra queueing is introduced in the

server

o [t doesn’t require a context switch to
handle each event, reducing dispatching

latency

Programming simplicity

24

* The Leader/Follower pattern simplifies the
programming of concurrency models where
multiple threads can receive requests,
process responses, & demultiplex
connections using a shared handle set

This pattern also incur liabilities:

Implementation complexity

* The advanced variants of the
Leader/ Followers pattern are
hard to implement

eLack of flexibility

*|In the Leader/ Followers
model it is hard to discard or
reorder events because there
IS no explicit queue

Network I/O bottlenecks

* The Leader/Followers pattern
serializes processing by
allowing only a single thread
at a time to wait on the handle
set, which could become a
bottleneck because only one
thread at a time can
demultiplex 1/O events

Decoupling Event Demuxing, Connection

Management, & Protocol Processing (1/2)

Context
Event Dispatcher

*\Web servers can be accessed /‘ select()

simultaneously by multiple Client AR08

clients HTTP GET | web Server R
. request

They must demux & process Clent ___MTTPGET . Socke

multiple types of indication R request Ha”d'j

events arriving from clients Client comec=—"

concurrently -

request

* A common way to demux events

In a server is to use select()

select (width, &read_handles, 0, 0, 0);
Problem if (FD_ISSET (acceptor, &ready handles)) {
int h;
*Developers often couple |
: do {
event-demuxmg & h = accept (acceptor, 0, 0);
. . char buf[BUFSIZ];
connection COde with for (ssize_t i; (i = read (h, buf, BUFSIZ)) > 0;)
protocol-handling code 3 while on sor ST D

* This code cannot then be . :
‘Thus, changes to event-demuxing & connection

reused Idlrecgy byhother code affects server protocol code directly & may
protocols or by other yield subtle bugs, e.g., when porting to use TLI or
middleware & applications yaitForMultipleObjects()

290

Decoupling Event Demuxing, Connection

Management, & Protocol Processing (2/2)

Solution

Apply the Reactor architectural pattern (P2) & the Acceptor-Connector
design pattern (P2) to separate the generic event-demultiplexing &
connection-management code from the web server’s protocol code

Reactor * Event Handler
handle_events() dispatches handle_event ()
register_handler() et_handle()
remove_handler() * owns 98t

Handle

N

*

| notifies

handle set

<<uses>> \1/

Synchronous Connector Acceptor
Event Demuxer

select ()

Service
Handler

26

27

The Reactor Pattern

The Reactor architectural pattern allows event-driven applications to
demultiplex & dispatch service requests that are delivered to an
application from one or more clients

Reactor * Event Handler
handle_events() dispatches handle_event ()
register _handler()

get_handle()
remove_handler() * owns

| Handle
; A
F

| notifies Lﬁ‘

handle set - :
<<uses>>
Concrete Event Concrete Event
Synchronous Handler A Handler B

Event Demuxer

select ()

handle_event ()
get_handle()

handle_event ()
get_handle()

28

Reactor Pattern Dynamics

~Main Program ~Concrete —Reactor -Synchronous
Event Handler Event
Demultiplexer
Con. Event _
1. Initialize Handler Events |register_handler()]
hase <get_handle()
p -~
| Handle |
- - - - -] - = 4
2. Event_ handle_events()y ' Handles | select() event
handllng » handle_event() = _— — >
phase /T [W\ service() ,e/ry | Handles

Observations
* Note inversion of control

» Also note how long-running event handlers can
degrade the QoS since callbacks steal the
reactor’s thread!

Pros & Cons of the Reactor Pattern

This pattern offers four benefits: This pattern can incur liabilities:
eSeparation of concerns *Restricted applicability
-_This pattern decoup_les app_llcatlon_- « This pattern can be applied
independent demuxing & dispatching efficiently only if the OS supports
mechanisms from application-specific hook synchronous event demuxing on

method functionality

Modularity, reusability, & configurability

 This pattern separates event-driven . :) L
application functionality into several ::r(])gcsrlerlglee\tgaet%daen%IaeFr)SI{ﬁg?on’
components, which enables the configuration 5 the thread of thei ¢

of event handler components that are loosely orrow the thread ot their reactor

handle sets
*Non-pre-emptive

integrated via a reactor can run to completion_ & prevent the
«Portability reactor from dispatching other
« By decoupling the reactor’s interface from event handlers _
the lower-level OS synchronous event «Complexity of debugging &
demuxing functions used in its testing
implementation, the Reactor pattern eIt is hard to debug applications
improves portability structured using this pattern due to
«Coarse-grained concurrency control its inverted flow of control, which
* This pattern serializes the invocation of event oscillates between the framework
handlers at the level of event demuxing & infrastructure & the method call-
dispatching within an application process or backs on application-specific event

thread handlers

29

Using Asynchronous |I/O Effectively

GetQueued

(:()r1t63)(t _ _ CompletionStatus()
 Synchronous multi-threading may not be the
most scalable way to implement a Web server Getoueued

on OS platforms that support async I/O more

be implemented on Windows NT by invoking
async Win32 operations that perform the
following activities:

e Processing indication events, such as TCP
CONNECT & HTTP GET requests, via
AcceptEx() & ReadFi1le(), respectively

 Transmitting requested files to clients
asynchronously via WriteFile() or

TransmitFile()
*When these async operations complete, WinNT

1.Delivers the associated completion events
containing their results to the Web server

2.Processes these events & performs the appropriate
actions before returning to its event loop

efficiently than synchronous multi-threading Complationetatudd

« For example, highly-efficient Web servers can ;

CompletionStatus()

I/O Completion
Port

AcceptEx() ;;gi

AcceptEx()
AcceptEx()

passive-mode
socket handle

The Proactor Pattern

of async I/O is hard due to the
separation in time & space of async
operation invocations & their
subsequent completion events

Solution
* Apply the Proactor architectural pattern
(P2) to make efficient use of async I/O

Problem
* Developing software that achieves
the potential efficiency & scalability

ro— Initiator

|
|
|
|
|
|
|
|
|
|
|

L
3

<<uses>>

|
<<uses>>

V

\ .
<<invokes>>

Is associated with

This pattern allows event-driven
applications to efficiently demultiplex &
dispatch service requests triggered by the
completion of async operations, thereby

achieving the performance benefits of

o = concurrency
<<uses>>

- without incurring
v Its many liabilities

Asynchronous Asynchronous Handle Combletion
Operation Processor Operation - '9 Handler
execute_async_op() async_op() | *| handle_event()

, ! <<demultiplexes
\l'/ <<enqueues>> <<executes> >¢ | & dispatches>> L
, Asynchronous Proactor
Completion Event Demuxer Concrete
Event Queue| | handle events() Completion
ﬁ @ get_completion_event() Handler

1 <<degueues>>

Proactor Pattern Dynamics

- Initiator Asvnchronous Asynchronous Completion - Proactor Completion
Operation Operation Fvent Queue Handler
Processor
. Initiate [Completion
. Handler
operatlon [Completion
. Process Ev. Queue’_ hsync_operation()
: exec_async |
operatlon operation () W 'L'/f’ handle_events()
. Run event | =
loop o | et
.Generate iy | Result |
& queue ReSUIt event
completion =71 ™ - |
event - .
. Dequeue | Result T Result service()
completion ‘ handle_ —
‘ event() D
event & _ <>
perform I -
completion T _ _ '
rocessin Note similarities & differences with the Reactor pattern, e.q.:
P g

32

*Both process events via callbacks
However, it's generally easier to multi-thread a proactor

Pros & Cons of Proactor Pattern

This pattern offers five benefits: This pattern incurs some liabilities:
eSeparation of concerns *Restricted applicability
* Decouples application-independent async * This pattern can be applied most
mechanisms from application-specific efficiently if the OS supports
functionality asynchronous operations
*Portability natively

« Improves application portability by allowing its *Complexity of programming,
interfaces to be reused independently of the OS debugging, & testing

event demuxing calls «It is hard to program applications
*Decoupling of threading from & higher-level system services
concurrency using asynchrony mechanisms,
 The async operation processor executes long- due to the separation in time &
duration operations on behalf of initiators so space between operation
applications can spawn fewer threads invocation & completion
ePerformance *Scheduling, controlling, &
* Avoids context switching costs by activating canceling asynchronously
only those logical threads of control that have running operations
events to process e Initiators may be unable to
eSimplification of application control the scheduling order in
synchronization which asynchronous operations
« If concrete completion handlers spawn no are executed by an
threads, application logic can be written with asynchronous operation

., little or no concern for synchronization issues processor

Architectural Patterns Resources

*Books

\ core orol

* J2EE Parterns o

est Practices and Design Strategles
- g SERVER
' q C=ma COMPONENT

PATTERNS
Component Infrasiructures
OS5

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pallern Languages

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

*\Web sites

http://www.enterpriseintegrationpatterns.com/ - patterns for enterprise
systems and integrations

http://www.cs.wustl.edu/~schmidt/POSA/ - patterns for distributed computing
systems

http://www.hillside.net/patterns/ - a catalog of patterns and pattern languages

http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html -
architectural patterns

34

http://www.enterpriseintegrationpatterns.com/�
http://www.cs.wustl.edu/~schmidt/POSA/�
http://www.hillside.net/patterns/�
http://www.opengroup.org/architecture/togaf8-doc/arch/chap28.html�

Layers Pattern Revisited

Context
- A large system that requires
decomposition

Problem

*Managing a “sea of classes” that
addresses various levels of

: abstraction

Solution
* Aggregate classes at the same

level of abstraction into layers.

Client THSES Laver M | :
highest level of abstraction
Layer M-1
more [ayers
Layer 1

35

lowwest level of abstraction

Applying the Layers Pattern to
Image Acquisition

Presentation Tier) BEsEGLEET: Clinical Diagnostic & clinical
*e.g., radiology WIS EGER RICITSEUCHEN Workstations are
clients presentation tier entities that:
* Typically represent
Middle Tier sophisticated GUI
«e.g., image elements

*Share the same address
space with their clients
* Their clients are containers
that provide all the

routing, security,
& image transfer
logic

Database Tier

Servers

resources
*e.g., persistent e Exchange messages with
Image data Image Patient the middle tier components

Database Database

Image servers are middle tier entities that:
* Provide server-side functionality
*e.g., they are responsible for scalable concurrency & networking
«Can run in their own address space
 Are integrated into containers that hide low-level OS platform details

36

Model View Controller Revisited

Context Problem
- Interactive applications with a *Managing different & changing
flexible human-computer interface presentations of the same data

* Updating the presentations when the

data changes

Solution

e Decouple core data and
functionality from output
representations or input behavior

Contraller
r———— = - =

WView '< ______________ Maodel

37

Applying the Layers & MVC Patterns to
Image Acquisition

Layer 3
Presentation Tier Diagnostic Clinical Views/Controllers
ce.g., radlology client Workstations Workstations in MVVC pattern
4 Layer 2 I
Middle Tier

Model in MVVC pattern

*e.g., Image routing,
security, & image

_{ransfer logic J

J
d Layer 1\
Database Tier
..e'g" pedrs,:Stent Image Patient
_Mage data J Database Database

38

Patterns Are More Than Structure

Context

Intent: Define a family of
algorithms, encapsulate each

one, and make them

interchangeable. Let the
algorithm vary independently

from clients that use it.

Context

Intent: Allow an object to
alter its behavior when its
internal state changes.

> > Pattern A?
JANJVANIVAN
< =
Pattern B? FANIA

The object will appear to
change its class.

]

39

40

Patterns Are Abstract

Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph lehnson
John Ylissides

The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution doesn’t describe a particular
concrete design or implementation, because a pattern is like a template that can
be applied in many different situations. Instead, the pattern provides an abstract
description of a design problem and how a general arrangement of elements
(classes and objects in our case) solves it.

- Design Patterns: Elements of Reusable Object-Oriented Software

Taxonomy of Patterns & ldioms

Type Description Examples

Idioms Restricted to a particular language, Scoped locking
system, or tool

Design Capture the static & dynamic roles & Active Object,

patterns relationships in solutions that occur Bridge, Proxy,

repeatedly

Wrapper Facade,
& Visitor

Architectural

Express a fundamental structural

Half-Sync/Half-

principle
patterns

design & implementation mistakes that
degrade performance

patterns organization for software systems that | Async, Layers,
provide a set of predefined subsystems, | Proactor,
specify their relationships, & include the | Publisher-
rules and guidelines for organizing the | Subscriber, &
relationships between them Reactor

Optimization | Document rules for avoiding common Optimize for

common case,
pass information
between layers

41

Seminal Design Patterns Book

Design Patterns: Elements of
Reusable Object-Oriented Software
by Erich Gamma, Richard Helm, Ralph
Johnson, & John Vlissides (“Gang of
Four”)

Written in 1995

Documents 23 design patterns outlining:

 Intent

* Motivation

« Applicability

e Structure

» Collaborations

» Consequences
* Implementation
 Known uses

» Related patterns

42

Ll ")- ¥ Y
Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Jehnson
John Vlissides

Patterns grouped as:
» Creational,
e Structural, or
* Behavioral

Managing Global Objects Effectively

Goals:

Centralize access to
objects that should be
visible globally, e.g.:
- command-line options

that parameterize the
behavior of the program

- The object (Reactor) that
drives the main event
loop

Constraints/forces:

Only need one instance
of the command-line
options & Reactor

Global variables are
problematic in C++

43

% tree-traversal -v /j Verbose mode]

format [in-order]
expr [expression]

print [in-order|pre-order|post-order|level-order]

eval [post-order]
quit

> format in-order
> expr 1+4*3/2

> eval post-order
7

> quit

% tree-traversal
> 1+4*3/2
7

//(Succinct mode }

Solution: Centralize Access to Global Instances

Rather than using global variables, create a central access point to global
Instances, e.g.:

int main (int argc, char *argvl])
{

// Parse the command-line options.

iIT (10ptions::instance ()->parse _args (argc, argv))
return O;

// Dynamically allocate the appropriate event handler
// based on the command-line options.
Expression _Tree Event Handler *tree event handler =
Expression_Tree Event Handler::make handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.

Reactor::instance ()->register_input handler
(tree_event_handler);

// ...

Singleton Description (1/2)

Singleton object creational

Intent
ensure a class only ever has one instance & provide a global point of access
Applicability
when there must be exactly one instance of a class, & it must be
accessible from a well-known access point

when the sole instance should be extensible by subclassing, & clients
should be able to use an extended instance without modifying their

code
Structure
Singleton
If (uniquelnstance == 0)
stalic instance() C—-—-q9-———---——1 uniquelnstance = new Singleton;
singletonOperation() return uniquelnstance;
getSingletonDatai)

static uniquelnstance
singletonData

45

Singleton Description (2/2)

Singleton object creational

Consequences Known Uses

reduces namespace pollution — Unidraw's Unidraw object

makes it easy to change your mind & — Smalltalk-80 ChangeSet,

allow more than one instance the set of changes to code

allow extension by subclassing — InterViews Session object

same drawbacks of a global if misused gge Also

Implementation may be less efficient — Double-Checked Locking

than a global Optimization pattern from

concurrency pitfalls strategy creation & POSAZ2

communication overhead — “To Kill a Singleton”
Implementation www.research.ibm.com/

static instance operation designpatterns/pubs/

registering the singleton instance ph-jun96.txt

deleting singletons

46

	Overview of Patterns
	Taxonomy of Patterns & Idioms	
	Slide Number 3
	Slide Number 4
	Taxonomy of Patterns & Idioms	
	Legacy Avionics Architectures
	Legacy Avionics Architectures
	Decoupling Avionics Components
	Applying the Publisher-Subscriber Pattern to Bold Stroke
	Pros & Cons of Pub/Sub Pattern
	Ensuring Platform-neutral & Network-transparent Communication
	Pros & Cons of Broker Pattern
	Separating Concerns Between Tiers
	Applying the Layers Pattern to �Image Acquisition
	Pros & Cons of the Layers Pattern
	Scaling Up Performance via Threading
	The Half-Sync/Half-Async Pattern
	Slide Number 19
	Pros & Cons of Half-Sync/Half-Async Pattern
	Drawbacks with Half-Sync/Half-Async
	The Leader/Followers Pattern
	Leader/Followers Pattern Dynamics
	Pros & Cons of Leader/Followers Pattern
	Decoupling Event Demuxing, Connection Management, & Protocol Processing (1/2)
	Decoupling Event Demuxing, Connection Management, & Protocol Processing (2/2)
	The Reactor Pattern
	Reactor Pattern Dynamics
	Pros & Cons of the Reactor Pattern
	Using Asynchronous I/O Effectively
	The Proactor Pattern
	Proactor Pattern Dynamics
	Pros & Cons of Proactor Pattern
	Architectural Patterns Resources
	Layers Pattern Revisited
	Applying the Layers Pattern to �Image Acquisition
	Model View Controller Revisited
	Applying the Layers & MVC Patterns to �Image Acquisition
	Patterns Are More Than Structure
	Patterns Are Abstract
	Taxonomy of Patterns & Idioms	
	Seminal Design Patterns Book
	Managing Global Objects Effectively
	Solution: Centralize Access to Global Instances
	Singleton object creational
	Singleton object creational

