
Object-Oriented Patterns & Frameworks

Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of EECS
Vanderbilt University
Nashville, Tennessee

mailto:d.schmidt@vanderbilt.edu�
http://www.cs.wustl.edu/~schmidt/bio.html�

Pattern & Framework Tutorial Douglas C. Schmidt

2

Goals of this Presentation
Show by example how patterns & frameworks can help to

• Codify good OO software design &
implementation practices
– distill & generalize experience
– aid to novices & experts alike

• Give design structures explicit names
– common vocabulary
– reduced complexity
– greater expressivity

• Capture & preserve design &
implementation knowledge
– articulate key decisions succinctly
– improve documentation

• Facilitate restructuring/refactoring
– patterns & frameworks are interrelated
– enhance flexibility, reuse, & productivity

1 1
Proxy

service

Service

service

AbstractService

service

Client

class Reactor {
public:
/// Singleton access point.
static Reactor *instance (void);

/// Run event loop.
void run_event_loop (void);

/// End event loop.
void end_event_loop (void);

/// Register @a event_handler
/// for input events.
void register_input_handler
(Event_Handler *eh);

/// Remove @a event_handler
/// for input events.
void remove_input_handler
(Event_Handler *eh);

Pattern & Framework Tutorial Douglas C. Schmidt

3

Leaf
Nodes

Binary
Nodes

Unary
Node

Tutorial Overview
Part I: Motivation & Concepts
– The issue
– What patterns & frameworks are
– What they’re good for
– How we develop & categorize

them

Part II: Case Study
– Use patterns & frameworks to build

an expression tree application
– Demonstrate usage & benefits

Part III: Wrap-Up
– Observations, caveats, concluding

remarks, & additional references

Pattern & Framework Tutorial Douglas C. Schmidt

4

Part I: Motivation & Concepts
• OOD methods emphasize design notations

• Fine for specification & documentation

Pattern & Framework Tutorial Douglas C. Schmidt

5

Part I: Motivation & Concepts
• OOD methods emphasize design notations

• Fine for specification & documentation
• But OOD is more than just drawing diagrams

• Good draftsmen are not necessarily
good architects!

Pattern & Framework Tutorial Douglas C. Schmidt

6

Part I: Motivation & Concepts
• OOD methods emphasize design notations

• Fine for specification & documentation
• But OOD is more than just drawing diagrams

• Good draftsmen are not necessarily
good architects!

• Good OO designers rely on lots of experience
• At least as important as syntax

• Most powerful reuse combines design & code reuse
• Patterns: Match problem

to design experience

• Frameworks: Reify patterns within a domain
context

s->getData()

Observer

update

ConcreteObserver

update
doSomething

state = X;

notify();

Subject

attach
detach
notify
setData
getData

state
observerList

for all observers
in observerList do

update();

*

Pattern & Framework Tutorial Douglas C. Schmidt

7

Recurring Design Structures
Well-designed OO systems exhibit recurring structures that promote

– Abstraction
– Flexibility
– Modularity
– Elegance

Therein lies valuable design knowledge

Problem: capturing, communicating,
applying, & preserving this

knowledge without undue time,
effort, & risk

Pattern & Framework Tutorial Douglas C. Schmidt

8

A Pattern…

• Abstracts & names a recurring design
structure

• Comprises class and/or object

 Dependencies

 Structures

 Interactions

 Conventions

• Specifies the design structure explicitly

• Is distilled from actual design
experience

Presents solution(s) to common (software) problem(s) arising within a context

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

Pattern & Framework Tutorial Douglas C. Schmidt

9

Four Basic Parts of a Pattern
1. Name
2. Problem (including “forces” &

“applicability”)
3. Solution (both visual & textual

descriptions)
4. Consequences & trade-offs of

applying the pattern

Key characteristics of patterns include:
• Language- & implementation-independent
• “Micro-architecture,” i.e., “society of objects”
• Adjunct to existing methodologies (RUP, Fusion, SCRUM,

etc.)

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

Pattern & Framework Tutorial Douglas C. Schmidt

10

Example: Observer

Pattern & Framework Tutorial Douglas C. Schmidt

11

Intent
define a one-to-many dependency between objects so that when one
object changes state, all dependents are notified & updated

Applicability
– an abstraction has two aspects, one dependent on the other
– a change to one object requires changing untold others
– an object should notify unknown other objects

Structure

Observer object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

12

Modified UML/OMT Notation

Pattern & Framework Tutorial Douglas C. Schmidt

13

class ProxyPushConsumer : public // …
virtual void push (const CORBA::Any &event) {

for (std::vector<PushConsumer>::iterator i
(consumers.begin ()); i != consumers.end (); i++)

(*i).push (event);
}

CORBA Notification Service
example using C++

Standard Template Library
(STL) iterators (which is an

example of the Iterator
pattern from GoF)

class MyPushConsumer : public // ….
virtual void push
(const CORBA::Any &event) { /* consume the event. */ }

Observer object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

14

Consequences
+ modularity: subject & observers may vary

independently
+ extensibility: can define & add any number of

observers
+ customizability: different observers offer

different views of subject
– unexpected updates: observers don’t know

about each other
– update overhead: might need hints or filtering
Implementation
– subject-observer mapping
– dangling references
– update protocols: the push & pull models
– registering modifications of interest explicitly

Observer object behavioral
Known Uses
– Smalltalk Model-View-

Controller (MVC)
– InterViews (Subjects &

Views,
Observer/Observable)

– Andrew (Data Objects &
Views)

– Symbian event
framework

– Pub/sub middleware
(e.g., CORBA Notification
Service, Java Message
Service)

– Mailing lists

Pattern & Framework Tutorial Douglas C. Schmidt

15

Design Space for GoF Patterns

Scope: domain over which a pattern applies
Purpose: reflects what a pattern does

√

√
√
√

√

√ √
√

√
√ √

√

√
√
√
√

√

Pattern & Framework Tutorial Douglas C. Schmidt

16

GoF Pattern Template (1st half)

Intent
short description of the pattern & its purpose

Also Known As
Any aliases this pattern is known by

Motivation
motivating scenario demonstrating pattern’s use

Applicability
circumstances in which pattern applies

Structure
graphical representation of pattern using modified UML notation

Participants
participating classes and/or objects & their responsibilities

Pattern & Framework Tutorial Douglas C. Schmidt

17

GoF Pattern Template (2nd half)
...

Collaborations
how participants cooperate to carry out their responsibilities

Consequences
the results of application, benefits, liabilities

Implementation
pitfalls, hints, techniques, plus language-dependent issues

Sample Code
sample implementations in C++, Java, C#, Python, Smalltalk, C, etc.

Known Uses
examples drawn from existing systems

Related Patterns
discussion of other patterns that relate to this one

Pattern & Framework Tutorial Douglas C. Schmidt

18

Life Beyond GoF Patterns

www.cs.wustl.edu/~schmidt/PDF/ieee-patterns.pdf

http://www.amazon.com/gp/product/images/0321200683/ref=dp_image_0/104-5176955-3271962?ie=UTF8&n=283155&s=books�

Pattern & Framework Tutorial Douglas C. Schmidt

19

Overview of Pattern Sequences & Languages
Motivation
• Individual patterns & pattern

catalogs are insufficient
• Software modeling methods &

tools largely just illustrate
what/ how – not why –
systems are designed

Benefits of Pattern Sequences & Languages
• Define vocabulary for talking about software development problems
• Provide a process for the orderly resolution of these problems, e.g.:

• What are key problems to be resolved & in what order
• What alternatives exist for resolving a given problem
• How should mutual dependencies between the problems be

handled
• How to resolve each individual problem most effectively in its

context
• Help to generate & reuse software architectures

Pattern & Framework Tutorial Douglas C. Schmidt

20

Benefits & Limitations of Patterns

Benefits

• Design reuse

• Uniform design vocabulary

• Enhance understanding,
restructuring, & team communication

• Basis for automation

• Transcends language-centric
biases/myopia

• Abstracts away from many
unimportant details

Limitations

• Require significant tedious &
error-prone human effort to
handcraft pattern
implementations design reuse

• Can be deceptively simple
uniform design vocabulary

• May limit design options

• Leaves important
(implementation) details
unresolved

Addressing the limitations of patterns requires more than just design reuse

Pattern & Framework Tutorial Douglas C. Schmidt

21

Overview of Frameworks

Application-specific
functionality

• Frameworks exhibit
“inversion of control” at
runtime via callbacks

Networking Database

GUI

• Frameworks provide
integrated domain-specific
structures & functionality

Mission
Computing E-commerce

Scientific
Visualization

• Frameworks are
“semi-complete”
applications

Pattern & Framework Tutorial Douglas C. Schmidt

22

Air
Frame

GPS

FLIR

Legacy embedded systems have
historically been:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Consequence: Small
HW/SW changes have
big (negative) impact
on system QoS &
maintenance

GPS

FLIRAP

Nav HUD

IFF

Cyclic
Exec

F-15

Air
Frame

AP
Nav HUD

GPSIFF

FLIR

Cyclic
Exec

A/V-8B

Air
Frame

Cyclic
Exec

AP

Nav HUD

IFF

F/A-18

Air
Frame

AP

Nav HUD
GPS

IFF

FLIR

Cyclic
Exec UCAV

Motivation for Frameworks

http://www.takeourword.com/images/persistence-of-memory.jpg�

Pattern & Framework Tutorial Douglas C. Schmidt

23

F-15
product
variant

A/V 8-B
product
variant

F/A 18
product
variant

UCAV
product
variant

Product-line
architecture

Hardware (CPU, Memory, I/O)

OS & Network Protocols
Host Infrastructure Middleware

Distribution Middleware
Common Middleware Services

• Frameworks factors out many reusable general-purpose & domain-specific
services from traditional DRE application responsibility

• Essential for product-line architectures (PLAs)
• Product-lines & frameworks offer many configuration opportunities

• e.g., component distribution/deployment, OS, protocols, algorithms, etc.

Air
Frame

AP
Nav

HUD GPS

IFF

FLIR

Domain-specific Services

Motivation for Frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

24

Categories of OO Frameworks
• White-box frameworks are reused by subclassing, which usually requires

understanding the implementation of the framework to some degree
• Black-box framework is reused by parameterizing & assembling framework

objects, thereby hiding their implementation from users
• Each category of OO framework uses different sets of patterns, e.g.:

Many frameworks fall in between white-box & black-box categories

– White-box frameworks rely heavily
on inheritance-based patterns, such
as Template Method & State

– Black-box frameworks reply
heavily on object
composition patterns, such
as Strategy & Decorator

Pattern & Framework Tutorial Douglas C. Schmidt

25

• Framework characteristics
are captured via Scope,
Commonalities, &
Variabilities (SCV) analysis
• This process can be

applied to identify
commonalities &
variabilities in a domain
to guide development of
a framework

• Applying SCV to avionics mission computing
• Scope defines the domain & context of

the framework
• Component architecture, object-

oriented application frameworks, &
associated components, e.g., GPS,
Airframe, & Display

OS & Network Protocols
Host Infrastructure Middleware

Distribution Middleware

Common Middleware Services

Domain-specific Services

Air
Frame

AP
Nav

HUD GPS

IFF

FLIR

Reusable Architecture
Framework

Reusable Application
Components

Commonality & Variability Analysis in Frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

26

Applying SCV to an Avionics Framework
• Commonalities describe the attributes that are common across all

members of the framework
• Common object-oriented frameworks & set of component types

• e.g., GPS, Airframe, Navigation, & Display components

Hardware (CPU, Memory, I/O)

OS & Network Protocols
Host Infrastructure Middleware

Distribution Middleware

Common Middleware Services

Domain-specific Services

• Common middleware
infrastructure
• e.g., Real-time

CORBA & a variant
of Lightweight
CORBA Component
Model (CCM) called
Prism

GPS
Component

Navigation
Component

Airframe
Component

Heads Up
Display

Common Components

Pattern & Framework Tutorial Douglas C. Schmidt

27

GPS
Component

Display
Component

Airframe
Component

Heads Up
Display

GPS = 20 Hz
GPS = 40 Hz GPS=20Hz

Common Components

Air Air
Frame

AP

Nav HUD

GPS IFF

FLIRAP

Nav HUD

GPS IFF

FLIR

AirFram
e

AP

Nav

HUD

GPS

IF
F

FLIR

F/A 18 F F 15K UCAV

Fram
e APNav

HUD

GPS
IF
F

FLIR

•Variabilities describe the
attributes unique to the
different members of the
framework

• Product-dependent
component
implementations (GPS/INS)

• Product-dependent
component connections

• Product-dependent
component assemblies
(e.g., different weapons
systems for different
customers/countries)

• Different hardware, OS, &
network/bus configurations

Hardware (CPU, Memory, I/O)

OS & Network Protocols
Host Infrastructure Middleware

Distribution Middleware

Common Middleware Services

Domain-specific Services

Applying SCV to an Avionics Framework

Pattern & Framework Tutorial Douglas C. Schmidt

28

Comparing Reuse Techniques
Class Library (& STL) Architecture

ADTs

Strings

Locks

IPC
Math

LOCAL
INVOCATIONSAPPLICATION-

SPECIFIC
FUNCTIONALITY

EVENT
LOOP

GLUE
CODE

Files

GUI

• A class is an implementation unit in an OO
programming language, i.e., a reusable type
that often implements patterns

• Classes in class libraries are typically passive

Framework ArchitectureADTs

Locks

Strings

Files

INVOKES

• A framework is an integrated set of
classes that collaborate to form a reusable
architecture for a family of applications

• Frameworks implement pattern
languages

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY

CALL
BACKS

Middleware Bus

Component & Service-Oriented Architecture

• A component is an encapsulation unit with
one or more interfaces that provide clients
with access to its services

• Components can be deployed & configured
via assemblies

Naming

LockingLogging

Events

Pattern & Framework Tutorial Douglas C. Schmidt

29

Taxonomy of Reuse Techniques
Class

Libraries Frameworks

Macro-levelMeso-levelMicro-level

Borrow caller’s
thread

Inversion of
control

Borrow caller’s
thread

Domain-specific or
Domain-independent

Domain-specificDomain-
independent

Stand-alone
composition entities

“Semi-
complete”

applications

Stand-alone
language entities

Components

Pattern & Framework Tutorial Douglas C. Schmidt

30

Benefits of Frameworks

Communication
Services

OS-Access
Layer

Broker
Component
Repository

Component
Configurator

Proxy Proxy

Broker

Admin
Controllers

Admin
Views

AdminClient
Picking

Controllers
Picking
Views

PickingClient

Broker

Logging
HandlerThreadPool

*

Reactor

Broker

Scheduler/
ActivationList

Service
Request

Service
Request

Service
Request

WarehouseRepHalfX

Distribution
Infrastructure

Concurrency
Infrastructure

Thin UI Clients

• Design reuse
• e.g., by guiding application

developers through the steps
necessary to ensure successful
creation & deployment of software

Pattern & Framework Tutorial Douglas C. Schmidt

31

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
* Core implementation of a server session
*
* @author James Duncan Davidson [duncan@eng.sun.com]
* @author James Todd [gonzo@eng.sun.com]
*/

public class ServerSession {

private StringManager sm =
StringManager.getManager("org.apache.tomcat.session");

private Hashtable values = new Hashtable();
private Hashtable appSessions = new Hashtable();
private String id;
private long creationTime = System.currentTimeMillis();;
private long thisAccessTime = creationTime;

private int inactiveInterval = -1;

ServerSession(String id) {
this.id = id;

}

public String getId() {
return id;

}

public long getCreationTime() {
return creationTime;

}

public ApplicationSession getApplicationSession(Context context,
boolean create) {
ApplicationSession appSession =

(ApplicationSession)appSessions.get(context);

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessions.put(context, appSession);

}

// XXX
// make sure that we haven't gone over the end of our
// inactive interval -- if so, invalidate & create
// a new appSession

return appSession;
}

void removeApplicationSession(Context context) {
appSessions.remove(context);

}

Benefits of Frameworks
• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of software

• Implementation reuse
• e.g., by amortizing software

lifecycle costs & leveraging
previous development &
optimization efforts

Pattern & Framework Tutorial Douglas C. Schmidt

32

• Design reuse
• e.g., by guiding application

developers through the steps
necessary to ensure successful
creation & deployment of software

• Implementation reuse
• e.g., by amortizing software

lifecycle costs & leveraging
previous development &
optimization efforts

• Validation reuse
• e.g., by amortizing the efforts of

validating application- & platform-
independent portions of software,
thereby enhancing software
reliability & scalability

Benefits of Frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

33

• Frameworks are powerful, but can be hard to use effectively (& even
harder to create) for many application developers

• Commonality & variability analysis requires significant domain
knowledge & OO design/implementation expertise

• Significant time required to evaluate applicability & quality of a
framework for a particular domain

• Debugging is tricky due to inversion of control

• V&V is tricky due to “late binding”

• May incur performance degradations due to extra (unnecessary) levels
of indirection

www.cs.wustl.edu/ ~schmidt/PDF/Queue-04.pdf

Limitations of Frameworks

Many frameworks limitations can be addressed with knowledge of patterns!

Pattern & Framework Tutorial Douglas C. Schmidt

34

Using Frameworks Effectively

Observations
• Since frameworks are powerful—but but hard to develop & use

effectively by application developers—it’s often better to use &
customize COTS frameworks than to develop in-house frameworks

• Classes/components/services are easier for application developers to
use, but aren’t as powerful or flexible as frameworks

Successful projects are
therefore often

organized using the
“funnel” model

Pattern & Framework Tutorial Douglas C. Schmidt

35

Stages of Pattern & Framework Awareness

Pattern & Framework Tutorial Douglas C. Schmidt

36

Part II: Case Study: Expression Tree Application

Leaf
Nodes

Binary
Nodes

Unary
Node

Goals

• Develop an object-oriented expression tree evaluator program using
patterns & frameworks

• Demonstrate commonality/variability analysis in the
context of a concrete application example

• Illustrate how OO frameworks can be
combined with the generic programming
features of C++ & STL

• Compare/contrast OO & non-OO
approaches

Pattern & Framework Tutorial Douglas C. Schmidt

37

• Expression trees consist of nodes containing operators & operands

• Operators have different precedence levels, different associativities, &
different arities, e.g.:

• Multiplication takes precedence over addition

• The multiplication operator has two
arguments, whereas unary minus
operator has only one

• Operands can be integers, doubles,
variables, etc.

• We'll just handle integers in this
application

• Application can be extended easily

Overview of Expression Tree Application

Leaf
Nodes

Binary
Nodes

Unary
Node

Pattern & Framework Tutorial Douglas C. Schmidt

38

Leaf
Nodes

Binary
Nodes

Unary
Node

• Trees may be “evaluated” via different traversal orders

• e.g., in-order, post-order, pre-order, level-order

• The evaluation step may perform various operations, e.g.:

• Print the contents of the expression tree

• Return the “value" of the expression tree

• Generate code

• Perform semantic analysis &
optimization

• etc.

Overview of Expression Tree Application

See tree-traversal example

Pattern & Framework Tutorial Douglas C. Schmidt

39

Using the Expression Tree Application

% tree-traversal
> 1+4*3/2
7
> (8/4) * 3 + 1
7
^D

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

• By default, the expression tree application can run in “succinct mode,” e.g.:

• You can also run
the expression
tree application
in “verbose
mode,” e.g.:

Pattern & Framework Tutorial Douglas C. Schmidt

40

How Not to Design an Expression Tree Application
A typical algorithmic-based solution for implementing expression trees uses a
C struct/union to represent the main data structure

typedef struct Tree_Node {
enum { NUM, UNARY, BINARY } tag_;
short use_; /* reference count */
union {
char op_[2];
int num_;

} o;
#define num_ o.num_
#define op_ o.op_
union {
struct Tree_Node *unary_;
struct { struct Tree_Node *l_, *r_;} binary_;

} c;
#define unary_ c.unary_
#define binary_ c.binary_
} Tree_Node;

Pattern & Framework Tutorial Douglas C. Schmidt

41

Here’s the memory layout & class diagram for a struct Tree_Node:

How Not to Design an Expression Tree Application

Pattern & Framework Tutorial Douglas C. Schmidt

42

A typical algorithmic implementation uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree (Tree_Node *root) {
switch (root->tag_)
case NUM: printf (“%d”, root->num_); break;
case UNARY:
printf ("(%s”, root->op_[0]);
print_tree (root->unary_);
printf (")"); break;

case BINARY:
printf ("(");
print_tree (root->binary_.l_); // Recursive call
printf (“%s”, root->op_[0]);
print_tree (root->binary_.r_); // Recursive call
printf (")"); break;

default:
printf ("error, unknown type ");

}

How Not to Design an Expression Tree Application

Pattern & Framework Tutorial Douglas C. Schmidt

43

Limitations with the Algorithmic Approach
• Little or no use of encapsulation:

implementation details available to
clients

• Incomplete modeling of the
application domain, which results in

• Tight coupling between
nodes/edges in union
representation

• Complexity being in algorithms
rather than the data structures,
e.g., switch statements are used to
select between various types of
nodes in the expression trees

• Data structures are “passive”
functions that do their work
explicitly

• The program organization makes it
hard to extend

• e.g., Any small changes will
ripple through entire
design/implementation

• Easy to make mistakes switching
on type tags

• Wastes space by making worst-
case assumptions wrt structs &
unions

Pattern & Framework Tutorial Douglas C. Schmidt

44

An OO Alternative Using Patterns & Frameworks
• Start with OO modeling of the “expression tree” application domain

• Conduct commonality/variability analysis (CVA) to determine stable
interfaces & points of variability

• Apply patterns to guide design/implementation of framework
• Integrate with C++ STL algorithms/containers where appropriate

Leaf
Nodes

Binary
Nodes

Unary
Node

• Model a tree as a collection of
nodes

• Nodes are represented in an
inheritance hierarchy that
captures the particular properties
of each node
• e.g., precedence levels, different

associativities, & different arities

Pattern & Framework Tutorial Douglas C. Schmidt

45

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Expression tree structure Composite

Encapsulating variability &
simplifying memory
management

Bridge

Tree printing & evaluation Iterator & Visitor

Consolidating user
operations

Command

Ensuring correct protocol
for commands

State

Consolidating creation of
Variabilities

Abstract Factory
& Factory
Method

Parsing expressions &
creating expression tree

Interpreter &
Builder

Pattern & Framework Tutorial Douglas C. Schmidt

46

Design Problems & Pattern-Oriented Solutions

None of these patterns are restricted to expression tree applications…

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Driving the application
event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing global
objects effectively

Singleton

Implementing STL
iterator semantics

Prototype

Eliminating loops via the
STL std::for_each()
algorithm

Adapter

Provide no-op commands Null Object

Pattern & Framework Tutorial Douglas C. Schmidt

47

Managing Global Objects Effectively
Goals:
– Centralize access to

objects that should be
visible globally, e.g.:
– command-line options

that parameterize the
behavior of the program

– The object (Reactor)
that drives the main
event loop

Constraints/forces:
– Only need one instance

of the command-line
options & Reactor

– Global variables are
problematic in C++

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

% tree-traversal
> 1+4*3/2
7

Verbose mode

Succinct mode

Pattern & Framework Tutorial Douglas C. Schmidt

48

Solution: Centralize Access to Global Instances
Rather than using global variables, create a central access point to global
instances, e.g.:

int main (int argc, char *argv[])
{
// Parse the command-line options.
if (!Options::instance ()->parse_args (argc, argv))
return 0;

// Dynamically allocate the appropriate event handler
// based on the command-line options.
Expression_Tree_Event_Handler *tree_event_handler =
Expression_Tree_Event_Handler::make_handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.
Reactor::instance ()->register_input_handler
(tree_event_handler);

// ...

Pattern & Framework Tutorial Douglas C. Schmidt

49

Singleton object creational
Intent

ensure a class only ever has one instance & provide a global point of access
Applicability

– when there must be exactly one instance of a class, & it must be
accessible from a well-known access point

– when the sole instance should be extensible by subclassing, & clients
should be able to use an extended instance without modifying their code

Structure

If (uniqueInstance == 0)
uniqueInstance = new Singleton;

return uniqueInstance;

Pattern & Framework Tutorial Douglas C. Schmidt

50

Consequences
+ reduces namespace pollution
+ makes it easy to change your mind &

allow more than one instance
+ allow extension by subclassing
– same drawbacks of a global if misused
– implementation may be less efficient

than a global
– concurrency pitfalls strategy creation &

communication overhead
Implementation
– static instance operation
– registering the singleton instance
– deleting singletons

Known Uses
– Unidraw's Unidraw object
– Smalltalk-80 ChangeSet,

the set of changes to code
– InterViews Session object
See Also
– Double-Checked Locking

Optimization pattern from
POSA2

– “To Kill a Singleton”
www.research.ibm.com/
designpatterns/pubs/
ph-jun96.txt

Singleton object creational

Pattern & Framework Tutorial Douglas C. Schmidt

51

Expression Tree Structure
Goals:
– Support “physical” structure of expression tree

• e.g., binary/unary operators & operators
– Provide “hook” for enabling arbitrary operations on tree nodes

• Via Visitor pattern

Constraints/forces:
– Treat operators & operands

uniformly
– No distinction between

one & many

Leaf
Nodes

Unary
Node

Pattern & Framework Tutorial Douglas C. Schmidt

52

Solution: Recursive Structure

Leaf
Nodes

Binary
Nodes

Unary
Node

• Model a tree as a recursive
collection of nodes

• Nodes are represented in an
inheritance hierarchy that captures
the particular properties of each
node
• e.g., precedence levels, different

associativities, & different arities
• Binary nodes recursively contain

two other nodes; unary nodes
recursively contain one other node

Pattern & Framework Tutorial Douglas C. Schmidt

53

Composite Builder

Interpreter

Expression_Tree_
Context

Expression_Tree

Interpreter

Interpreter_Context

Symbol

Operator Unary_OperatorNumber

SubstractAdd Negate

Multiply Divide

Component_Node

Composite_
Binary_Node

Composite_
Unary_Node

Leaf_Node

Composite_
Substract_Node

Composite_
Add_Node

Composite_
Negate_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Overview of Tree Structure & Creation Patterns

<< create >>

<< use >>

<< create >>

<< create >>

Pattern & Framework Tutorial Douglas C. Schmidt

54

Component_Node

Abstract base class for composable expression tree node objects

Interface:

Subclasses:
Leaf_Node, Composite_Unary_Node, Composite_Binary_Node, etc.

virtual ~Component_Node (void)=0
virtual int item (void) const

virtual Component_Node * left (void) const
virtual Component_Node * right (void) const

virtual void accept (Visitor &visitor) const

Commonality: base class interface is used by all nodes in an expression
tree

Variability: each subclass defines state & method implementations that
are specific for the various types of nodes

http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classVisitor.html�

Pattern & Framework Tutorial Douglas C. Schmidt

55

Component_Node Hierarchy

Note the inherent recursion in this hierarchy
 i.e., a Composite_Binary_Node is a Component_Node & a
Composite_Binary_Node also has Component_Nodes!

Pattern & Framework Tutorial Douglas C. Schmidt

56

Composite object structural
Intent

treat individual objects & multiple, recursively-composed objects
uniformly

Applicability
objects must be composed recursively,
and no distinction between individual & composed elements,
and objects in structure can be treated uniformly

Structure e.g., Component_Node

e.g., Composite_Unary_Node,
Composite_Binary_Node, etc.

e.g., Leaf_Node

Pattern & Framework Tutorial Douglas C. Schmidt

57

Consequences
+ uniformity: treat components the same

regardless of complexity
+ extensibility: new Component subclasses work

wherever old ones do
– overhead: might need prohibitive numbers of

objects
– Awkward designs: may need to treat leaves as

lobotomized composites
Implementation
– do Components know their parents?
– uniform interface for both leaves & composites?
– don’t allocate storage for children in Component

base class
– responsibility for deleting children

Known Uses
– ET++ Vobjects
– InterViews Glyphs,

Styles
– Unidraw Components,

MacroCommands
– Directory structures

on UNIX & Windows
– Naming Contexts in

CORBA
– MIME types in SOAP

Composite object structural

Pattern & Framework Tutorial Douglas C. Schmidt

58

Parsing Expressions & Creating Expression Tree
Goals:
– Simplify & centralize the creation of all

nodes in the composite expression tree
– Extensible for future types of

expression orderings

Constraints/forces:
– Don’t recode existing

clients
– Add new expressions

without recompiling

Leaf
Nodes

Unary
Node

“in-order” expression = -5*(3+4)
“pre-order” expression = *-5+34
“post-order” expression = 5-34+*
“level-order” expression = *-+534

Pattern & Framework Tutorial Douglas C. Schmidt

59

Solution: Build Parse Tree Using Interpreter
• Each make_tree() method in the appropriate state object uses an

interpreter to create a parse tree that corresponds to the expression input

• This parse tree is then traversed to build each node in the corresponding
expression tree

Interpreter

Interpreter_ContextIn_Order_
Uninitialized_

State

make_tree()

Pattern & Framework Tutorial Douglas C. Schmidt

60

Interpreter
Parses expressions into parse tree & generate corresponding expression tree

Interface:

Commonality: Provides a common interface for parsing expression input &
building expression trees

Variability: The structure of the expression trees can vary depending on the
format & contents of the expression input

Interpreter (void)
virtual ~Interpreter (void)

Expression
_Tree

interpret (Interpreter_Context &context,
const std::string &input)

Interpreter_Context (void)
~Interpreter_Context (void)

int get (std::string variable)
void set (std::string variable, int value)
void print (void)
void reset (void)

Symbol (Symbol *left,
Symbol *right)

virtual ~Symbol (void)
virtual int precedence (void)=0

virtual Component_Node * build (void)=0

uses

creates

http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�

Pattern & Framework Tutorial Douglas C. Schmidt

61

Interpreter class behavioral

Structure

Intent
Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language

Applicability
– When the grammar is simple & relatively stable
– Efficiency is not a critical concern

Pattern & Framework Tutorial Douglas C. Schmidt

62

Consequences
+ Simple grammars are easy to change & extend, e.g.,

all rules represented by distinct classes in an orderly
manner

+ Adding another rule adds another class
– Complex grammars are hard to implement &

maintain, e.g., more interdependent rules yield more
interdependent classes

Implementation
• Express the language rules, one per class
• Alternations, repetitions, or sequences expressed as

nonterminal expresssions
• Literal translations expressed as terminal expressions
• Create interpret method to lead the context through

the interpretation classes

Interpreter class behavioral
Known Uses

• Text editors &Web
browsers use
Interpreter to lay
out documents &
check spelling

• For example, an
equation in TeX is
represented as a
tree where internal
nodes are
operators, e.g.
square root, &
leaves are
variables

Pattern & Framework Tutorial Douglas C. Schmidt

63

Builder object creational
Intent

Separate the construction of a complex object from its representation so
that the same construction process can create different representations

Applicability
– Need to isolate knowledge of the creation of a complex object from its

parts
– Need to allow different implementations/interfaces of an object's parts

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

64

Builder object creational
Consequences

+ Can vary a product's internal representation

+ Isolates code for construction &
representation

+ Finer control over the construction process

Implementation

• The Builder pattern is basically a Factory
pattern with a mission

• A Builder pattern implementation exposes
itself as a factory, but goes beyond the
factory implementation in that various
implementations are wired together

Known Uses

• ACE Service Configurator
framework

Pattern & Framework Tutorial Douglas C. Schmidt

65

Composite Builder

Interpreter

Expression_Tree_
Context

Expression_Tree

Interpreter

Interpreter_Context

Symbol

Operator Unary_OperatorNumber

SubstractAdd Negate

Multiply Divide

Component_Node

Composite_
Binary_Node

Composite_
Unary_Node

Leaf_Node

Composite_
Substract_Node

Composite_
Add_Node

Composite_
Negate_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Summary of Tree Structure & Creation Patterns

<< create >>

<< use >>

<< create >>

<< create >>

Pattern & Framework Tutorial Douglas C. Schmidt

66

Visitor
Iterator

Bridge

Expression_Tree Component_Node Visitor

Evaluation_Visitor

std::stack

Print_Visitor
Expression_Tree_

Iterator
Expression_Tree_

Iterator_Impl

Pre_Order_Expression_
Tree_Iterator_Impl

In_Order_Expression_
Tree_Iterator_Impl

Post_Order_Expression_
Tree_Iterator_Impl

Level_Order_Expression_
Tree_Iterator_Impl

LQueue

Overview of Tree Traversal Patterns

<< create >>

<< accept >>

Pattern & Framework Tutorial Douglas C. Schmidt

67

Encapsulating Variability &
Simplifying Memory Managment

Goals
– Hide many sources of variability in expression tree construction & use
– Simplify C++ memory management, i.e., minimize use of new/delete in

application code

Constraints/forces:
– Must account for the fact that STL algorithms & iterators have “value

semantics”

– Must ensure that exceptions don’t cause memory leaks

for (Expression_Tree::iterator iter = tree.begin ();
iter != tree.end ();
++iter)

(*iter).accept (print_visitor);

Pattern & Framework Tutorial Douglas C. Schmidt

68

Solution: Decouple Interface & Implementation(s)
Expression_Tree

• Create a public interface class (Expression_Tree) used by clients & a
private implementation hierarchy (rooted at Component_Node) that
encapsulates variability
• The public interface class can perform reference counting of

implementation object(s) to automate memory management
• An Abstract Factory can produce the right implementation (as seen later)

Pattern & Framework Tutorial Douglas C. Schmidt

69

Expression_Tree

Expression_Tree (void)
Expression_Tree (Component_Node *root)
Expression_Tree (const Expression_Tree &t)

void operator= (const Expression_Tree &t)
~Expression_Tree (void)

Component_Node * get_root (void)
bool is_null (void) const

const int item (void) const
Expression_Tree left (void)
Expression_Tree right (void)

iterator begin (const std::string &traversal_order)
iterator end (const std::string &traversal_order)

const_iterator begin (const std::string &traversal_order) const
const_iterator end (const std::string &traversal_order) const

Interface for Composite pattern used to contain all nodes in expression tree

Commonality: Provides a common interface for expression tree operations
Variability: The contents of the expression tree nodes can vary depending

on the expression

Interface:

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�

Pattern & Framework Tutorial Douglas C. Schmidt

70

Bridge object structural
Intent

Separate a (logical) abstraction interface from its (physical)
implementation(s)

Applicability
– When interface & implementation should vary independently

– Require a uniform interface to interchangeable class hierarchies

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

71

Consequences
+abstraction interface & implementation are independent
+ implementations can vary dynamically
+Can be used transparently with STL algorithms & containers
– one-size-fits-all Abstraction & Implementor interfaces
Implementation
• sharing Implementors & reference counting

• See reusable Refcounter template class (based on STL/boost
shared_pointer)

• creating the right Implementor (often use factories)
Known Uses
• ET++ Window/WindowPort
• libg++ Set/{LinkedList, HashTable}
• AWT Component/ComponentPeer

Bridge object structural

Pattern & Framework Tutorial Douglas C. Schmidt

72

Tree Printing & Evaluation
Goals:

– Create a framework for
performing algorithms that
affect nodes in a tree

Constraints/forces:
– support multiple algorithms

that can act on the expression
tree

– don’t tightly couple algorithms
with expression tree structure
– e.g., don’t have “print” &

“evaluate” methods in the
node classes

Leaf
Nodes

Binary
Nodes

Unary
Node

Algo 1: Print all
the values of the
nodes in the tree

Algo 2: Evaluate
the “yield” of the
nodes in the tree

Pattern & Framework Tutorial Douglas C. Schmidt

73

Solution: Encapsulate Traversal

Leaf
Nodes

Unary
Node

Expression_Tree_Iterator Expression_Tree_Iterator_Impl

Level_Order_Expression_Tree_Iterator_Impl Pre_Order_Expression_Tree_Iterator_Impl

In_Order_Expression_Tree_Iterator_Impl Post_Order_Expression_Tree_Iterator_Impl

Iterator
– encapsulates a traversal algorithm

without exposing representation
details to callers

e.g.,
– “in-order iterator” = -5*(3+4)
– “pre-order iterator” = *-5+34
– “post-order iterator” = 5-34+*
– “level-order iterator” = *-+534

Note use of the Bridge pattern to encapsulate variability

Pattern & Framework Tutorial Douglas C. Schmidt

74

Expression_Tree_Iterator

Expression_Tree_Iterator
(const Expression_Tree_Iterator &)

Expression_Tree_Iterator
(Expression_Tree_Iterator_Impl *)

Expression_Tree operator * (void)
const Expression_Tree operator * (void) const

Expression_Tree_Iterator & operator++ (void)
Expression_Tree_Iterator operator++ (int)

bool operator== (const Expression_Tree_Iterator &rhs)
bool operator!= (const Expression_Tree_Iterator &rhs)

Interface:

Commonality: Provides a common interface for expression tree iterators
that conforms to the standard STL iterator interface

Variability: Can be configured with specific expression tree iterator
algorithms via the Bridge & Abstract Factory patterns

Interface for Iterator pattern that traverses all nodes in tree expression

See Expression_Tree_State.cpp for example usage

http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator__Impl.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�

Pattern & Framework Tutorial Douglas C. Schmidt

75

Expression_Tree_Iterator_Impl

Interface:

Commonality: Provides a common interface for implementing expression
tree iterators that conforms to the standard STL iterator interface

Variability: Can be subclasses to define various algorithms for accessing
nodes in the expression trees in a particular traversal order

Implementation of the Iterator pattern that is used to define the various
iterations algorithms that can be performed to traverse the expression tree

Expression_Tree_Iterator_Impl (const
Expression_Tree &tree)

virtual ~Expression_Tree_Iterator_Impl (void)
virtual Expression_Tree operator * (void) =0

virtual const Expression_Tree operator * (void) const =0
virtual void operator++ (void)=0
virtual bool operator== (const

Expression_Tree_Iterator_Impl &rhs) const =0
virtual bool operator!= (const

Expression_Tree_Iterator_Impl &rhs) const =0
virtual Expression_Tree_Iterator_Impl * clone (void)=0

http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�

Pattern & Framework Tutorial Douglas C. Schmidt

76

Iterator object behavioral
Intent

access elements of a aggregate (container) without exposing its
representation

Applicability
– require multiple traversal algorithms over an aggregate
– require a uniform traversal interface over different aggregates
– when aggregate classes & traversal algorithm must vary independently

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

77

Comparing STL Iterators with GoF Iterators

for (Expression_Tree::iterator iter = tree.begin (”Level
Order”);

iter != tree.end (”Level Order”);
++iter)

(*iter).accept (print_visitor);
In contrast, “GoF iterators have “pointer semantics”, e.g.:

iterator *iter;

for (iter = tree.createIterator (”Level Order”);
iter->done () == false;
iter->advance ())

(iter->currentElement ())->accept (print_visitor);

delete iter;

STL iterators have “value-semantics”, e.g.:

Bridge pattern simplifies use of STL iterators in expression tree application

Pattern & Framework Tutorial Douglas C. Schmidt

78

Consequences
+ flexibility: aggregate & traversal are independent
+ multiple iterators & multiple traversal algorithms
– additional communication overhead between

iterator & aggregate
– This is particularly problematic for iterators in

concurrent or distributed systems

Implementation
• internal versus external iterators
• violating the object structure’s encapsulation
• robust iterators
• synchronization overhead in multi-threaded

programs
• batching in distributed & concurrent programs

Known Uses
• C++ STL iterators
• JDK Enumeration,

Iterator
• Unidraw Iterator

Iterator object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

79

Visitor
• Defines action(s) at each step of traversal & avoids wiring action(s) in nodes
• Iterator calls nodes’s accept(Visitor) at each node, e.g.:
void Leaf_Node::accept (Visitor &v) { v.visit (*this); }

• accept() calls back on visitor using “static polymorphism”

Commonality: Provides a common accept() method for all expression
tree nodes & common visit() method for all visitor subclasses

Variability: Can be subclassed to define
specific behaviors for the visitors & nodes

Interface:
virtual void visit (const Leaf_Node &node)=0
virtual void visit (const Composite_Negate_Node &node)=0
virtual void visit (const Composite_Add_Node &node)=0
virtual void visit (const Composite_Subtract_Node &node)=0
virtual void visit (const Composite_Divide_Node &node)=0
virtual void visit (const Composite_Multiply_Node &node)=0

http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Negate__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Add__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Subtract__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Divide__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Multiply__Node.html�

Pattern & Framework Tutorial Douglas C. Schmidt

80

Print_Visitor
• Prints character code or value for each node

• Can be combined with any traversal algorithm, e.g.:

class Print_Visitor : public Visitor {
public:

virtual void visit (const Leaf_Node &);
virtual void visit (const Add_Node &);
virtual void visit (const Divide_Node &);
// etc. for all relevant Component_Node subclasses

};

Print_Visitor print_visitor;
for (Expression_Tree::iterator iter =

tree.begin (”post-order”);
iter != tree.end (”post-order”);
++iter)

(*iter).accept (print_visitor); // calls visit (*this);

See Expression_Tree_State.cpp for example usage

Pattern & Framework Tutorial Douglas C. Schmidt

81

Print_Visitor Interaction Diagram
• The iterator controls the order in which accept() is called on each node

in the composition
• accept() then “visits” the node to perform the desired print action

accept(print_visitor)

accept(print_visitor)

print_visitorLeaf_Node (5) Composite_Negate_Node

cout<< node.item ();

cout<< ‘-’

Pattern & Framework Tutorial Douglas C. Schmidt

82

Evaluation_Visitor

Leaf
Nodes

Unary
Node

• This class serves as a visitor for
evaluating nodes in an expression
tree that is being traversed using
a post-order iterator
– e.g., 5-34+*

• It uses a stack to keep track of the post-
order expression tree value that has
been processed thus far during the
iteration traversal, e.g.:
1. S = [5] push(node.item())

2. S = [-5] push(-pop())

3. S = [-5, 3] push(node.item())
4. S = [-5, 3, 4] push(node.item())
5. S = [-5, 7] push(pop()+pop())
6. S = [-35] push(pop()*pop())

class Evaluation_Visitor :
public Visitor { /* ... */ };

Pattern & Framework Tutorial Douglas C. Schmidt

83

accept(eval_visitor)

accept(eval_visitor)

eval_visitorLeaf_Node (5) Composite_Negate_Node

stack_.push(node.item ());

Evaluation_Visitor Interaction Diagram
• The iterator controls the order in which accept() is called on each node

in the composition
• accept() then “visits” the node to perform the desired evaluation action

stack_.push(-stack_.pop());

Pattern & Framework Tutorial Douglas C. Schmidt

84

Visitor object behavioral
Intent

Centralize operations on an object structure so that they can vary
independently but still behave polymorphically

Applicability
– when classes define many unrelated operations
– class relationships of objects in the structure rarely change, but the

operations on them change often
– algorithms keep state that’s updated during traversal

Structure

Note “static polymorphism” based on method overloading by type

Pattern & Framework Tutorial Douglas C. Schmidt

85

Consequences
+ flexibility: visitor algorithm(s) & object structure are independent
+ localized functionality in the visitor subclass instance
– circular dependency between Visitor & Element interfaces
– Visitor brittle to new ConcreteElement classes

Implementation
• double dispatch
• general interface to elements of object structure

Known Uses
• ProgramNodeEnumerator in Smalltalk-80 compiler
• IRIS Inventor scene rendering
• TAO IDL compiler to handle different backends

Visitor object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

86

Visitor
Iterator

Bridge

Expression_Tree Component_Node Visitor

Evaluation_Visitor

std::stack

Print_Visitor
Expression_Tree_

Iterator
Expression_Tree_

Iterator_Impl

Pre_Order_Expression_
Tree_Iterator_Impl

In_Order_Expression_
Tree_Iterator_Impl

Post_Order_Expression_
Tree_Iterator_Impl

Level_Order_Expression_
Tree_Iterator_Impl

LQueue

Summary of Tree Traversal Patterns

<< create >>

<< accept >>

Pattern & Framework Tutorial Douglas C. Schmidt

87

Command

AbstractFactory

Expression_Tree_Command_
Factory_Impl

Expression_Tree_
Command_Factory

Expression_Tree_
Event_Handler

Expression_Tree_
Command

<< create >>
Concrete_Expression_Tree_

Command_Factory_Impl

Expression_Tree_
Command_Impl

Format_Command Expr_Command

Print_Command

Eval_Command

Set_Command Quit_CommandMacro_Command

*

Null_Command

Expression_Tree_
Context

1

Overview of Command & Factory Patterns

Pattern & Framework Tutorial Douglas C. Schmidt

88

Consolidating User Operations
Goals:

– support execution of
user operations

– support macro
commands

– support undo/redo

Constraints/forces:
– scattered operation

implementations
– Consistent memory

management

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+2*3/2
> print in-order
1+2*3/2
> print pre-order
+1/*232
> eval post-order
4
> quit

Pattern & Framework Tutorial Douglas C. Schmidt

89

Solution: Encapsulate Each Request w/Command
A Command encapsulates Command may

 implement the operations
itself, or

 delegate them to other
object(s)

 an operation (execute())
 an inverse operation (unexecute())
 a operation for testing reversibility

(boolean reversible())
 state for (un)doing the operation

Expression_Tree_Command_Impl

Expr_Command Macro_Command

Expression_Tree_Command

Format_Command Quit_CommandPrint_Command Eval_Command

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Pattern & Framework Tutorial Douglas C. Schmidt

90

Expression_Tree_Command

Expression_Tree_Command
(Expression_Tree_Command_Impl *=0)
Expression_Tree_Command (const
Expression_Tree_Command &)

Expression_Tree_Command & operator= (const Expression_Tree_Command &)
~Expression_Tree_Command (void)

bool execute (void)
boolunexecute (void)

Interface for Command pattern used to define a command that performs
an operation on the expression tree when executed

Interface:

Commonality: Provides a common interface for expression tree
commands

Variability: The implementations of the expression tree commands can
vary depending on the operations requested by user input

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�

Pattern & Framework Tutorial Douglas C. Schmidt

91

List of Commands = Execution History

futurepast

cmd

execute()

cmd

unexecute()

past future

Undo: Redo:

cmd

unexecute()

cmd

unexecute()

Pattern & Framework Tutorial Douglas C. Schmidt

92

Command object behavioral
Intent

Encapsulate the request for a service
Applicability

– to parameterize objects with an action to perform
– to specify, queue, & execute requests at different times
– for multilevel undo/redo

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

93

Consequences

+ abstracts executor of a service

+ supports arbitrary-level undo-redo

+ composition yields macro-commands

– might result in lots of trivial command
subclasses

– excessive memory may be needed to
support undo/redo operations

Implementation

• copying a command before putting it
on a history list

• handling hysteresis

• supporting transactions

Command object behavioral
Known Uses

• InterViews Actions

• MacApp, Unidraw Commands

• JDK’s UndoableEdit,
AccessibleAction

• Emacs

• Microsoft Office tools

Pattern & Framework Tutorial Douglas C. Schmidt

94

Consolidating Creation of Variabilities
Goals:

– Simplify & centralize the creation of all
variabilities in the expression tree
application to ensure semantic compatibility

– Be extensible for future variabilities

Expression_Tree_Command_Impl

Expr_Command Macro_Command

Expression_Tree_Command

Format_Command Quit_CommandPrint_Command Eval_Command

Expression_Tree_Iterator Expression_Tree_Iterator_Impl

Level_Order_Expression_Tree_Iterator_Impl Pre_Order_Expression_Tree_Iterator_Impl

In_Order_Expression_Tree_Iterator_Impl Post_Order_Expression_Tree_Iterator_Impl

Constraints/forces:
– Don’t recode

existing clients
– Add new variabilities

without recompiling

Pattern & Framework Tutorial Douglas C. Schmidt

95

Solution: Abstract Object Creation
Instead of

Expression_Tree_Command command
= new Print_Command ();

Use

Expression_Tree_Command command
= command_factory.make_command (“print”);

where command_factory is an instance of
Expression_Tree_Command_Factory or anything else that makes sense
wrt our goals

Expression_Tree_Command_Factory_Impl

Concrete_Expression_Tree_
Command_Factory_Impl

Expression_Tree_Command_Factory

Pattern & Framework Tutorial Douglas C. Schmidt

96

Expression_Tree_Command_Factory

Expression_Tree_Command_Factory
(Expression_Tree_Context &tree_context)

Expression_Tree_Command_Factory
(const Expression_Tree_Command_Factory &f)

void operator= (const Expression_Tree_Command_Factory &f)
~Expression_Tree_Command_Factory (void)

Expression_Tree_Command make_command (const std::string &s)
Expression_Tree_Command make_format_command (const std::string &)
Expression_Tree_Command make_expr_command (const std::string &)
Expression_Tree_Command make_print_command (const std::string &)
Expression_Tree_Command make_eval_command (const std::string &)
Expression_Tree_Command make_quit_command (const std::string &)
Expression_Tree_Command make_macro_command (const std::string &)

Interface for Abstract Factory pattern used to create appropriate command
based on string supplied by caller
Interface:

Commonality: Provides a common interface to create commands
Variability: The implementations of the expression tree command

factory methods can vary depending on the requested commands

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�

Pattern & Framework Tutorial Douglas C. Schmidt

97

Factory Structure

Expression_Tree_Command_
Factory_Impl

Concrete_Expression_Tree_
Command_Factory_Impl

make_format_command()
make_expr_command()
make_print_command()
make_eval_command()
make_macro_command()
make_quit_command()

Expression_Tree_Command_Impl

Print_Command

Expression_Tree_Command

Macro_Command

Format_Command

Expr_Command

Eval_Command

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Expression_Tree_Command_
Factory

Quit_Command

Pattern & Framework Tutorial Douglas C. Schmidt

98

Factory Method class creational
Intent

Provide an interface for creating an object, but leave choice of object’s
concrete type to a subclass

Applicability
when a class cannot anticipate the objects it must create or a class
wants its subclasses to specify the objects it creates

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

99

Consequences
+By avoiding to specify the class name of the

concrete class &the details of its creation the
client code has become more flexible

+The client is only dependent on the interface
- Construction of objects requires one additional

class in some cases
Implementation
• There are two choices here

• The creator class is abstract & does not implement creation
methods (then it must be subclassed)

• The creator class is concrete & provides a default
implementation (then it can be subclassed)

• Should a factory method be able to create different variants? If so
the method must be equipped with a parameter

Factory Method class creational
Known Uses
• InterViews Kits
• ET++

WindowSystem
• AWT Toolkit
• The ACE ORB (TAO)
• BREW
• UNIX open() syscall

Pattern & Framework Tutorial Douglas C. Schmidt

100

Abstract Factory object creational
Intent

create families of related objects without specifying subclass names
Applicability

when clients cannot anticipate groups of classes to instantiate
Structure

See Uninitialized_State_Factory &
Expression_Tree_Event_Handler for Factory pattern variants

Pattern & Framework Tutorial Douglas C. Schmidt

101

Consequences
+ flexibility: removes type (i.e., subclass)

dependencies from clients
+ abstraction & semantic checking: hides

product’s composition
– hard to extend factory interface to create new

products

Implementation
• parameterization as a way of controlling interface size
• configuration with Prototypes, i.e., determines who

creates the factories
• abstract factories are essentially groups of factory

methods

Abstract Factory object creational
Known Uses
– InterViews Kits
– ET++

WindowSystem
– AWT Toolkit
– The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

102

Command

AbstractFactory

Expression_Tree_Command_
Factory_Impl

Expression_Tree_
Command_Factory

Expression_Tree_
Event_Handler

Expression_Tree_
Command

<< create >>
Concrete_Expression_Tree_

Command_Factory_Impl

Expression_Tree_
Command_Impl

Format_Command Expr_Command

Print_Command

Eval_Command

Set_Command Quit_CommandMacro_Command

*

Null_Command

Expression_Tree_
Context

1

Summary of Command & Factory Patterns

Pattern & Framework Tutorial Douglas C. Schmidt

103

State

Expression_Tree_
Context

Expression_Tree_
State

Uninitialized_
State

Pre_Order_
Uninitialized_State

Pre_Order_
Initialized_State

Post_Order_
Uninitialized_State

Post_Order_
Initialized_State

In_Order_
Uninitialized_State

In_Order_
Initialized_State

Level_Order_
Uninitialized_State

Level_Order_
Initialized_State

Interpreter
<< use >>

Overview of State Pattern

Pattern & Framework Tutorial Douglas C. Schmidt

104

Ensuring Correct Protocol for Commands
Goals:

– Ensure that users
follow the correct
protocol when entering
commands

Constraints/forces:
– Must consider context

of previous commands
to determine protocol
conformance, e.g.,
– format must be called

first
– expr must be called

before print or eval

– Print & eval can be
called in any order

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> print in-order
Error: Expression_Tree_State::print called
in invalid state

Protocol violation

Pattern & Framework Tutorial Douglas C. Schmidt

105

Solution: Encapsulate Command History as States
• The handling of a user command depends on the history of prior

commands
• This history can be represented as a state machine

Uninitialized
State

*_Order_
Uninitialized

State
*_Order_
Initialized

State

format()
make_tree()

print() eval()

make_tree()

format()

quit()

Pattern & Framework Tutorial Douglas C. Schmidt

106

Solution: Encapsulate Command History as States

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Expression_Tree_Context

• The state machine can be encoded using various subclasses that enforce
the correct protocol for user commands

Pattern & Framework Tutorial Douglas C. Schmidt

107

Expression_Tree_Context
Interface for State pattern used to ensure that commands are invoked
according to the correct protocol

Interface:

Commonality: Provides a common interface for ensuring that expression
tree commands are invoked according to the correct protocol

Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested
operations & the current state

void format (const std::string &new_format)
void make_tree (const std::string &expression)
void print (const std::string &format)
void evaluate (const std::string &format)

Expression_Tree_State * state (void) const
void state (Expression_Tree_State *new_state)

Expression_Tree & tree (void)
void tree (const Expression_Tree &new_tree)

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�

Pattern & Framework Tutorial Douglas C. Schmidt

108

Expression_Tree_State
Implementation of the State pattern that is used to define the various
states that affect how users operations are processed

Interface:

Commonality: Provides a common interface for ensuring that expression
tree commands are invoked according to the correct protocol

Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested
operations & the current state

virtual void format (Expression_Tree_Context &context,
const std::string &new_format)

virtual void make_tree (Expression_Tree_Context &context,
const std::string &expression)

virtual void print (Expression_Tree_Context &context,
const std::string &format)

virtual void evaluate (Expression_Tree_Context &context,
const std::string &format)

http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�

Pattern & Framework Tutorial Douglas C. Schmidt

109

State object behavioral
Intent

Allow an object to alter its behavior when its internal state changes—the
object will appear to change its class

Applicability
– When an object must change its behavior at run-time depending on

which state it is in

– When several operations have the same large multipart conditional
structure that depends on the object's state

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

110

Consequences

+ It localizes state-specific behavior &
partitions behavior for different states

+ It makes state transitions explicit

+ State objects can be shared

– Can result in lots of subclasses that
are hard to understand

Implementation

• Who defines state transitions?

• Consider using table-based alternatives

• Creating & destroying state objects

Known Uses

• The State pattern & its
application to TCP connection
protocols are characterized in:
Johnson, R.E. & J. Zweig.
“Delegation in C++. Journal of
Object-Oriented Programming,”
4(11):22-35, November 1991

• Unidraw & Hotdraw drawing
tools

State object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

111

State

Expression_Tree_
Context

Expression_Tree_
State

Uninitialized_
State

Pre_Order_
Uninitialized_State

Pre_Order_
Initialized_State

Post_Order_
Uninitialized_State

Post_Order_
Initialized_State

In_Order_
Uninitialized_State

In_Order_
Initialized_State

Level_Order_
Uninitialized_State

Level_Order_
Initialized_State

Interpreter
<< use >>

Summary of State Pattern

Pattern & Framework Tutorial Douglas C. Schmidt

112

Strategy

Reactor Singleton

Overview of Application Structure Patterns

Expression_Tree_
Command_Factory

Expression_Tree_
Event_Handler

Expression_Tree_
Command

Expression_Tree_
Context

Verbose_Expression_
Tree_Event_Handler

Macro_Expression_
Tree_Event_Handler

<< create >>

Event_Handler OptionsReactor

Pattern & Framework Tutorial Douglas C. Schmidt

113

Driving the Application Event Flow
Goals:

– Decouple expression tree application from
the context in which it runs

– Support inversion of control

Constraints/forces:
– Don’t recode existing

clients
– Add new event handles

without recompiling

STL
algorithms

Reactor

GUI

DATABASE

NETWORKING

EXPRESSION
TREE
FUNCTIONALITY CALL

BACKS

INVOKES

Pattern & Framework Tutorial Douglas C. Schmidt

114

Solution: Separate Event Handling from
Event Infrastructure

Reactor
register_handler()
remove_handler()
run_event_loop()
end_event_loop()

• Create a reactor to detect input on various sources of events & then
demux & dispatch the events to the appropriate event handlers

• Create concrete event handlers that perform the various operational
modes of the expression tree application

• Register the concrete event handlers with the reactor
• Run the reactor’s event loop to drive the application event flow

Pattern & Framework Tutorial Douglas C. Schmidt

115

Reactor & Event Handler
An object-oriented event demultiplexor & dispatcher of event handler
callback methods in response to various types of events

Interface:

Commonality: Provides a common interface for managing & processing
events via callbacks to abstract event handlers

Variability: Concrete implementations of the Reactor & Event_Handlers
can be tailored to a wide range of OS demuxing mechanisms &
application-specific concrete event handling behaviors

~Reactor (void)
void run_event_loop (void)
void end_event_loop (void)
void register_input_handler (Event_Handler *event_handler)
void remove_input_handler (Event_Handler *event_handler)

static Reactor *instance (void)

virtual void ~Event_Handler (void) =0
virtual void delete_this (void)
virtual void handle_input (void)=0

uses

http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�

Pattern & Framework Tutorial Douglas C. Schmidt

116

Reactor Interactions
: Main Program : Exression_Tree

Event Handler
: Reactor : Synchronous

Event
Demultiplexer

register_handler()

get_handle()

handle_events() select()
handle_event()

Handle

Handles

Handles

Con. Event
Handler Events

service()

event

1. Initialize
phase

2. Event
handling
phase

Observations
• Note inversion of control

• Also note how long-running event handlers can
degrade the QoS since callbacks steal the reactor’s
thread!

See main.cpp for example of using Reactor to drive event loop

Pattern & Framework Tutorial Douglas C. Schmidt

117

Reactor object behavioral
Intent

allows event-driven applications to demultiplex & dispatch service
requests that are delivered to an application from one or more clients

Applicability
– Need to decouple event handling from event

detecting/demuxing/dispatching
– When multiple sources of events must be handled in a single thread

Structure

Handle owns

dispatches
*

notifies*
*

handle set

Reactor
handle_events()
register_handler()
remove_handler()

Event Handler

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Synchronous
Event Demuxer

select ()

<<uses>>

Pattern & Framework Tutorial Douglas C. Schmidt

118

Consequences
+ Separation of concerns & portability
+ Simplify concurrency control
– Non-preemptive

Implementation
• Decouple event demuxing

mechanisms from event dispatching
• Handle many different types of

events, e.g., input/output events,
signals, timers, etc.

Reactor object behavioral
Known Uses
• InterViews Kits
• ET++ WindowSystem
• AWT Toolkit
• X Windows Xt
• ACE & The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

119

Supporting Multiple Operation Modes
Goals:
– Minimize effort required

to support multiple
modes of operation
– e.g., verbose &

succinct

Constraints/forces:
– support multiple

operational modes
– don’t tightly couple the

operational modes with
the program structure
to enable future
enhancements

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

% tree-traversal
> 1+4*3/2
7

Verbose mode

Succinct mode

Pattern & Framework Tutorial Douglas C. Schmidt

120

Solution: Encapsulate Algorithm Variability

Expression_Tree_Event_Handler
handle_input()
prompt_user()
get_input()
make_command()
execute_command()

Event_Handler

Verbose_Expression_
Tree_Event_Handler

prompt_user()
make_command()

Macro_Command_
Expression_Tree_

Event_Handler
prompt_user()
make_command()

void handle_input (void) { // template method
prompt_user (); // hook method

std::string input;

if (get_input (input) == false) // hook method
Reactor::instance ()->end_event_loop ();

Expression_Tree_Command command
= make_command (input); // hook method

if (!execute_command (command)) // hook method
Reactor::instance ()->end_event_loop ();

}

Expression_Tree_Command make_command
(const std::string &input) {

return
command_factory_.make_macro_command (input);

}

Expression_Tree_Command make_command
(const std::string &input) {

return
command_factory_.make_command (input);

}

Implement algorithm once in base class & let subclasses define variant parts

Pattern & Framework Tutorial Douglas C. Schmidt

121

Expression_Tree_Event_Handler
Provides an abstract interface for handling input events associated with the
expression tree application

Interface:

Commonality: Provides a common interface for handling user input
events & commands

Variability: Subclasses implement various operational modes, e.g.,
verbose vs. succinct mode

virtual void handle_input (void)
static Expression_Tree_Event_Handler * make_handler (bool verbose)

virtual void prompt_user (void)=0
virtual bool get_input (std::string &)

virtual Expression_Tree_Command make_command
(const std::string &input)=0

virtual bool execute_command
(Expression_Tree_Command &)

Note make_handler() factory method variant

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�

Pattern & Framework Tutorial Douglas C. Schmidt

122

Template Method class behavioral
Intent

Provide a skeleton of an algorithm in a method, deferring some steps to
subclasses

Applicability
– Implement invariant aspects of an algorithm once & let subclasses define

variant parts
– Localize common behavior in a class to increase code reuse
– Control subclass extensions
Structure

Pattern & Framework Tutorial Douglas C. Schmidt

123

Template Method class behavioral
Consequences
+ Leads to inversion of control (“Hollywood principle”: don't call us – we'll

call you)
+ Promotes code reuse
+ Lets you enforce overriding rules
– Must subclass to specialize behavior (cf. Strategy pattern)
Implementation
• Virtual vs. non-virtual template method
• Few vs. lots of primitive operations (hook method)
• Naming conventions (do_*() prefix)
Known Uses
• InterViews Kits
• ET++ WindowSystem
• AWT Toolkit
• ACE & The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

124

Strategy object behavioral
Intent

define a family of algorithms, encapsulate each one, & make them
interchangeable to let clients & algorithms vary independently

Applicability
– when an object should be configurable with one of many algorithms,
– and all algorithms can be encapsulated,
– and one interface covers all encapsulations

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

125

Consequences
+ greater flexibility, reuse
+ can change algorithms dynamically
– strategy creation & communication

overhead
– inflexible Strategy interface
– semantic incompatibility of multiple

strategies used together
Implementation
• exchanging information between a

Strategy & its context
• static strategy selection via

parameterized types

Strategy object behavioral
Known Uses
• InterViews text formatting
• RTL register allocation &

scheduling strategies
• ET++SwapsManager

calculation engines
• The ACE ORB (TAO) Real-

time CORBA middleware
See Also
• Bridge pattern (object

structural)

Pattern & Framework Tutorial Douglas C. Schmidt

126

Comparing Strategy with Template Method
Strategy

+ Provides for clean separation
between components
through interfaces

+ Allows for dynamic
composition

+ Allows for flexible mixing &
matching of features

– Has the overhead of
forwarding

– Suffers from the identity
crisis

– Leads to more fragmentation

Template Method
+ No explicit forwarding necessary
– Close coupling between subclass(es) &

base class
– Inheritance hierarchies are static &

cannot be reconfigured at runtime
– Adding features through subclassing

may lead to a combinatorial explosion
– Beware of overusing inheritance–

inheritance is not always the best
choice

– Deep inheritance hierarchy (6 levels &
more) in your application is a red flag

Strategy is commonly used for blackbox frameworks
Template Method is commonly used for whitebox frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

127

Strategy

Reactor Singleton

Summary of Application Structure Patterns

Expression_Tree_
Command_Factory

Expression_Tree_
Event_Handler

Expression_Tree_
Command

Expression_Tree_
Context

Verbose_Expression_
Tree_Event_Handler

Macro_Expression_
Tree_Event_Handler

<< create >>

Event_Handler OptionsReactor

Pattern & Framework Tutorial Douglas C. Schmidt

128

Implementing STL Iterator Semantics
Goals:
– Ensure the proper semantics of post-increment operations for STL-based
Expression_Tree_Iterator objects

Constraints/forces:
– STL pre-increment operations are easy to implement since they simply

increment the value & return *this, e.g.,
iterator &operator++ (void) { ++...; return *this; }

– STL post-increment operations are more complicated, however, since must
make/return a copy of the existing value of the iterator before
incrementing its value, e.g.,
iterator &operator++ (int) {

iterator temp = copy_*this; ++...; return temp;

}

– Since our Expression_Tree_Iterator objects use the Bridge pattern
it is tricky to implement the “copy_*this” step above in a generic way

Pattern & Framework Tutorial Douglas C. Schmidt

129

Solution: Clone a New Instance From a
Prototypical Instance

Expression_Tree_Iterator

operator++ (int)

Expression_Tree_Iterator_Impl

clone()

Level_Order_Expression_Tree_Iterator_Impl

clone()

Pre_Order_Expression_Tree_Iterator_Impl

clone()

In_Order_Expression_Tree_Iterator_Impl

clone()

Post_Order_Expression_Tree_Iterator_Impl

clone()

iterator
Expression_Tree_Iterator::operator++ (int)
{

iterator temp (impl_->clone ());
++(*impl_);
return temp;

}

impl_

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Pattern & Framework Tutorial Douglas C. Schmidt

130

Expression_Tree_Iterator_Impl
Implementation of Iterator pattern used to define various iterations
algorithms that can be performed to traverse an expression tree

Expression_Tree_Iterator_Impl
(const Expression_Tree &tree)

virtual Component_Node * operator * (void)=0
void operator++ (void)=0

virtual bool operator== (const Expression_Tree_
Iterator_Impl &) const=0

virtual bool operator!= (const Expression_Tree_
Iterator_Impl &) const=0

virtual Expression_Tree_Iterator_Impl * clone (void)=0

Interface:

Commonality: Provides a common interface for expression tree iterator
implementations

Variability: Each subclass implements the clone() method to return a
deep copy of itself

As a general rule it’s better to say ++iter than iter++

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�

Pattern & Framework Tutorial Douglas C. Schmidt

131

Prototype object creational

Intent
Specify the kinds of objects to create using a prototypical instance &
create new objects by copying this prototype

Applicability
– when a system should be independent of how its products are

created, composed, & represented
– when the classes to instantiate are specified at run-time; or

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

132

Consequences
+ can add & remove classes at runtime by

cloning them as needed
+ reduced subclassing minimizes/eliminates

need for lexical dependencies at run-time
– every class that used as a prototype must

itself be instantiated
– classes that have circular references to

other classes cannot really be cloned
Implementation
– Use prototype manager
– Shallow vs. deep copies
– Initializing clone internal state within a

uniform interface

Prototype object creational
Known Uses
– The first widely known

application of the Prototype
pattern in an object-oriented
language was in ThingLab

– Coplien describes idioms
related to the Prototype
pattern for C++ & gives
many examples & variations

– Etgdb debugger for ET++
– The music editor example is

based on the Unidraw
drawing framework

Pattern & Framework Tutorial Douglas C. Schmidt

133

Part III: Wrap-Up: Observations
Patterns & frameworks support
• design/implementation at a more

abstract level
– treat many class/object interactions

as a unit
– often beneficial after initial design
– targets for class refactorings

• Variation-oriented
design/implementation
– consider what design aspects are

variable
– identify applicable pattern(s)
– vary patterns to evaluate tradeoffs
– repeat

Patterns are applicable in all
stages of the OO lifecycle
– analysis, design, & reviews
– realization & documentation
– reuse & refactoring

Pattern & Framework Tutorial Douglas C. Schmidt

134

Pattern & framework design even harder than OO design!

Don’t apply patterns & frameworks blindly
• Added indirection can yield increased complexity, cost
• Understand patterns to learn how to better develop/use

frameworks

Resist branding everything a pattern
• Articulate specific benefits
• Demonstrate wide applicability
• Find at least three existing examples from code other than your

own!

Part III: Wrap-Up: Caveats

Pattern & Framework Tutorial Douglas C. Schmidt

135

Concluding Remarks
Patterns & frameworks promote
• Integrated design & implementation

reuse
• uniform design vocabulary
• understanding, restructuring, & team

communication
• a basis for automation
• a “new” way to think about OO

design & implementation

Pattern & Framework Tutorial Douglas C. Schmidt

136

Pattern References
Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,
0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,
0-470-05902-8

Pattern-Oriented Software Architecture, Vol. 5, Buschmann, et al.,
0-471-48648-5

Pattern & Framework Tutorial Douglas C. Schmidt

137

Pattern References (cont’d)
More Books

Analysis Patterns, Fowler; 0-201-89542-0

Concurrent Programming in Java, 2nd ed., Lea, 0-201-31009-0

Pattern Languages of Program Design
Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds., 0-201-89527-7
Vol. 3, Martin, et al., eds., 0-201-31011-2
Vol. 4, Harrison, et al., eds., 0-201-43304-4

Vol. 5, Manolescu, et al., eds., 0-321-32194-4

AntiPatterns, Brown, et al., 0-471-19713-0

Applying UML & Patterns, 2nd ed., Larman, 0-13-092569-1

Pattern Hatching, Vlissides, 0-201-43293-5

The Pattern Almanac 2000, Rising, 0-201-61567-3

Pattern & Framework Tutorial Douglas C. Schmidt

138

Pattern References (cont’d)

Even More Books
Small Memory Software, Noble & Weir, 0-201-59607-5
Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-31957-7
Smalltalk Best Practice Patterns, Beck; 0-13-476904-X
The Design Patterns Smalltalk Companion, Alpert, et al.,

0-201-18462-1
Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5
Building Parsers with Java, Metsker, 0-201-71962-2
Core J2EE Patterns, Alur, et al., 0-130-64884-1
Design Patterns Explained, Shalloway & Trott, 0-201-71594-5
The Joy of Patterns, Goldfedder, 0-201-65759-7
The Manager Pool, Olson & Stimmel, 0-201-72583-5

Pattern & Framework Tutorial Douglas C. Schmidt

139

Pattern References (cont’d)

Early Papers
“Object-Oriented Patterns,” P. Coad; Comm. of the ACM, 9/92
“Documenting Frameworks using Patterns,” R. Johnson; OOPSLA ’92
“Design Patterns: Abstraction & Reuse of Object-Oriented Design,”

Gamma, Helm, Johnson, Vlissides, ECOOP ’93

Articles
Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,

Java Developers Journal, C++ Report

How to Study Patterns
http://www.industriallogic.com/papers/learning.html

Pattern & Framework Tutorial Douglas C. Schmidt

140

Pattern-Oriented Conferences

PLoP 2009: Pattern Languages of Programs
October 2009, Collocated with OOPSLA

EuroPLoP 2010, July 2010, Kloster Irsee, Germany
…

See hillside.net/conferences/ for
up-to-the-minute info

http://hillside.net/conferencesnavigation.htm�

Pattern & Framework Tutorial Douglas C. Schmidt

141

Mailing Lists

patterns@cs.uiuc.edu: present & refine patterns
patterns-discussion@cs.uiuc.edu: general discussion
gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns
siemens-patterns@cs.uiuc.edu: discussion on

Pattern-Oriented Software Architecture
ui-patterns@cs.uiuc.edu: discussion on user interface patterns
business-patterns@cs.uiuc.edu: discussion on patterns for

business processes
ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed

systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

http://hillside.net/patterns/mailing.htm�

	Slide Number 1
	Goals of this Presentation
	Tutorial Overview
	Part I: Motivation & Concepts
	Part I: Motivation & Concepts
	Part I: Motivation & Concepts
	Recurring Design Structures
	A Pattern…
	Four Basic Parts of a Pattern
	Example: Observer
	Observer object behavioral
	Modified UML/OMT Notation
	Observer object behavioral
	Observer object behavioral
	Design Space for GoF Patterns
	GoF Pattern Template (1st half)
	�GoF Pattern Template (2nd half)
	Life Beyond GoF Patterns
	Overview of Pattern Sequences & Languages
	Benefits & Limitations of Patterns
	Overview of Frameworks
	Slide Number 22
	Slide Number 23
	Categories of OO Frameworks
	Slide Number 25
	Applying SCV to an Avionics Framework
	Applying SCV to an Avionics Framework
	Comparing Reuse Techniques
	Taxonomy of Reuse Techniques
	Benefits of Frameworks
	Benefits of Frameworks
	Benefits of Frameworks
	Limitations of Frameworks
	Using Frameworks Effectively
	Stages of Pattern & Framework Awareness
	Part II: Case Study: Expression Tree Application
	Overview of Expression Tree Application
	Overview of Expression Tree Application
	Using the Expression Tree Application
	How Not to Design an Expression Tree Application
	How Not to Design an Expression Tree Application
	How Not to Design an Expression Tree Application
	Limitations with the Algorithmic Approach
	An OO Alternative Using Patterns & Frameworks
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Managing Global Objects Effectively
	Solution: Centralize Access to Global Instances
	Singleton object creational
	Singleton object creational
	Expression Tree Structure
	Solution: Recursive Structure
	Overview of Tree Structure & Creation Patterns
	Component_Node	
	Component_Node Hierarchy	
	Composite object structural
	Composite object structural
	Parsing Expressions & Creating Expression Tree
	Solution: Build Parse Tree Using Interpreter
	Interpreter
	Interpreter class behavioral
	Interpreter class behavioral
	Builder object creational
	Builder object creational
	Summary of Tree Structure & Creation Patterns
	Overview of Tree Traversal Patterns
	Encapsulating Variability & �Simplifying Memory Managment
	Solution: Decouple Interface & Implementation(s)
	Expression_Tree
	Bridge object structural
	Bridge object structural
	Tree Printing & Evaluation
	Solution: Encapsulate Traversal	
	Expression_Tree_Iterator
	Expression_Tree_Iterator_Impl
	Iterator object behavioral
	Comparing STL Iterators with GoF Iterators
	Iterator object behavioral
	Visitor
	Print_Visitor
	Print_Visitor Interaction Diagram
	Evaluation_Visitor
	Evaluation_Visitor Interaction Diagram
	Visitor object behavioral
	Visitor object behavioral
	Summary of Tree Traversal Patterns
	Overview of Command & Factory Patterns
	Consolidating User Operations
	Solution: Encapsulate Each Request w/Command	
	Expression_Tree_Command
	List of Commands = Execution History
	Command object behavioral
	Command object behavioral
	Consolidating Creation of Variabilities
	Solution: Abstract Object Creation
	Expression_Tree_Command_Factory
	Factory Structure
	Factory Method class creational
	Factory Method class creational
	Abstract Factory object creational
	Abstract Factory object creational
	Summary of Command & Factory Patterns
	Overview of State Pattern
	Ensuring Correct Protocol for Commands
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Expression_Tree_Context
	Expression_Tree_State
	State object behavioral
	State object behavioral
	Summary of State Pattern
	Overview of Application Structure Patterns
	Driving the Application Event Flow
	Solution: Separate Event Handling from Event Infrastructure
	Reactor & Event Handler
	Reactor Interactions
	Reactor object behavioral
	Reactor object behavioral
	Supporting Multiple Operation Modes
	Solution: Encapsulate Algorithm Variability	
	Expression_Tree_Event_Handler
	Template Method class behavioral
	Template Method class behavioral
	Strategy object behavioral
	Strategy object behavioral
	Comparing Strategy with Template Method
	Summary of Application Structure Patterns
	Implementing STL Iterator Semantics
	Solution: Clone a New Instance From a Prototypical Instance
	Expression_Tree_Iterator_Impl
	Prototype object creational
	Prototype object creational
	Part III: Wrap-Up: Observations
	Part III: Wrap-Up: Caveats
	Concluding Remarks
	Pattern References
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern-Oriented Conferences
	Mailing Lists

