
8/25/2008

1

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Object-Oriented

Software Engineering

WCB/McGraw-Hill, 2008

Stephen R. Schach

srs@vuse.vanderbilt.edu

Modifications by Jules White

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Why Do We Study Software Engineering?

● What is the difference between SE and coding?

● Why don’t we just study more algorithms or design
techniques instead?

● Isn’t SE a technical problem?

8/25/2008

2

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Historical Aspects

● 1968 NATO Conference, Garmisch, Germany

● Aim: To solve the software crisis

● Software is delivered

– Late

– Over budget

– With residual faults

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

SE in 1968

● “One survey lists *nearly* 500 organizations concerned with producing
or selling software..”

● Software still came free with the hardware

● Other than Fortran, high-level languages were only used on
mainframes

● State of the art languages: Fortran, Algol, Cobol, PL/I

● Whether or not high-level languages could be used for systems
programming was still being debated

● “…the number of systems labeled time-sharing has increased from
around 5 experimental systems to around 30 commercial systems..”

● First paper mentioning the “process theory of programming”

● Randell, B. 1979. Software engineering in 1968. In Proceedings of the 4th international Conference on Software
Engineering (Munich, Germany, September 17 - 19, 1979). International Conference on Software Engineering. IEEE
Press, Piscataway, NJ, 1-10.

8/25/2008

3

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Where Are We Now?

● 2004, in just Mass., 2,781 software companies with
118,000 employees

● Last I checked, Adobe Creative Suite costs ~1,000$..
doesn’t come with hardware

● Assembly programming is a punishment only inflicted on
undergrads

● State of the art languages: Java, C#, PHP, Perl, Python
● You will be laughed at if you argue that your company

should implement its next web service in assembly
● If we count Web 2.0 apps as time-sharing…I can’t count all

the time-sharing systems
● Even my mom knows how to kill a “process” in Windows

● Randell, B. 1979. Software engineering in 1968. In Proceedings of the 4th international Conference
on Software Engineering (Munich, Germany, September 17 - 19, 1979). International Conference on
Software Engineering. IEEE Press, Piscataway, NJ, 1-10.

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

How Have We Done Since Garmish?

● Successes

– Huge scale

» GMail has 5,000,000+ accounts at 7057mb per account…isn’t
this a massive distributed time-sharing system?

– With Java, C++, C#, OO is the standard

» The new debate is on more advanced language features, such
as closures

– Higher levels of abstraction

» Domain-specific languages (DSLs)

– Software everywhere

» High-end BMWs have ~80 small CPUs

» Every cell phone

– Distribution the norm –> the web

» Even cars use distributed systems

8/25/2008

4

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

How Have We Done Since Garmish?

● We can certainly build bigger and more complex
systems

– Some high-end TVs have ~1,000,000 lines of code

– This is more than the first moon landing

» Allan Klump was one of about 300 people who designed the
LM's software over a 7 year period for 46 million 1967-era
dollars. He did his work as a graduate student at the MIT Draper
Lab during the Apollo years.

» Compiled the software BY HAND

» Software had to fit into 36K

– So…why isn’t Samsung writing the software for the next
moon lander?

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

How is Complexity Affecting Us?

● All the new technologies have helped us build
bigger systems – but they haven’t improved the
chance of project success

● We may be worse off than before:
● The belief that complex systems require armies of designers and

programmers is wrong. A system that is not understood in its entirety,
or at least to a significant degree of detail by a single individual, should
probably not be built. –Niklaus Wirth

● The price of reliability is the pursuit of the utmost simplicity. It is a price
which the very rich may find hard to pay. –C.A.R Hoare

● There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.--C.A.R. Hoare

8/25/2008

5

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Standish Group Data

● Data on
9236
projects
completed
in 2004

Figure 1.1

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

What this Means for You

Figure 1.1

Chance that a year
or more of your life
is wasted on coding
something that is
thrown away

8/25/2008

6

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

What this Means for You

Figure 1.1

Chance that you will
be forced to work
long hours,
weekends, and that
moral will be low

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

What this Means for You

Figure 1.1

IBM only certifies
architects that have
worked on a project
considered
“troubled”

8/25/2008

7

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

What this Means for You

Figure 1.1

Chance that things
end up ok – the
project may not be
ok along the way

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

We Are Still In Bad Shape

● We know about as much about software quality
problems as they knew about the Black Plague in
the 1600s. We've seen the victims' agonies and
helped burn the corpses. We don't know what
causes it; we don't really know if there is only one
disease. We just suffer -- and keep pouring our
sewage into our water supply. -- Tom Van Vleck

● Considering the current sad state of our computer
programs, software development is clearly still a
black art, and cannot yet be called an engineering
discipline. -- Bill Clinton

8/25/2008

8

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Software Mortality Compare to the Plague

● …. Bubonic plague has a 1-15% mortality rate in
treated cases and a 40-60% mortality rate in
untreated cases.

http://www.emedicine.com/emerg/TOPIC428.HTM

If these are the
survivors, the software
mortality rate is ~71%

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

How is Software Mortality Compare to the Plague

● …. Bubonic plague has a 1-15% mortality rate in
treated cases and a 40-60% mortality rate in
untreated cases.

http://www.emedicine.com/emerg/TOPIC428.HTM

If this is the software
mortality rate, it is still
worse than treated
cases of the plague

8/25/2008

9

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Why Do We Study Software Engineering

● The Bubonic plague mortality is 40%-60% when
untreated

● A coder who hasn’t studied software engineering
would fall into the “untreated” category

● By teaching software engineering, we are
attempting to lower the software mortality rate

● Software engineering can help prevent the spread
of the disease…but probably won’t eliminate it

● The sooner a diseased project is treated, the
better the chance of recovery (although the
recovery may be painful)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

History of Fixing Mistakes

● How have we done historically at realizing what
we are doing wrong?

● 18th & 19th Century Medicine Case-study (Venkat
Subramaniam)

– Blood-letting, vomiting, and starvation thought to restore
health

– Barbers and surgeons performed blood-letting

– Took ~200yrs to figure out that it was a mistake

– Most patients died of infection after surgery

– Not until 1800 did Lister invent germ theory

8/25/2008

10

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

History of Solving Huge Problems

● Flight case-study (Venkat Subramaniam)

● Chinese flew the first kite in 400BC

● Shortly after, people began trying to fly

● 1903 Wright brothers finally fly for 12 seconds,
120ft, 10ft altitude

● 1939 Pan Am makes first commercial trans-
atlantic flight

● 2005….Virgin Galactic starts booking suborbital
flights

● Once we get over the initial hurdle, we improve
fast

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

SE is More than Technology

● Software isn’t just a technical problem – it’s also a people problem

● Technology is improving rapidly but SE success isn’t

● Why don’t the trends match?

Project Success
Rate

Technological
development

rate

8/25/2008

11

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Is a Lack of Skilled Labor the Problem?

● Is the problem a shortage of skilled people?

– McKinsey & Co. predicts that over the next three
decades the demand for experienced IT professionals
between the ages of 35 and 45 will increase by 25%,
while the supply will decrease by 15%.

– Note: this means you should go into CS

– Would an unlimited supply of good coders fix the
problem?

● Modern systems are far too big to be developed
by a single good coder

● Developer skill level is not the problem

– A good developer solving the wrong problem produces
a failure

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Team Behavior Isn’t Predictable

● All major software development projects require a
team of programmers, designers, testers, etc.

● One of the chief problems with software
development is that we can’t predict how a given
team will perform

– If we could predict team behavior, sports would be
boring

● Multiple people create emergent behavior

– Emergent behavior = non-linear behavior that cannot be
predicted by examining the individual parts

– Emergent property: the testers and the developers hate
each other…don’t communicate properly

8/25/2008

12

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

½ Social Problem

● SE is partly a social problem and partly a technical
problem

● People don’t communicate

● People miscommunicate

● People have egos

● People leave projects

● People get tired

● People make mistakes

● People don’t get along

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Solving the Social Problem

● The social problem, coordinating people, is
harder…just look at governments

● US government case-study

– State constitutions first

– Articles of confederation adopted in 1777

» 1787 Shay’s Rebellion

– Constitution adopted in 1787

– Still, we had to work out the details and get things right

» 1861 Civil War

» ~1955-1968 Civil Rights Movement

8/25/2008

13

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

One Role of Technology in SE

● Social problems almost always will occur

● Technical things can help to reduce the impact of
the social aspects

● We want to use technology to:

– Identify when social problems are occurring (are tests
failing, is the project on schedule)

– Identify who is causing the problem (what was the last
code change that broke the build)

– Avoid miscommunication (use precise technical
specifications)

– Facilitate communication

– Etc.

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Cutter Consortium Data

● 2002 survey of information technology
organizations

– 78% have been involved in disputes ending in litigation

● For the organizations that entered into litigation:

– In 67% of the disputes, the functionality of the
information system as delivered did not meet up to the
claims of the developers

– In 56% of the disputes, the promised delivery date
slipped several times

– In 45% of the disputes, the defects were so severe that
the information system was unusable

8/25/2008

14

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Paths to Failure

● Four key types of problems that occur:

– A system is created that does the wrong thing

» In 67% of the disputes, the functionality of the information
system as delivered did not meet up to the claims of the
developers

– The system takes too long to develop or longer than
expected

» In 56% of the disputes, the promised delivery date slipped
several times

– The system has a poor quality implementation

» In 45% of the disputes, the defects were so severe that the
information system was unusable

– The system isn’t maintainable

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Paths to Failure

● Four key types of problems that occur:

– A system is created that does the wrong thing

» Even good developers can build a great system to solve the
wrong problem

8/25/2008

15

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Requirements Failure Case-Study

● System for automated scheduling of limousines
and drivers to reservations

● Extensive web portal “dashboard” created to
manage day to day operations

– 10+ developers, 5,000,000+$

● Created a complex system to encode rules, such
as “this executive leaves the limo messy”

● Complex web-based mapping system to track
limos via GPS

– Track every vehicle at *all times*

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Example HCI Expert Requirement

8/25/2008

16

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Example HCI Expert Requirement

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Example HCI Expert Requirement

8/25/2008

17

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Example HCI Expert Requirement

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Example HCI Expert Requirement

Traffic = 30
cars /

minute

8/25/2008

18

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Case-Study Result

● Extensive web portal “dashboard” replaced by an
Excel sheet and macros written by one developer
in a week

– Limo executives like Excel, don’t want to use a browser

● Created a complex system to encode rules, such
as “this executive leaves the limo messy”

– Limo executives can’t code/understand the implications
of rules….had to hire a Ph.D. to manage the rules (they
never change)

● Complex web-based mapping system to track
limos via GPS

– Search for closest driver pulls up cars parked in the
parking lot – parked cars not removed from map

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Paths to Failure

● Four key types of problems that occur:

– A system is created that does the wrong thing

– The system takes too long to develop or longer than
expected

» Someone grossly underestimated how long it would take to
develop

– Probably got their sales commission anyways

– Some salesman are like shady mortgage originators

» Yes, we can do it in 2 weeks for a fixed cost of 10,000$
dollars – reality – 1yr, 1,000,000$

» What should have been a simple project became a nightmare
when the developers couldn’t communicate.

» There was a huge design flaw

» The requirements changed (requirements creep)

8/25/2008

19

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

NPfIT Case-Study

● The British government budgeted close to $12 billion to transform
its health-care system with information technology. The result:
possibly the biggest and most complex technology project in the
world -- http://www.baselinemag.com/c/a/Projects-Management/UK-Dept-of-Health-Prescription-

for-Disaster/

● Originally bid at 12 billion

● Current estimates are that it will cost 28.4 billion

● Another key health-care software maker, iSoft, is some two years
behind schedule in delivering a new electronic health-care system
called Lorenzo, according to British newspaper The Guardian.

● A 2005 report issued by the NPfIT stated that the migration of data
from computers in health-care practices into systems that complied
with a new national health-care records system would take far longer
than the five years originally projected by the NHS' Connecting for
Health (CfH), the unit overseeing the NPfIT project.

● Key software systems have little chance of ever working properly

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

NPfIT Case-Study

● What happened?

– No one knows for sure

– There was certainly a lot of emergent behavior that was observed

– Emergent behavior = we didn’t expect that

– We didn’t expect that = our design didn’t account for that

– Our design didn’t account for that = we have to change our design

– We have to change our design …. could mean a cheap change….

» But, they didn’t expect the behavior, so that means they found it
after the system was implemented

» We have to change our design = we have to change the
implementation

– We have to change our implementation = things are
going to take a LOT longer than expected (usually)

8/25/2008

20

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Paths to Failure

● Four key types of problems that occur:

– A system is created that does the wrong thing

– The system takes too long to develop or longer than
expected

– The system has a poor quality implementation

» The system is so buggy it isn’t worth using

» We didn’t test it properly

» I could name a new OS implementation here

» This is probably the problem that we are best at fixing

– Extensive research and practice on testing techniques

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Paths to Failure

● Four key types of problems that occur:

– A system is created that does the wrong thing

– The system takes too long to develop or longer than
expected

– The system has a poor quality implementation

– The system isn’t maintainable

» More money is spent in maintenance

» Technology changes force maintenance

– New JVM version fixes bug X, we have to migrate

» Competitive forces stimulate maintenance

– Facebook just released feature X, MySpace better duplicate
feature X to compete

» Etc.

8/25/2008

21

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Maintenance is the Future

● We should all be concerned about the future
because we will have to spend the rest of our lives
there – Charles Kettering

● We could rephrase this as:

– We should all be concerned about the future of this

software because we will have to spend the rest of our
lives using it

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

If the MySpace Implementation Wasn’t Maintainable...

● MySpace growth
from http://www.mychurch.org/blog/3201/myspace-viral-growth-numbers

8/25/2008

22

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Conclusion

● The software crisis has not been solved

● Perhaps it should be called the software
depression

– Long duration

– Poor prognosis

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

How Do We Fix Things?

● Why don’t we just apply the latest greatest
technology X to this problem

● Service-Oriented Architectures (SOA) are all the
rage

● Everyone wants SOA

● A Google search for “service oriented
architectures” pulls up 7,880,000 results

8/25/2008

23

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

SOA Legends (http://soafacts.com)

● SOA is the only thing Chuck Norris can't kill.

● SOA invented the internet, and the internet was invented for SOA.

● SOA is not complex. You are just dumb.

● In the last year, SOA increased Turkey's GDP by a factor of 10.

● One person successfully described SOA completely, and immediately
died.

● Another person successfully described SOA completely, and was
immediately outsourced.

● Larry Ellison once died in a terrible accident, but was quickly given
SOA. He came back to life, built a multibillion dollar software company,
and now flies fighter jets.

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Reality: Economic Aspects

● Coding method CMnew is 10% faster than currently
used method CMold. Should it be used?

● Common sense answer

– Of course!

● Software Engineering answer

– Consider the cost of training

– Consider the impact of introducing a new technology

– Consider the effect of CMnew on maintenance

8/25/2008

24

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Other Aspects

● Coding method CMnew allows my system to do X.
Should it be used?

● Common sense answer

– Of course!

● Software Engineering answer

– Can we still guarantee that it will work correctly?

» Example: The Department of Defense (DoD) requires all
systems to be verified. The DoD doesn’t use techniques that it
can’t 100% guarantee will always work properly. SOA isn’t
running any missile launchers yet.

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

SE Shouldn’t be Like Dieting

● Coding method CMnew allows my system to do X.
Should it be used?

● Another way of looking at this: the diet industry

– Should we immediately trust every dieting fad?

– Do we really know what diet X is going to do to our
bodies in 10yrs?

– Do I really want to take the latest supplement of ground
femur from small animal Y?

● Let’s not follow the dieting movement and
arbitrarily apply the latest fads

● SE problems should be attacked with sound well-
tested principles

8/25/2008

25

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Building Software is Like Raising a Child

● To understand a child, you have to know the
phases that they go through

● We teach children based on their developmental
stage

– We don’t try to teach kids Calculus before arthimetic

● Understanding the stages of human development
are important for maintenance

– Eating greasy fast food may make me grow faster but
what will it do to me 20yrs down the road….how will it
make me grow

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Maintenance Aspects

● Life-cycle model

– The steps (phases) to follow when building software

– A theoretical description of what should be done

– Just like a child, we need to know what to do or teach
the child in each stage

● Life cycle

– The actual steps performed on a specific product

8/25/2008

26

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Waterfall Life-Cycle Model

● Classical model (1970)

Figure 1.2

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Waterfall Life-Cycle Steps Vary

Figure 1.2

Wikipedia Version:

Company X’s Version:

Everything done in stages and Big Design Up Front (BDUF) – Get
the design right before you do anything else!!

8/25/2008

27

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Typical Classical Phases

● Requirements phase

– Explore the concept

– Elicit the client’s requirements

» Use-cases

» Don’t create the web dashboard

● Analysis (specification) phase

– Analyze the client’s requirements

– Draw up the specification document

– Draw up the software project management plan

– “What the product is supposed to do”

– IBM’s mantra is “under promise and over deliver”

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Typical Classical Phases (contd)

● Design phase

– Architectural design, followed by

– Detailed design

» “How the product does it”

● Implementation phase

– Coding

– Unit testing

» Test the pieces

– Integration

» Test the whole

– Acceptance testing

» Can the customer actually use it

8/25/2008

28

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Typical Classical Phases (contd)

● Implementation phase

– Unit testing

» Discover code problems

– Integration

» Discover design flaws

– Acceptance testing

» Discover requirement flaws

● Implementation phase

– Requirements/Analysis

– Design

– Implementation

We identify problems in the opposite order of our
development stages – the problems we identify last are the

most expensive types to fix

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Typical Classical Phases (contd)

● Postdelivery maintenance

– Corrective maintenance

» The banking software is rounding off the cents and putting them
into an offshore account, let’s fix that

– Perfective maintenance

» Firefox tunes their javascript engine to increase performance

– Adaptive maintenance

» JDK 1.X doesn’t support feature Y that we use, let’s update the
software

● Retirement

8/25/2008

29

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Maintenance is Important

● The U.S. Strategic Air Command's 465L Command System, even after
being operational for 12 years, still averaged one software failure per
day. From G. J. Myers, Software Reliability: Principles & Practice, p.
25.

● On June 3, 1980, the North American Aerospace Defense Command
(NORAD) reported that the U.S. was under missile attack. The report
was traced to a faulty computer circuit that generated incorrect signals.
If the developers of the software responsible for processing these
signals had taken into account the possibility that the circuit could fail,
the false alert might not have occurred. From "The development of
software for ballistic-missile defense," by H. Lin, Scientific American,
vol. 253, no. 6 (Dec. 1985), p. 48.

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

The Modern View of Maintenance

● Classical maintenance

– Development-then-maintenance model

● This is a temporal definition

– Classification as development or maintenance depends
on when an activity is performed

8/25/2008

30

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Classical Maintenance Defn — Consequence 1

● A fault is detected and corrected one day after the
software product was installed

– Classical maintenance

● The identical fault is detected and corrected one
day before installation

– Classical development

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Classical Maintenance Defn — Consequence 2

● A software product has been installed

● The client wants its functionality to be increased

– Classical (perfective) maintenance

● The client wants the identical change to be made
just before installation (“moving target problem”)

– Classical development

8/25/2008

31

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Classical Maintenance Definition

● The reason for these and similar unexpected
consequences

– Classically, maintenance is defined in terms of the time
at which the activity is performed

● Another problem:

– Development (building software from scratch) is rare
today

– Reuse is widespread

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Modern Maintenance Definition

● In 1995, the International Standards Organization
and International Electrotechnical Commission
defined maintenance operationally

● Maintenance is nowadays defined as

– The process that occurs when a software artifact is
modified because of a problem or because of a need for
improvement or adaptation

8/25/2008

32

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Modern Maintenance Definition (contd)

● In terms of the ISO/IEC definition

– Maintenance occurs whenever software is modified

– Regardless of whether this takes place before or after
installation of the software product

● The ISO/IEC definition has also been adopted by
IEEE and EIA

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Maintenance Terminology in This Book

● Postdelivery maintenance

– Changes after delivery and installation [IEEE 1990]

● Modern maintenance (or just maintenance)

– Corrective, perfective, or adaptive maintenance
performed at any time [ISO/IEC 1995, IEEE/EIA 1998]

8/25/2008

33

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

The Importance of Postdelivery Maintenance

● Bad software is discarded

● Good software is maintained, for 10, 20 years or
more

● Software is a model of reality, which is constantly
changing

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Time (= Cost) of Postdelivery Maintenance

(a) Between 1976 and 1981

(b) Between 1992 and 1998

Figure 1.3

8/25/2008

34

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Google Maintenance

● Initially, Google was
run out of a dorm room

● Used whatever older
servers they could get

● 1998, handled 10,000
searches per day

● 1999, 500,000
searches a day

● 2000, 100,000,000
searches a day

● Clearly, Google had
some serious
maintenance and
probably a few
software rewrites along
the way

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Handling Change in Life

● When we are young, it is easy to change

– We can pickup a foreign language easily

– We know less, so we are constantly improving

– We know less, so we have less biases to get in the way
of new ideas

● When we get older, we tend to only learn new
things if we have to (in comparison to a child)

– Adults seek out learning experiences in order to cope
with specific life-changing events--e.g., marriage,
divorce, a new job, a promotion, being fired, retiring,
losing a loved one, moving to a new city. --Ron and
Susan Zemke

8/25/2008

35

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Requirements, Analysis, and Design Aspects

● Changing software is similar to human learning

● The earlier we detect and correct a fault, the less it
costs us

– Less resistance to the change in early stages

– Later stages people have become invested in the
current structure

– In later stages, we have to change existing code

– Harder to predict how the change is going to affect the
system when it is bigger

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Requirements, Analysis, and Design Aspects (contd)

Figure 1.4

● The cost of
detecting and
correcting a
fault at each
phase

8/25/2008

36

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Requirements, Analysis, and Design Aspects (contd)

● The
previous
figure
redrawn
on a
linear
scale

Figure 1.5

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Requirements, Analysis, and Design Aspects (contd)

● To correct a fault early in the life cycle

– Usually just a document needs to be changed

● To correct a fault late in the life cycle

– Change the code and the documentation

– Test the change itself

– Perform regression testing

» Regression testing -> did we break something else by making
the change?

– Reinstall the product on the client’s computer(s)

8/25/2008

37

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Requirements, Analysis, and Design Aspects (contd)

● Between 60 and 70% of all faults in large-scale
products are requirements, analysis, and design
faults

● Example: Jet Propulsion Laboratory inspections

– 1.9 faults per page of specifications

– 0.9 per page of design

– 0.3 per page of code

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Conclusion

● It is vital to improve our requirements, analysis,
and design techniques

– To find faults as early as possible

– To reduce the overall number of faults (and, hence, the
overall cost)

8/25/2008

38

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Team Programming Aspects

● Hardware is cheap

– We can build products that are too large to be written by
one person in the available time

● Software is built by teams

– Interfacing problems between modules

– Communication problems among team members

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Why There Is No Planning Phase

● We cannot plan at the beginning of the project —
we do not yet know exactly what is to be built

8/25/2008

39

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Planning Activities of the Waterfall Model

● Preliminary planning of the requirements and
analysis phases at the start of the project

● The software project management plan is drawn
up when the specifications have been signed off
by the client

● Management needs to monitor the SPMP
throughout the rest of the project

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Conclusion

● Planning activities are carried out throughout the
life cycle

● There is no separate planning phase

8/25/2008

40

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Why There Is No Testing Phase

● It is far too late to test after development and
before delivery

● One very popular development approach is “test-
driven development”

– Test cases are written first

– Software is written to the spec defined by the test cases

● One test is worth a thousand opinions.—
Anonymous

● Program testing can be used to show the
presence of bugs, but never to show their
absence!—Dijkstra

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Testing Activities of the Waterfall Model

● Verification

– Testing at the end of each phase (too late)

● Validation

– Testing at the end of the project (far too late)

● The later we detect a problem, the more
expensive it is to fix

● As soon as we can test something, we should do it

8/25/2008

41

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Conclusion

● Continual testing activities must be carried out
throughout the life cycle

● This testing is the responsibility of

– Every software professional, and

– The software quality assurance group

» The 3 guys dedicated to finding every mistake you made and
documenting it

● There is no separate testing phase

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Why There Is No Documentation Phase

● It is far too late to document after development
and before delivery

8/25/2008

42

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Documentation Must Always be Current

● Key individuals may leave before the
documentation is complete

● We cannot perform a phase without having the
documentation of the previous phase

● We cannot test without documentation

● We cannot maintain without documentation

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Conclusion

● Documentation activities must be performed in
parallel with all other development and
maintenance activities

● There is no separate documentation phase

8/25/2008

43

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

1.9 The Object-Oriented Paradigm

● The structured paradigm was successful initially

– It started to fail with larger products (> 50,000 LOC)

● Postdelivery maintenance problems (today, 70 to
80% of total effort)

● Reason: Classical methods are

– Action oriented; or

– Data oriented;

– But not both

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

The Object-Oriented Paradigm (contd)

● Both data and actions are of equal importance

● Object:

– A software component that incorporates both data and
the actions that are performed on that data

● Example:

– Bank account

» Data: account balance

» Actions: deposit, withdraw, determine balance

8/25/2008

44

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Strengths of the Object-Oriented Paradigm

● 1. With information hiding, postdelivery
maintenance is safer

– The chances of a regression fault are reduced

● 2. Development is easier

– Objects generally have physical counterparts

– This simplifies modeling (a key aspect of the object-
oriented paradigm)

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Strengths of the Object-Oriented Paradigm (contd)

● 3. Well-designed objects are independent units

– Everything that relates to the real-world item being
modeled is in the corresponding object —
encapsulation

– Communication is by sending messages

– This independence is enhanced by responsibility-driven
design

8/25/2008

45

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Weaknesses of the Object-Oriented Paradigm

● 1. The object-oriented paradigm has to be used
correctly

– All paradigms are easy to misuse

● 2. When used correctly, the object-oriented
paradigm can solve some (but not all) of the
problems of the classical paradigm

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Weaknesses of the Object-Oriented Paradigm (contd)

● 3. The object-oriented paradigm has problems of
its own

● 4. The object-oriented paradigm is the current
standard

● 5. Other important/current paradigms:

– Component-based

– Service-based

8/25/2008

46

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

1.10 Terminology

● Client, developer, user

● Internal software

● Contract software

● Commercial off-the-shelf (COTS) software

● Open-source software

– Linus’s Law

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Terminology (contd)

● Software

● Program, system, product

● Methodology, paradigm

– Object-oriented paradigm

– Classical (traditional) paradigm

● Technique

8/25/2008

47

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Terminology (contd)

● Mistake, fault, failure, error

● Defect

● Bug �

– “A bug � crept into the code”

instead of

– “I made a mistake”

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Object-Oriented Terminology

● Data component of an object

– State variable

– Instance variable (Java)

– Field (C++)

– Attribute (generic)

● Action component of an object

– Member function (C++)

– Method (generic)

8/25/2008

48

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Object-Oriented Terminology (contd)

● C++: A member is either an

– Attribute (“field”), or a

– Method (“member function”)

● Java: A field is either an

– Attribute (“instance variable”), or a

– Method

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Definition of Object-Oriented Software Engineering

● Software engineering

– A discipline whose aims are

» The production of fault-free software,

» Delivered on time and within budget,

» That satisfies the client’s needs

» Furthermore, the software must be easy to modify when the
client’s needs change

● Object-oriented software engineering

– A discipline that utilizes the object-oriented paradigm to
achieve the aims of software engineering

8/25/2008

49

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

1.11 Ethical Issues

● Developers and maintainers need to be

– Hard working

– Intelligent

– Sensible

– Up to date and, above all,

– Ethical

● IEEE-CS ACM Software Engineering Code of
Ethics and Professional Practice
www.acm.org/serving/se/code.htm

