Object-Oriented Patterns & Frameworks

Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of EECS
Vanderbilt University
Nashville, Tennessee

D G

mailto:d.schmidt@vanderbilt.edu�
http://www.cs.wustl.edu/~schmidt/bio.html�

'S
.

il

Pattern & Framework Tutorial s) G S Douglas C. Schmidt

Goals of this Presentation

Show by example how patterns & frameworks can help t0 [ssractservice

e Codlify good OO software design & service
implementation practices client X
— distill & generalize experience Proxy | ST
— aid to novices & experts alike service b fevie

e Give design structures explicit names class Reactor {
— common vocabulary pus};céingleton access point.

— reduced Complexity static Reactor *instance (void);

/// Run event loop.

- greater eXpreSSiVity void run_event_loop (void);

. Q‘apture & preserve aesign & /77 End event loop.
Implementation knowledge void end_event_loop (void);
— articulate key decisions succinctly /// Register @a event_handler

] _ /// for input events.
— Improve documentation void register_input_handler

.)) (Event_Handler *eh);
e Facilitate restructuring/refactoring
/// Remove @a event handler

— patterns & frameworks are interrelated 77/ for input events.
void remove_ input_handler

— enhance flexibility, reuse, & productivity (Event_Handler *eh);

2

Pattern & Framework Tutorial

D-O-C

p

Douglas C. Schmidt

Tutorial Overview

Part I. Motivation & Concepts
— The Issue

— What patterns & frameworks are
— What they’re good for

— How we develop & categorize
them

Purpose
Creational Structural Behavioral
g Factory Method Adapter (class) Interpreter
] Template Method
(&
o Abstract Factory Adapter (object) Chain of Responsibility
o Builder Bridge Command
Qo Prototype Composite Iterator
o D | Singleton Decorator Mediator
® @ Flyweight Memento
a Facade Observer
(o) Proxy State
Strategy
Visitor

Part Il: Case Study

— Use patterns & frameworks to build
an expression tree application

— Demonstrate usage & benefits

Part 111: Wrap-Up

— Observations, caveats, concluding
remarks, & additional references

3

'@

Pattern & Framework Tutorial

g r

1_';”

'S
o

Douglas C. Schmidt

Part I. Motivation & Concepts

e OOD methods emphasize design notations

 Fine for specification & documentation

~

Email Address

from Domain Modal)
User Entry
trom Do main Mod el)
PortalAdministrat Portal User -
or Domain Mode 2
(frem Domain Model) &nasUsername
o
SdispfayewsChannehVindow() e
% sendEmailOption() &
Account mailForm() e
sessionlD @,
® Authenteatian ST pSiF
i & tom Domain Mo dei)
Sragistration) i getEmaildddress()
Sregistration Confirm ation() (from Demain Modsh @setllsernamel) ®access()
SdeRegistration() SsetCredentiall)
®pa-de Re gistration() SsetEmailaddress()
:\ogm() . I :maIchUsemameCredemwa\O
logouti) ddress()
Authorisation SsendCre dential Reminder() @name /7 SsetPendent()
(om Bomain Model) SchangeCredential() @mechanism SynsetPendent()
o SchangeEmailAddress() . SerifyTime)
ety SlognUser) Sget)

JetACLs() changeCredentialg Soreate) e
::reaIEACL() SchangeEmailaddress() Sdeletel) o Dot oot
.deleteACLO SgetlserEntry() Supdatel)

updateACL() SgetDSP(erify() ond

Sgenerateleyl) ‘::d[?
*, mation()
e DSP Entry
s T 1_* [from Domain Moden)
(from Domain Model) AN Windows netaces %\demmer
BdsplD Sinvok iype
&usemamelD :ijﬁp‘ayo Q:I;\;ﬂu;?o %E’D‘DW‘
&expireDate arUser() Wyensrtel) %pg?
Ygatp) & date
Screate() .
Ydelete() ’9910
Supdate() ’cveateo
Syalidatel) ’de‘;“e%
updatel
Syerify()
Bution Selection List Form
Sactivate() | | 4,
Spresssd() selected() Silled()

National
Authentication
————=(&contactiame

& address

NAS

(from Bomain Model)

Lacal Authentication
place

Sereatelser])

Sdelatel)sar)

SupdataUser()
$sendCredentiaRemaindarUse)
SragistrationCanfirmationUser()
SragisteradUser()

SereateDSPQ

SelateD SPY)

SupdataDSPQ

SragisteradDSP ()

LAS

(m bomain hodel

Pattern & Framework Tutorial D r Q:; S g Douglas C. Schmidt

Part I. Motivation & Concepts

 OOD methods emphasize design notations
* Fine for specification & documentation
« But OOD is more than just drawing diagrams

» Good draftsmen are not necessarily
good architects!

Pattern & Framework Tutorial D r C’:; S € Douglas C. Schmidt

Part I. Motivation & Concepts

 OOD methods emphasize design notations

Subject Observer

 Fine for specification & documentation " ot
 But OOD is more than just drawing diagrams s ZF
 Good draftsmen are not necessarily woua | | desomatting]
good architects! _
» Good OO designers rely on lots of experience i 0
* At least as important as syntax o e [0

update();

» Most powerful reuse combines design & code reuse

o Patterns. Match problem
to design experience

O 5
CLIENT) operation() ™ | ~ompoNENT CORBA
T e || (SERVANT) SERVICES

» Frameworks: Reify patterns within a domain
context

6

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Recurring Design Structures

Well-designed OO systems exhibit recurring structures that promote

— Abstraction Client-side Broker Server-side Broker o
Client | [—— Application
— FIGlelllty . Proxy request \ invoke Component
Client | %ﬁ Y \% \ \ |
- | d _ . H

~ Modularity = T e

method_2 receive == send |[=<=— method_2

— Elegance - Y —

=~ discover ‘ register |=<<=—— l
discover chient proxy | n I register component
Network

Therein lies valuable design knowledge " WANTED™

DEAD OR AILIVE

Problem: capturing, communicating,

applying, & preserving this ! B N R TR
knowledge without undue time, @M%%

effort, & risk

Pattern & Framework Tutorial a)r G X

Douglas C. Schmidt

A Pattem...

e Abstracts & names a recurring design
structure

e Comprises class and/or object

Dependencies

Structures

Interactions

Conventions

 Specifies the design structure explicitly

e Is distilled from actual design
experience

Client

AbstractService

service

i

Proxy

Service

service

1 1 ,
service

The Proxy Pattern

Presents solution(s) to common (software) problem(s) arising within a context

8

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Four Basic Parts of a Pattern

1. Name
2. Problem (including “forces” & A
“applicability”) Ciient A
3. Solution (both visual & textual | |
. . Proxy Service
descrlptlons) service ! ! service
4. Consequences & trade-offs of The Proxy Pattern

applying the pattern

Key characteristics of patterns include:
e Language- & implementation-independent
e “Micro-architecture,” i.e., “society of objects”

* Adjunct to existing methodologies (RUP, Fusion, SCRUM,
etc.)

9

Pattern & Framework Tutorial D r (.D S G Douglas C. Schmidt

Example: Observer

observers
i windows==—== |=|5]| §i window==== [H|7]| & window =—==—= |H|7]|
al|b c
x| 60| 30| 10
y| 50 [30 | 20
z| 80| 10| 10
T a C

—— change naotification
subject — —— s requests, modifications

10

Pattern & Framework Tutorial B r C:j S g Douglas C. Schmidt

Observer object behavioral

Intent

define a one-to-many dependency between objects so that when one
object changes state, all dependents are notified & updated

Applicability
— an abstraction has two aspects, one dependent on the other
— a change to one object requires changing untold others
— an object should notify unknown other objects

Structure
Subject observers -.l Observer
attach(Observer) update()
detach(Observer) for all o in observers {
notify() ©------ - | o.update()
]
4 ConcreteObserver
, subject _
O- - |- { observerState =
ConcreteSubject | update() subject getState()
o-4--
getState() return subjectState observerState
subjectState

11

Pattern & Framework Tutorial B r C’:; S g Douglas C. Schmidt

Modified UML/OMT Notation

object reference /
one ConcreteClass
AbstractClass aggregation -
many
abstractOperation() | _C_fﬁa_t'fs‘i ___________ / /
ConcreteSubclass1 ConcreteSubclass?2
) implementation
operation() O-=------===-==-=-=---------------- pseudocode

instanceVariable

12

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Observer object behavioral

class ProxyPushConsumer : public /7 ..
virtual void push (const CORBA::Any &event) {
for (std::vector<PushConsumer>::iterator i
(consumers.begin ()); 1 !'= consumers.end (); 1++)
(*1) .push (event);
+

class MyPushConsumer : public // ..
virtual void push
(const CORBA::Any &event) { /* consume the event. */ }

ECA::ConsumerAdmin ECA::SupplierAdmin

ECA::ProxyPushSupplier* ECA::ProxyPushConsumer®
EC::PushConsumer* EC::PushSupplier* L. . .
- Dl @ CORBA Notification Service
prent service — example using C++
EC::PullConsumer~ vent Channel EC::PullSupplier* .
- Standgrd Template_ L|b_rary
. . - ECA::ProxyPullConsumer* (STL) Itera‘tors (WhICh IS an
ECA::ProxyPullSupplier EC_._‘\TE‘EC]IRHHEI exampl e Of th e Ite rator
- pattern from GoF)

Direction of Event Flow

13

Pattern & Framework Tutorial D r G S r Douglas C. Schmidt

=
Observer object behavioral
Consequences Known Uses
+ modularity: subject & observers may vary — Smalltalk Model-View-
iIndependently Controller (MVC)
+ extensibility: can define & add any number of — InterViews (Subjects &
observers Views,
+ customizability: different observers offer Observer/Observable)
different views of subject — Andrew (Data Objects &
— unexpected updates: observers don’t know Views)
about each other — Symbian event
— update overhead: might need hints or filtering ~ framework
Implementation — Pub/sub middleware

(e.g., CORBA Notification
Service, Java Message
Service)

— Mailing lists

— subject-observer mapping

— dangling references

— update protocols: the push & pull models

— registering modifications of interest explicitly

14

Pattern & Framework Tutorial

Douglas C. Schmidt

Design Space for GoF Patterns

De%quPatltlcms
S Purpose
= Creational Structural Behavioral
Factory Method V/ Adapter (class) V Interpreter v

Class

Template Method vV

Scope

Object

Abstract Factory %
Builder +/
Prototype
Singleton v/

Adapter (object)
Bridge \/
Composnte
Decorator
Flyweight
Facade

Proxy

Chain of Responsibility
Command +/
lterator

Mediator

Memento

Observe %

State

Strategy V

Visitor v/

Scope: domain over which a pattern applies

Purpose: reflects what a pattern does

Pattern & Framework Tutorial B r C:j S g Douglas C. Schmidt

GoF Pattern Template (1st half)

Intent

short description of the pattern & its purpose
Also Known As

Any aliases this pattern is known by
Motivation

motivating scenario demonstrating pattern’s use
Applicability

circumstances in which pattern applies
Structure

graphical representation of pattern using modified UML notation
Participants

participating classes and/or objects & their responsibilities

16

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

GoF Pattern Template (2nd half)

Collaborations

how participants cooperate to carry out their responsibilities
Consequences

the results of application, benefits, liabilities
Implementation

pitfalls, hints, techniques, plus language-dependent issues
Sample Code

sample implementations in C++, Java, C#, Python, Smalltalk, C, etc.

Known Uses
examples drawn from existing systems
Related Patterns
discussion of other patterns that relate to this one

17

Pattern & Framework Tutorial D r (’:5 S g Douglas C. Schmidt

Life Beyond GoF Patterns

core || T ! ENTERPRISE
"J2EE ParTERNS SemvER [INTEGRATION
e Prectias amd Ocig St COMPONENT PATTERNS ‘

FJ " 3 PAEE!?IIINSM!“ ructures

L] i tru
Ilpstrated with E1B

. e EEEECE

Small Memory
Software

Patterns for systems with limited memory

[.

SECURITY
PATTERNS

integraling Secority

and Sysiems Engineering

e PATTERN-ORIENTED
PATTERN-ORIENTED ig(F:m"rAE'::ﬁ'URE
SOFTWARE On Patterns and Pattern languages
ARCHITECTURE ‘ et

PATTERN-ORIENTED Eates Lonuegs o —

soFTwA“E stribute ect Computing

ARCHITECTURE

T e vterted shveete.

www.cs.wustl.edu/~schmidt/PDF/ieee-patterns.pdf

18

http://www.amazon.com/gp/product/images/0321200683/ref=dp_image_0/104-5176955-3271962?ie=UTF8&n=283155&s=books�

Pattern & Framework Tutorial D r C’:}u € Douglas C. Schmidt
Overview of Pattern Sequences & Languages

C)“““"' ACTIVE (-OBSERVER
Motivation ~—O0 OBJECT j
COMPONENT

REMOTE

» Individual patterns & pattern OPERATION | =— — EvicTOR

catalogs are insufficient ‘ ") LINTERFACE oaeren | LINTERCEPTOR |
. PRt L ABSTRACT \ - ﬂ ACTIVATOR |
» Software modeling methods & ESEM.ZER FACTORY
tools largely just illustrate —
what/how — not why - Sy | comecror
systems are designed = rrren rrcrnes Mcomirmiov Bl BECEVER
BROKER

HALF-sYNC/
HALF-ASYNC

I7

CONFIGURATOR

THREAD-

Benefits of Pattern Sequences & Languages
E?:EL‘E’.‘E":%%'::: i Define vocabulary for talking about software development problems
s || e Provide a process for the orderly resolution of these problems, e.g.:
e What are key problems to be resolved & in what order
e What alternatives exist for resolving a given problem

ATTERN.ORIENTED » How should mutual dependencies between the problems be
SOFTWARE hand|ed

ARCHITECTURE
e How to resolve each individual problem most effectively in its
context

e Help to generate & reuse software architectures |

Pattern & Framework Tutorial s) @ S f-: Douglas C. Schmidt

il

Benefits & Limitations of Patterns

Benefits Limitations

e Design reuse e Require significant tedious &

error-prone human effort to

handcraft pattern

e Enhance understanding, implementations design reuse
restructuring, & team communication

e Uniform design vocabulary

e Can be deceptively simple
e Basis for automation uniform design vocabulary

e Transcends language-centric e May limit design options

biases/myopia e Leaves important

e Abstracts away from many (implementation) details
unimportant details unresolved

Addressing the limitations of patterns requires more than just design reuse

20

Pattern & Framework Tutorial D r Q:; S g Douglas C. Schmidt

Overview of Frameworks

e Frameworks exhibit e Frameworks provide e Frameworks are
“inversion of control” at Integrated domain-specific “semi-complete”
runtime via callbacks structures & functionality applications

Application-specific
functionality

Scientific
Visualization

Q"Q

Networking Database

Pattern & Framework Tutorial D r Q:; S G Douglas C. Schmidt
|
Sis

Motivation for Frameworks

Nav Frame
Air

~

IFF GPS IFF
Frame

Legacy embedded systems have

historically been: Consequence. Small
- Stovepiped HW/SW changes have
.p it big (negative) impact
roprietary | on system QoS &
e Brittle & non—adaptlve malntenance
e Expensive
 Vulnerable

22

http://www.takeourword.com/images/persistence-of-memory.jpg�

Pattern & Framework Tutorial

D-G-C

Douglas C. Schmidt

I\/Iotlvatlon for Frameworks

|) \ A
|
:W 0 'Qb" 0 a
A/V 8-B F/A 18
product ﬂ proc_:luct UCAV
F-15 variant ; \ﬁ:'ant product
product ELIR /VF variant
variant H /éPS |
5 Z
Domain-specific Services
Common Middleware Services //
[Distribution Middleware)| 7
Host Infrastructure Middleware | y Product-line
[OS & Network Protocols)| y a:(?hitecture
[Hardware (CPU, Memory, 1/0) |

e Frameworks factors out many reusable general-purpose & domain-specific
services from traditional DRE application responsibility

» Essential for product-line architectures (PLAS)
e Product-lines & frameworks offer many configuration opportunities
e .g., component distribution/deployment, OS, protocols, algorithms, etc.

23

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Categories of OO Frameworks

o White-box frameworks are reused by subclassing, which usually requires
understanding the implementation of the framework to some degree

» Black-box framework is reused by parameterizing & assembling framework
objects, thereby hiding their implementation from users

« Each category of OO framework uses different sets of patterns, e.g.:

Context (Composition) K~ »| Strategy (Compositor)

contextinterface() algorithminterface()

AbstractClass A

_ : = | | |
L‘itﬂl?;egé:;ﬁ:, ; 5_ i zrim%[imom refion i ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
P.rr'mr'nveGZ;afmné{} -r--””ﬁwec'peralmzi'I algorithminterface() algorithminterface() algorithminterface()
e — Black-box frameworks reply
PrimiveOperation20) heavily on object
, _ composition patterns, such
— White-box frameworks rely heavily as Strategy & Decorator

on inheritance-based patterns, such
as Template Method & State

Many frameworks fall in between white-box & black-box categories

Pattern & Framework Tutorial

B r (L!u g Douglas C. Schmidt

Commonality & Variability Analysis in Frameworks

e Framework characteristics
are captured via Scope,
Commonalities, &
Variabilities (SCV) analysis

e This process can be
applied to identify
commonalities &
variabilities in a domain
to guide development of
a framework

Reusable Architecture
Framework [,

e Applying SCV to avionics mission computing

e Scope defines the domain & context of
the framework

e Component architecture, object-
oriented application frameworks, &
associated components, e.g., GPS,
Airframe, & Display

Reusable Application |, -

Components T e e

| | | |
Domain-specific Services

Common Middleware Services

[Distribution Middleware

[Host Infrastructure Middleware
[OS & Network Protocols

25

Pattern & Framework Tutorial D r ..n_:; S € Douglas C. Schmidt

Applying SCV to an Avionics Framework

e Commonalities describe the attributes that are common across all
members of the framework

e Common object-oriented frameworks & set of component types
e e.g9., GPS, Airframe, Navigation, & Display components
e Common middleware

infrastructure | |
e e.g., Real-time S S cﬁiﬁf{)i?eem Display
CORBA & a variant 4

of Lightweight Z/ 7}% |
2 //' |

CORBA Component = L7
Model (CCM) called \ | Common Components |
Prism [Domaln-specmc Serwces |]
Common Middleware Services]
E Distribution Middleware }
[Host Infrastructure Middleware |
(OS & Network Protocols)
E Hardware (CPU, Memory, 1/0) |

26

Pattern & Framework Tutorial D r C’:; S € Douglas C. Schmidt

Applying SCV to an Avionics Framework

.y e : | | n
* Variabilities describe the u u _y
attributes unique to the Component Component Component Display

different members of the
framework
| Common Components |

e Product-dependent / \
Component GPS = 20 Hz GPS =40 Hz GPS=20Hz

EE Al Fidm Nav GPS

Implementations (GPS/INS) @% % %
HUD LIR AP LIR |AP LIR
e Product-dependent v ps OPS £
component connections _ Fa18F F 15K

e Product-dependent
component assemblies
(e.qg., different weapons
systems for different >
CUStomerS/COU ntrieS) | | Domain-specific Services Z

] Common Middleware Services]_ JE//
e Different hardware, OS, & Distribution Middleware T //
network/bus configurations {
J
)|

Host Infrastructure Middleware
OS & Network Protocols
Hardware (CPU, Memory, 1/0)

S\ T U

27

Pattern & Framework Tutorial D r ..n_:; S € Douglas C. Schmidt

Comparing Reuse Technigues

APPLICATION- | ivOCATIONS Class Library (& STL) Architecture
SPECIFIC Math e
FUNCTIONALITY (——| ADT:
> — e A class is an implementation unit in an OO
@ | Strings programming language, i.e., a reusable type
GUI I

@ oLUE (> that ofte.n |mplerpent§ patterns.s |
S e Classes in class libraries are typically passive

ADTs

(@)
NETWORKIN

Framework Architecture

Strings

APPLICATION- e A framework is an integrated set of

INVOKES

SPECIFIC YT classes that collaborate to form a reusable

Files

Locks

J FUNCTIONALITY
architecture for a family of applications
i} e Frameworks implement pattern
DATABASE @ /anguages

& Component & Service-Oriented Architecture
o C A component is an encapsulation unit with
one or more interfaces that provide clients

O

]

C ®
,_ U @ with access to its services

v

Middleware Bus

@ » Components can be deployed & configured
via assemblies

Pattern & Framework Tutorial B r (’_:; S g Douglas C. Schmidt

Taxonomy of Reuse Technigues

_Clas_s Frameworks Components
Libraries
Micro-level Meso-level Macro-level
Stand-alone “Semi- Stand-alone
language entities complete” composition entities
applications
Domain- Domain-specific | Domain-specific or
independent Domain-independent
Borrow caller’s Inversion of Borrow caller’s
thread control thread

29

Pattern & Framework Tutorial B r C’:; S g Douglas C. Schmidt

Benefits of Frameworks

e Design reuse

o _ _ AdminClient PickingClient
- e.g., by guiding application annts G ot
developers through the steps _ _
| |
Thin Ul Clients
necessary to ensure successful Prory Prory
creation & deployment of software ' '
Broker Broker
| 0S-Access | | Component
1 .) Layer Repository
Distribution __
nfrastructure | P [
L e e e e e =
1 1
Broker Broker
s Reactor (<=1
| 1
Service J> :
Request Log;;in
| AN | ThreadPool <>— Handle‘i$
Service Service *
Reqluest Reqluest Conecurren cy
WarehouseRepHalfX Infrastructure

30

Pattern & Framework Tutorial D r ..n_:; S € Douglas C. Schmidt

Benefits of Frameworks

package org.apache.tomcat.session;

import org.apache.tomcat.core.*; _

import org.apache.tomcat.util.StringManager;
import java.io.*;

import java.net.*;

import Jjava.util.*;

import Jjavax.servlet._*;

import jJavax.servlet.http.*;

/**
: Core implementation of a server session

* @author James Duncan Davidson [duncan%eng.sun.com]
* @author James Todd [gonzo@eng.sun.com

public class ServerSession {

private_StringManager sm = B
_ StringManager.getManager(‘'org.apache.tomcat.session");
private Hashtable values = new Hashtable();

® I mplementation reuse B:::zg%g ggi?ﬁngS_appSessions = new Hashtable();

private long creationTime = System.currentTimeMillisQ);;
_ private long thisAccessTime =" creationTime;
private int inactivelnterval = -1;

e e.g., by amortizing software rversenontaering. 1 ¢
lifecycle costs & leveraging e String;ge;,do .

return i

previous development &) btic tono getCreationTine® ¢
optimization efforts ! ’

oolean create) _ B
ApplicationSession appSession =_
(ApplicationSession)appSessions.get(context);

publgc Application§e%sion getApplicationSession(Context context,

if (appSession == null && create) {

// XXX
// sync to ensure valid?

appSession = new ApplicationSession(id, this, context);
appSessions.put(context, appSession);

}

/7 XXX

// make sure_that we haven®"t gone over the end of our
// inactive interval -- if so, invalidate & create

// a new appSession
return appSession;

}

void removeApplicationSession(Context context) {
) appSessions.remove(context);

31

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Benefits of Frameworks

]
Build Scoreboard
Doxygen
Build Name ~ Last Finished Config Setup Compile |Tests Status
Doxygen Sep 05, 2002 - 03:24 [Config] m_ Inactive
Linux
Build Name Last Finished Config Setup| Compile Tests Status %
Debian_Core Sep 05, 2002 - 14:36 [Confie] |[Eull] [EGIIRN Inactive
Debian_Full Sep 05, 2002 - 12:19 [Config] |[Eull] | EEHEN IR (oo
Debian_Full Reactors Sep 05, 2002 - 11:59 [Confie] |[E] | EMHIEEEH EUMMENEN (1.ctve
Debian_GCC 3.0.4 Sep 05, 2002 - 13:45 [Confie] | | EMHETESH SNBSS Cowyile
Debian_Minimum Sep 05, 2002 - 08:51 [Confie] | | EMHEESH IENENEH Cowyile
Debian_Minimum_Static Sep 04, 2002 - 00:53 [Confie] |[El] EMMHETEH FEUMNENSY s-t.»
Debian_Nolnline Sep 05, 2002 - 12:31 [Config] |[Eull] | EEIHEEES IERNIENEE ol
Debian_Nolnterceptors Sep 03, 2002 - 09:10 [Config] m__ Inactive
Debian WChar GCC_3.1 Sep 05, 2002 - 01:23 [Confie] [T EGITRN ENMMENEH Cowyile
RedHat_7.1_Full Sep 04, 2002 - 02:34 [Confi¢] |[E5il] [ESITI NSRS s-wp
- - RedHat 7.1 No_AMI_Messaging Sep 03, 2002 - 04:36 [Confie] [Eull] | ERSIHIENSH [ESMMEHES C owpile
® Val | d at| on reuse RedHat_Core Sep 03, 2002 - 14:34|[Confi] |[El1] | NS [ESIEEEE oy
RedHat_Explicit Templates [Sep 03, 2002 - 08:56 [Confie] |[Eull] | ERMHENSH IESMMENEN 1.octive
- RedHat_GCC_3.2 Sep 05, 2002 - 06:53 [Config] [Eil] | ERHMNEEEE ESMMENEN 1mociv-
e e.g., by amortizing the efforts of | rscuwicron. Sm— ——— Koo 6 ——
. . . . RedHat_Single_Threaded Sep 05, 2002 - 10:55 [Config] m__ Compile
Valldatlng appllcatlon_ & platfo rm- RedHat_Static Sep 05, 2002 - 15:24 [Confie] [| EENNEENNSH) SRR 1< v
independent portions of software, |™™
’
. Build Name ~ Last Finished Config Setup Compile |Tests Status
thereby enhanung software e oo .. FE ... -1

reliability & scalability

32

V

Pattern & Framework Tutorial s) G S Q Douglas C. Schmidt

il

Limitations of Frameworks

e Frameworks are powerful, but can be hard to use effectively (& even
harder to create) for many application developers

e« Commonality & variability analysis requires significant domain
knowledge & OO design/implementation expertise

« Significant time required to evaluate applicability & quality of a
framework for a particular domain

e Debugging is tricky due to inversion of control
e V&V is tricky due to “late binding”

e May incur performance degradations due to extra (unnecessary) levels
of indirection

www.cs.wustl.edu/ ~schmidt/PDF/Queue-04.pdf

Many frameworks limitations can be addressed with knowledge of patterns!

33

Pattern & Framework Tutorial B r (’_:; S g Douglas C. Schmidt

Using Frameworks Effectively

Observations

e Since frameworks are powerful—but but hard to develop & use
effectively by application developers—it’s often better to use &
customize COTS frameworks than to develop in-house frameworks

 Classes/components/services are easier for application developers to
use, but aren’t as powerful or flexible as frameworks

PROJECT APPLICATION

COMPONENTS, SCRIPTING, & MODELING TECHNOLOGIES DEVELOPERS
COMPONENT MIDDLEWARE
TECHNOLOGIES PROJECT

INFRASTRUCTURE

CUSTOMIZED FRAMEWORK DEVEL OPERS

Successful projects are
TECHNOLOGIES

therefore often
organized using the
“funnel” model

COTS FRAMEWORK
TECHNOLOGIES

COTS FRAMEWORK
DEVELOPERS

34

Pattern & Framework Tutorial B r C’:; S g Douglas C. Schmidt

Stages of Pattern & Framework Awareness

benefit
familiarity
understanding
initiation
consternation ﬂ
ignw
-
35

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Part Il1: Case Study: Expression Tree Application

Goals

» Develop an object-oriented expression tree evaluator program using
patterns & frameworks

 Demonstrate commonality/variability analysis in the
context of a concrete application example

e |llustrate how OO frameworks can be
combined with the generic programming
features of C++ & STL

e Compare/contrast OO & non-0O0
approaches

36

Pattern & Framework Tutorial B r C’:; S g Douglas C. Schmidt

Overview of Expression Tree Application

» EXxpression trees consist of nodes containing operators & operands

» Operators have different precedence levels, different associativities, &

different arities, e.g.:

« Multiplication takes precedence over addition

« The multiplication operator has two
arguments, whereas unary minus
operator has only one

» Operands can be integers, doubles,
variables, etc.

« We'll just handle integers in this
application

» Application can be extended easily

v \«——— Binary
Nodes

37

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Overview of Expression Tree Application

* Trees may be “evaluated” via different traversal orders
e e.g., In-order, post-order, pre-order, level-order

* The evaluation step may perform various operations, e.g.:
* Print the contents of the expression tree
e Return the “value" of the expression tree
« Generate code

e Perform semantic analysis &
optimization

» elc.

See tree-traversal example

Pattern & Framework Tutorial B r (’_:; S g Douglas C. Schmidt

Using the Expression Tree Application

» By default, the expression tree application can run in “succinct mode,” e.g.:
% tree-traversal

> 1+4*3/2

7 % tree-traversal -v

> (8/4)*3+1 format [in-order]

I expr [expression]

D print [in-order|pre-order|post-order|level-order]

eval [post-order]
* You can also run quit

the expression > format in-order
tree application > expr 1+4*3/2

in “verbose > eval post-order
mode,” e.g.: v

> quit

39

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

How Aot to Design an Expression Tree Application

A typical algorithmic-based solution for implementing expression trees uses a
C struct/union to represent the main data structure

typedef struct Tree Node {
enum { NUM, UNARY, BINARY } tag ;
short use ; /* reference count */
union {
char op [2];
int num_;
} o;
#define num_ o.num_
#define op_ o0.o0p_
union {
struct Tree Node *unary_;
struct { struct Tree Node *1 _, *r_;} binary_;
} C;
#define unary_ c.unary
#define binary_ c.binary_
} Tree_Node;

40

Pattern & Framework Tutorial B r .n:; S € Douglas C. Schmidt

How Aot to Design an Expression Tree Application

Here’s the memory layout & class diagram for a struct Tree_ Node:

tag
LsE
op Tree
_______ Node
1m l ‘2
llI'IElI'}" l
Tree
binary Node
MEMORY CLASS
LAYOUT RELATIONSHIPS

41

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

How Aot to Design an Expression Tree Application

A typical algorithmic implementation uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree (Tree_Node *root) {

switch (root->tag)

case NUM: printf (“%d”, root->num_); break;

case UNARY:
printf ("(%s”, root->op [O0]);
print_tree (root->unary);
printf ("')"); break;

case BINARY:
printt ("(7);
print_tree (root->binary .l); // Recursive call
printf (“%s”, root->op [0]);
print_tree (root->binary_ .r_); // Recursive call
printf ("")"); break;

default:
printf (error, unknown type '");

}

42

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Limitations with the Algorithmic Approach

« Little or no use of encapsulation: Data structures are “passive”
Implementation details available to functions that do their work
clients explicitly
* Incomplete modeling of the » The program organization makes it
application domain, which results in hard to extend
 Tight coupling between e.g., Any small changes wiill
nodes/edges in union ripple through entire
representation design/implementation
« Complexity being in algorithms e Easy to make mistakes switching
rather than the data structures, on type tags

e.g., switch statements are used to
select between various types of
nodes in the expression trees

» Wastes space by making worst-
case assumptions wrt structs &
unions

43

Pattern & Framework Tutorial B r .n:; S € Douglas C. Schmidt

An OO Alternative Using Patterns & Frameworks

o Start with OO modeling of the “expression tree” application domain

\ < Binary
//f Nodes

 Model a free as a collection of
nodes

» Nodes are represented in an
Inheritance hierarchy that
captures the particular properties
of each node

* e.g., precedence levels, different
associativities, & different arities

» Conduct commonality/variability analysis (CVA) to determine stable
Interfaces & points of variability

» Apply patterns to guide design/implementation of framework
* Integrate with C++ STL algorithms/containers where appropriate

44

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Design Problems & Pattern-Oriented Solutions

Design Problem

Expression tree structure ~ Composite

Encapsulating variability & Bridge
simplifying memory

management

Tree printing & evaluation Iterator & Visitor
Consolidating user Command
operations

Ensuring correct protocol State
for commands

Consolidating creation of Abstract Factory

Variabilities & Factory
Method
Parsing expressions & Interpreter &

creating expression tree Builder

45

Pattern & Framework Tutorial D r C’:; S € Douglas C. Schmidt

Design Problems & Pattern-Oriented Solutions

Nodes Driving the application Reactor

/ Design Problem Pattern(s)
.4’}*————— Binary

event flow
Supporting multiple Template Method
S operation modes & Strategy
‘Af,’;‘i,fg)) Centralizing global Singleton
-~ Objects effectively
Implementing STL Prototype
Leaf : .
Nodes iterator semantics

Eliminating loops via the Adapter
STL std: :for_each()

algorithm
Provide no-op commands Null Object

None of these patterns are restricted to expression tree applications...

46

Pattern & Framework Tutorial

D d @” (_Z Douglas C. Schmidt

Managing Global Objects Effectively

Goals:

— Centralize access to
objects that should be
visible globally, e.qg.:

— command-line options
that parameterize the
behavior of the program

— The object (Reactor)
that drives the main
event loop

Constraints/forces:

— Only need one instance
of the command-line
options & Reactor

— Global variables are

% tree-traversal -v /J Verbose mode]

format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit

> format in-order
> expr 1+4*3/2
> eval post-order
7

> quit

/—[Succinct mode]

% tree-traversal
> 1+4*3/2

problematic in C++

.
47

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Solution: Centralize Access to Global Instances

Rather than using global variables, create a central access point to global
Instances, e.g.:

int main (int argc, char *argvl])
{

// Parse the command-line options.

iIT (10ptions::instance ()->parse _args (argc, argv))
return O;

// Dynamically allocate the appropriate event handler
// based on the command-line options.
Expression _Tree Event Handler *tree event handler =
Expression_Tree Event Handler::make handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.

Reactor::instance ()->register_input handler
(tree_event_handler);

// ...

48

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Singleton object creational
Intent
ensure a class only ever has one instance & provide a global point of access
Applicability

— when there must be exactly one instance of a class, & it must be
accessible from a well-known access point

— when the sole instance should be extensible by subclassing, & clients
should be able to use an extended instance without modifying their code

Structure
Singleton
If (uniquelnstance == 0)
static instance{) ©---q9--—-=---——1 uniquelnstance = new Singleton;
singletonOperation() return uniquelnstance;

getSingletonData()

static unigquelnstance
singletonData

49

Pattern & Framework Tutorial D r .;’5 S g Douglas C. Schmidt
Singleton object creational
Consequences Known Uses

+ reduces namespace pollution

+ makes it easy to change your mind &
allow more than one instance

+ allow extension by subclassing
— same drawbacks of a global if misused

— Implementation may be less efficient
than a global

— concurrency pitfalls strategy creation &
communication overhead

Implementation

— static instance operation

— registering the singleton instance
— deleting singletons

— Unidraw's Unidraw object

— Smalltalk-80 ChangeSet,
the set of changes to code

— InterViews Session object
See Also

— Double-Checked Locking
Optimization pattern from
POSA2

— “To Kill a Singleton”
www.research.ibm.com/
designpatterns/pubs/
ph-jun96.txt

50

Pattern & Framework Tutorial D r (.D S G Douglas C. Schmidt

Expression Tree Structure

Goals:

— Support “physical” structure of expression tree
e e.g., binary/unary operators & operators

— Provide “hook” for enabling arbitrary operations on tree nodes
e Via Visitor pattern

Constraints/forces:

— Treat operators & operands
uniformly

— No distinction between
one & many

o1

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Solution: Recursive Structure

 Model a free as a recursive
collection of nodes

» Nodes are represented in an
Inheritance hierarchy that captures
the particular properties of each
node

* e.g., precedence levels, different
associativities, & different arities

 Binary nodes recursively contain
two other nodes; unary nodes
recursively contain one other node

52

Pattern & Framework Tutorial r G" G Douglas C. Schmidt

Overview of Tree Structure & Creation Patterns

Interpreter

Expression_Tree_
Context

Interpreter_Context

p Expression_Tree |1

Interpreter

Symbol

-

Component_Node
Composite_ Composite_
Leaf_Node Binary_Node Unary_Node

Composite_ Composite_ Composite_
Add_Node Substract_Node Negate_Node
Composite_ Composite_
Multiply_Node Divide_Node

Composite Builder

53

-
- -
- -

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Component_Node

Abstract base class for composable expression tree node objects

Interface:

virtual ~Component_Node (void)=0
virtual int item (void) const
virtual Component_Node * |eft (void) const

virtual Component_Node * right (void) const
virtual void accept (Visitor &visitor) const

Subclasses:
Leaf Node, Composite Unary Node, Composite Binary Node, etc.

Commonality: base class interface is used by all nodes in an expression
tree

Variability: each subclass defines state & method implementations that
are specific for the various types of nodes

54

http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classVisitor.html�

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Component_Node Hierarchy

\ 4 v

Component_Mode
—— Composite_Unary_MNode Leaf_Mode
—< Composite_Binary_kode Composite_Megate_Mode

AN
| | | |

Composite_Add_Mode Cormposite_Divide_Mode Cormposite_Multiply_MNode Composite_Subtract Mode

Note the inherent recursion in this hierarchy

¢+ i.e.,, a Composite Binary Node /s 4 Component_Node & a
Composite Binary Node also has Component_Nodes!

55

Pattern & Framework Tutorial B r C:j S g Douglas C. Schmidt

Composite object structural
Intent
treat individual objects & multiple, recursively-composed objects
uniformly
Applicability

objects must be composed recursively,
and no distinction between individual & composed elements,
and objects in structure can be treated uniformly

__r
Structure Component | ©9, Component_Node]
operation()
add(Component) o=
et e.g., Composite_Unary_Node,
Composite_Binary Node, etc.
[e.g., Leaf Node] /k
Leaf Composite %gn/
operation() operation() O-----=F---------- 'Org?lo?)g:a?ir:)i:%?n s

add(Component)
remove(Component)
getChild(int)

56

Pattern & Framework Tutorial D rQ ! C Douglas C. Schmidt

-’ oo
Composite object structural

Consequences Known Uses
+ uniformity: treat components the same — ET++ Vobjects

regardless of complexity — InterViews Glyphs,
+ extensibility: new Component subclasses work Styles

wherever old ones do — Unidraw Components,
— overhead: might need prohibitive numbers of MacroCommands

objects — Directory structures
— Awkward designs: may need to treat leaves as on UNIX & Windows

lobotomized composites — Naming Contexts in
Implementation CORBA
— do Components know their parents? — MIME types in SOAP

— uniform interface for both leaves & composites?

— don’t allocate storage for children in Component
base class

— responsibility for deleting children

57

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Parsing Expressions & Creating Expression Tree

Goals: Constraints/forces:

— Simplify & centralize the creation of all — Don’t recode existing
nodes in the composite expression tree clients

— Extensible for future types of — Add new expressions

expression orderings without recompiling

“In-order” expression = -5*(3+4)
“pre-order” expression = *-5+34
“post-order” expression = 5-34+*
“level-order” expression = *-+534

o8

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Solution: Build Parse Tree Using Interpreter

e Each make tree() method in the appropriate state object uses an
Interpreter to create a parse tree that corresponds to the expression input

e This parse tree is then traversed to build each node in the corresponding
expression tree

—————————————————— > Interpreter_Context

In_Order_ :
Uninitialized_ :
State :
1

make_tree(-=zz===z'3 Interpreter [~~-7

1

I

Lo Symhol
| | |
Mumber Ciperator Unary_Operator
Add Divide ALty subtract

59

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Interpreter

Parses expressions into parse tree & generate corresponding expression tree

Interface: Interpreter (void)
virtual —~Interpreter (void)
Expression interpret (Interpreter Context &context,

USES Tree const std::string &input)
Interpreter_Context (void) create\s\\
~Interpreter_Context (void) * Symbol (Symbol *left,
int get (std::string variable) Symbol *right)
void set (std::string variable, int value) virtual ~Symbol (void)
void print (void) virtual int precedence (void)=0
void reset (void) virtual Component_Node * build (void)=0

Commonality: Provides a common interface for parsing expression input &
building expression trees

Variability: The structure of the expression trees can vary depending on the
format & contents of the expression input

60

http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html�

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Interpreter class behavioral

Intent

Given a language, define a representation for its grammar along with an
Interpreter that uses the representation to interpret sentences in the
language

Applicability
— When the grammar is simple & relatively stable
— Efficiency is not a critical concern
Structure | Context

Client

——M AbsiraciExpression |"'-

interpret{ Context)

|)\ |

TerminalExXprassion MonterminalExpression Foo—

fnterpratiContext) interpretiContaxt)

61

Pattern & Framework Tutorial D r ..:,f u ("_i:

Douglas C. Schmidt

Interpreter

Consequences

+ Simple grammars are easy to change & extend, e.g.,
all rules represented by distinct classes in an orderly
manner

+ Adding another rule adds another class

— Complex grammars are hard to implement &
maintain, e.g., more interdependent rules yield more
Interdependent classes

Implementation
» Express the language rules, one per class

« Alternations, repetitions, or sequences expressed as
nonterminal expresssions

o Literal translations expressed as terminal expressions

» Create interpret method to lead the context through
the interpretation classes

class behavioral

Known Uses

» Text editors &Web

browsers use
Interpreter to lay
out documents &
check spelling

For example, an
equation in TeX is
represented as a
tree where internal
nodes are
operators, e.g.
square root, &
leaves are
variables

62

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Builder object creational

Intent

Separate the construction of a complex object from its representation so
that the same construction process can create different representations

Applicability
— Need to isolate knowledge of the creation of a complex object from its
parts

— Need to allow different implementations/interfaces of an object's parts

Structure Director builder Builder
— e

Construch) o BuiidPart()
i
|
|
i A

for ali objects in structure { =

builder—=BuildPart
} uilder—>BuildPart() ConcreteBuilder [------- "‘ Product

BuildPart{}
GetResult()

63

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Builder object creational

Consequences Known Uses

+ Can vary a product's internal representation ¢ ACE Service Configurator

. framework
+ Isolates code for construction &

representation
+ Finer control over the construction process
Implementation

« The Builder pattern is basically a Factory
pattern with a mission

* A Builder pattern implementation exposes
itself as a factory, but goes beyond the
factory implementation in that various
implementations are wired together

64

Pattern & Framework Tutorial r G" G Douglas C. Schmidt

Summary of Tree Structure & Creation Patterns

Interpreter

Expression_Tree_
Context

Interpreter_Context

p Expression_Tree |1

Interpreter

Symbol

-

Component_Node
Composite_ Composite_
Leaf_Node Binary_Node Unary_Node

Composite_ Composite_ Composite_
Add_Node Substract_Node Negate_Node
Composite_ Composite_
Multiply_Node Divide_Node

Composite Builder

65

-
- -
- -

Pattern & Framework Tutorial r @u G Douglas C. Schmidt

Overview of Tree Traversal Patterns

Visitor

Iterator

Evaluation_Visitor Print_Visitor

Expression_Tree_
Iterator

Expression_Tree_
Iterator_Impl

Level_Order_Expression_
Tree_Iterator_Impl
In_Order_Expression_

Tree_lterator_Impl

Post_Order_Expression_
Tree_lterator_Impl
Pre_Order_Expression_
Tree_lterator_Impl

std::stack

Bridge

66

Pattern & Framework Tutorial B r (’_:; S g Douglas C. Schmidt

Encapsulating Variability &
Simplifying Memory Managment

Goals
— Hide many sources of variability in expression tree construction & use

— Simplify C++ memory management, i.e., minimize use of new/delete in
application code

Constraints/forces:

— Must account for the fact that STL algorithms & iterators have “value
semantics”

for (Expression Tree::iterator iter = tree.begin ();
iter = tree.end ();
++i1ter)
(*1ter).accept (print_visitor);

— Must ensure that exceptions don’t cause memory leaks

67

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Solution: Decouple Interface & Implementation(s)

A 4

Component_Mode
Composite_Unary_MNode Leaf _Mode
Cormposite_Binary_Mode Composite_Megate_Mode

AN
| | | |

Composite_Add_Mode Composite_Divide_Mode Composite_Multiply_MNode Composite_Subtract_Mode

Expression_Tree

» Create a public interface class (Expression_Tree) used by clients & a
private implementation hierarchy (rooted at Component_Node) that

encapsulates variability

* The public interface class can perform reference counting of
Implementation object(s) to automate memory management

« An Abstract Factory can produce the right implementation (as seen later)

68

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Expression _Tree

Interface for Composite pattern used to contain all nodes in expression tree

Interface: Expression_Tree (void)
Expression_Tree (Component_Node *root)
Expression_Tree (const Expression_Tree &t)
void operator= (const Expression_Tree &t)
~Expression_Tree (void)
Component_Node * get_root (void)
bool is_null (void) const
const int item (void) const
Expression_Tree left (void)
Expression_Tree right (void)
iterator begin (const std::string &traversal _order)
iterator end (const std::string &traversal order)
const_iterator begin (const std::string &traversal order) const
const_iterator end (const std::string &traversal order) const

Commonality: Provides a common interface for expression tree operations
Variability: The contents of the expression tree nodes can vary depending

on the expression
69

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�

Pattern & Framework Tutorial B r C:j S g Douglas C. Schmidt

Bridge object structural

Intent

Separate a (logical) abstraction interface from its (physical)
Implementation(s)

Applicability
— When interface & implementation should vary independently
— Require a uniform interface to interchangeable class hierarchies

Structure
imp
Abstraction < = Implementor
operation() o operationimp()
L imp.operationimp()
I |
ConcretelmplementorA ConcretelmplementorB
RefinedAbstraction

operationimpy() operationimp()

70

Pattern & Framework Tutorial D rQ ! C Douglas C. Schmidt

p
-’ ==

Bridge object structural

Consequences

+ abstraction interface & implementation are independent

+ implementations can vary dynamically

+ Can be used transparently with STL algorithms & containers
— one-size-fits-all Abstraction & Implementor interfaces
Implementation

» sharing Implementors & reference counting

» See reusable Refcounter template class (based on STL/boost
shared_pointer)

 creating the right Implementor (often use factories)
Known Uses

o ET++ Window/WindowPort

 libg++ Set/{LinkedList, HashTable}

« AWT Component/ComponentPeer

71

Pattern & Framework Tutorial B r C’:; S g Douglas C. Schmidt

Tree Printing & Evaluation

Goals:
Algo 1: Print all
— Create a framework for the values of the

performing algorithms that nodes in the tree
affect nodes in a tree

Algo 2: Evaluate
the “yield” of the
nodes in the tree

Constraints/forces:

— support multiple algorithms
that can act on the expression
tree

— don’t tightly couple algorithms
with expression tree structure
— e.g., don’'t have “print” &
“evaluate” methods in the
node classes

72

Pattern & Framework Tutorial D r C’:; S € Douglas C. Schmidt

Solution: Encapsulate Traversal

Iterator

— encapsulates a traversal algorithm
without exposing representation

details to callers
e.g.,

— “in-order iterator” = -5*(3+4)
— “pre-order iterator” = *-5+34
— “post-order iterator” = 5-34+*

— “level-order iterator” = *-+534

A 4

Expression_Tree_lterator

Expression_Tree_Iterator_Impl

In_Order_Expression_Tree_lIterator_Impl

7T

Post_Order_Expression_Tree_lIterator_Impl

Level Order Expression_Tree Iterator Impl

Pre_Order_Expression_Tree_lterator_Impl

Note use of the Bridge pattern to encapsulate variability

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Expression_Tree_ lterator

Interface for Iterator pattern that traverses all nodes in tree expression

Interface: Expression_Tree_lterator
(const Expression_Tree_lterator &)
Expression_Tree_lterator
(Expression_Tree lterator _Impl *)
Expression_Tree operator * (void)
const Expression_Tree operator * (void) const
Expression_Tree Iterator & operator++ (void)
Expression_Tree_Iterator operator++ (int)
bool operator== (const Expression_Tree lterator &rhs)
bool operator!= (const Expression_Tree_Iterator &rhs)

Commonality: Provides a common interface for expression tree iterators
that conforms to the standard STL iterator interface

Variability: Can be configured with specific expression tree iterator
algorithms via the Bridge & Abstract Factory patterns

See Expression_Tree State.cpp for example usage

http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator__Impl.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Expression_Tree_lterator Impl

Implementation of the Iterator pattern that is used to define the various
Iterations algorithms that can be performed to traverse the expression tree

Interface: Expression_Tree lterator_Impl (const
Expression_Tree &tree)
virtual —Expression_Tree lterator_Impl (void)
virtual Expression_Tree operator * (void) =0
virtual const Expression_Tree operator * (void) const =0
virtual void operator++ (void)=0
virtual bool operator== (const
Expression_Tree lterator_Impl &rhs) const =0
virtual bool operator!= (const
Expression_Tree Iterator_Impl &rhs) const =0
virtual Expression_Tree_Iterator_Impl * clone (void)=0

Commonality: Provides a common interface for implementing expression
tree iterators that conforms to the standard STL iterator interface

Variability: Can be subclasses to define various algorithms for accessing
nodes in the expression trees in a particular traversal order

75

http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html�

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Iterator object behavioral

Intent

access elements of a aggregate (container) without exposing its
representation

Applicability
— require multiple traversal algorithms over an aggregate
— require a uniform traversal interface over different aggregates
— when aggregate classes & traversal algorithm must vary independently
Structure

Aggregate lterator
createlterator() first()
next()
isDone()
A currentltem()

ConcreteAggregate

Concretelterator

createlterator() @

return new Concretelterator(this)

76

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Comparing STL Iterators with GoF lterators

STL iterators have “value-semantics”, e.g.:

for (Expression Tree::i1terator iter = tree.begin (C’Level
Order™);
iter = tree.end (’Level Order™);
++iter)
(*1ter).accept (print_visitor);
In contrast, “GoF iterators have “pointer semantics”, e.g.:

iterator *iter;

for (iter = tree.createlterator (’Level Order™);
iter->done () == false;
iter->advance ())
(iter->currentElement ())->accept (print_visitor);

delete 1ter;

Bridge pattern simplifies use of STL iterators in expression tree application

77

Pattern & Framework Tutorial D r .;’-} u g Douglas C. Schmidt
Iterator object behavioral
Consequences Known Uses

+ flexibility: aggregate & traversal are independent e« C++ STL iterators
+ multiple iterators & multiple traversal algorithms ¢ JDK Enumeration,

— additional communication overhead between Iterator
iterator & aggregate e Unidraw Iterator

— This is particularly problematic for iterators in
concurrent or distributed systems

Implementation

 internal versus external iterators

« violating the object structure’s encapsulation
e robust iterators

« synchronization overhead in multi-threaded
programs

 batching in distributed & concurrent programs

78

Pattern & Framework Tutorial s) G S Q Douglas C. Schmidt

=
Visitor
e Defines action(s) at each step of traversal & avoids wiring action(s) in nodes
e Iterator calls nodes’s accept(Visitor) at each node, e.g.:
voild Leaf Node::accept (Visitor &v) { v.visit (Cthis); }
e accept() calls back on visitor using “static polymorphism”

Interface: _ o
virtual void visit (const Leaf Node &node)=0

virtual void visit (const Composite _Negate Node &node)=0
virtual void visit (const Composite _Add_Node &node)=0
virtual void visit (const Composite Subtract Node &node)=0
virtual void visit (const Composite Divide_Node &node)=0
virtual void visit (const Composite_Multiply Node &node)=0

Commonality: Provides a common accept() method for all expression
tree nodes & common visit() method for all visitor subclasses

Variability: Can be subclassed to define ‘*"i‘”
specific behaviors for the visitors & nodes | |

Evaluation_Visitar Frint_“isitaor

79

http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Negate__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Add__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Subtract__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Divide__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html�
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Multiply__Node.html�

Pattern & Framework Tutorial s) G S Q Douglas C. Schmidt

il

Print_Visitor

e Prints character code or value for each node

class Print Visitor - public Visitor {
public:
virtual void visit (const Leaf Node &);
virtual void visit (const Add Node &);
virtual void visit (const Divide Node &);
// etc. for all relevant Component Node subclasses

};
e Can be combined with any traversal algorithm, e.g.:

Print_Visitor print visitor;
for (Expression Tree::iterator iter =
tree.begin (C’post-order™);
iter = tree.end (’post-order™);
++iter)
(*1ter).accept (print_visitor); // calls visit (this);

See Expression_Tree State.cpp for example usage

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Print_Visitor Interaction Diagram

e The iterator controls the order in which accept() is called on each node
In the composition

e accept() then “visits” the node to perform the desired print action

Leaf_Node (5) Composite_Negate_Node print_visitor
accept(print_visitor)
visit(this)
-
||
_T cout<< node.item ();
accept(print_visitor) | visit(this) :[
- -
:[cout<< *-
[t
T -

81

Pattern & Framework Tutorial B r .n:; S € Douglas C. Schmidt

Evaluation Visitor

e This class serves as a visitor for
evaluating nodes in an expression
tree that is being traversed using
a post-order iterator
—e.g., 5-34+*

e |t uses a stack to keep track of the post-
order expression tree value that has
been processed thus far during the
iteration traversal, e.g.:

1. S = [5] push(node.item())
2.5 =[-5] push(-pop())
3.S=[-5,3] push(hode.item()))
4.S = [-5, 3, 4] push(node.item())
5.5=[-57] push(pop()+pop())

6.S = [-33] push(pop()*pop())

class Evaluation Visitor :
public Visitor { /7* ... */ };

82

Douglas C. Schmidt
Evaluation_Visitor Interaction Diagram

e The iterator controls the order in which accept() is called on each node
In the composition

e accept() then “visits” the node to perform the desired evaluation action

Pattern & Framework Tutorial D r C’:; u €

Leaf_Node (5) Composite_Negate_Node eval_visitor
., accept(eval_visitor)
visit(this)
-
||
T stack.push(node.item ());
accept(eval_visitor) | visit(this) :[
- -

:[stack_.push(-stack_.pop());

—d

T .

83

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Visitor object behavioral

Intent

Centralize operations on an object structure so that they can vary
independently but still behave polymorphically

Applicability
— when classes define many unrelated operations

— class relationships of objects in the structure rarely change, but the
operations on them change often

— algorithms keep state that’'s updated during traversal

Structure
ObjectStructure =-:J Element
accept(Visitor)
Visitor J\
visitConcreteElement1(ConcreteElement1) [|
visitConcreteElement2(ConcreteElement2)
ConcreteElementl ConcreteElement2
4 accept(Visitor v) Q accept(Visitor v) Q

1 1
ConcreteVisitor \ :

visitConcreteElement1(ConcreteElement1)
visitConcreteElement2(ConcreteElement2)

Note “static polymorphism” based on method overloading by type

v.visitConcreteElement1(this) N v.visitConcreteElement2(this) p

Pattern & Framework Tutorial D r .;’-} u g Douglas C. Schmidt
Visitor object behavioral
Consequences

+ flexibility: visitor algorithm(s) & object structure are independent
+ localized functionality in the visitor subclass instance

— circular dependency between Visitor & Element interfaces

— Visitor brittle to new ConcreteElement classes

Implementation
» double dispatch
» general interface to elements of object structure

Known Uses

« ProgramNodeEnumerator in Smalltalk-80 compiler
* IRIS Inventor scene rendering

 TAO IDL compiler to handle different backends

85

Pattern & Framework Tutorial r @u G Douglas C. Schmidt

Summary of Tree Traversal Patterns

Visitor

Iterator

Evaluation_Visitor Print_Visitor

Expression_Tree_
Iterator

Expression_Tree_
Iterator_Impl

Level_Order_Expression_
Tree_Iterator_Impl
In_Order_Expression_

Tree_lterator_Impl

Post_Order_Expression_
Tree_lterator_Impl
Pre_Order_Expression_
Tree_lterator_Impl

std::stack

Bridge

86

Pattern & Framework Tutorial r G" G Douglas C. Schmidt

Overview of Command & Factory Patterns
AbstractFactory

Expression_Tree_Command_
Factory_Impl
Concrete_Expression_Tree_
Command_Factory_Impl
Expression_Tree
Command_Impl

Expression_Tree
Event_Handler

Expression_Tree
Command_Factory

Expression_Tree
Context

Expression_Tree
Command

Expr_Command Eval_Command

Command

87

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Consolidating User Operations

Goals: % tree-traversal -v
— support execution of format [in-order]
user operations expr [expression]
— support macro print [in-order|pre-order|post-order|level-order]
commands eval [post-order]
— support undo/redo quit
_ > format in-order
Constraints/forces: > expr 1+2*3/2

— scattered operation > print in-order
implementations

- 1+2*3/2
— Consistent memory _
management > print pre-order

+1/*232

> eval post-order
4

> quit

88

Pattern & Framework Tutorial s) @ S g Douglas C. Schmidt

Solution: Encapsulate Each Request w/Command

A Command encapsulates Command may

= an operation (execute()) = implement the operations

= an inverse operation (unexecute()) itself, or

= a operation for testing reversibility = delegate them to other
(boolean reversible()) object(s)

= State for (un)doing the operation

Expression_Tree_Command

\ 4

Expression_Tree_Command_Impl

/\
I | I I

Format_Command Print_Command Eval_ Command Quit_Command

Expr_Command

Macro_Command

Note use of Bridge pattern to encapsulate
variability & simplify memory management

89

Pattern & Framework Tutorial B r G S g Douglas C. Schmidt

Expression_Tree_Command

Interface for Command pattern used to define a command that performs
an operation on the expression tree when executed

Interface: .
Expression Tree Command

(Expression_Tree_Command_Impl *=0)
Expression_Tree_Command (const
Expression_Tree_Command &)
Expression_Tree_Command & operator= (const Expression_Tree_Command &)
~Expression_Tree_Command (void)
bool execute (void)
boolunexecute (void)

Commonality: Provides a common interface for expression tree
commands

Variability: The implementations of the expression tree commands can
vary depending on the operations requested by user input

90

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�

Pattern & Framework Tutorial D r C’:; S € Douglas C. Schmidt

List of Commands = Execution History

Undo: Redo:

R r

past future past future

91

Pattern & Framework Tutorial D r ..n_:; S € Douglas C. Schmidt

Command object behavioral

Intent
Encapsulate the request for a service
Applicability
— to parameterize objects with an action to perform
— to specify, queue, & execute requests at different times
— for multilevel undo/redo

Structure

Client Invoker [>———————=| Command

execute()

JAN

» Target

target | concreteCommand

action()

execute() o--------|------ target.action()

state

92

Pattern & Framework Tutorial D r .;’-} u g Douglas C. Schmidt
Command object behavioral
Consequences Known Uses
+ abstracts executor of a service e InterViews Actions

MacApp, Unidraw Commands

JDK'’s UndoableEdit,
AccessibleAction

+ supports arbitrary-level undo-redo

+ composition yields macro-commands

— might result in lots of trivial command
subclasses

Emacs
Microsoft Office tools

— excessive memory may be needed to
support undo/redo operations

Implementation

* copying a command before putting it
on a history list

« handling hysteresis
e supporting transactions

93

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Consolidating Creation of Variabilities

Goals: Constraints/forces:

— Simplify & centralize the creation of all — Don'’t recode
variabilities in the expression tree existing clients
application to ensure semantic compatibility — Add new variabilities

— Be extensible for future variabilities without recompiling

Expression_Tree_Command » Expression_Tree_Command_Impl
/\
I I | I
Format_Command Print_Command Eval Command Quit_Command
Expr_Command Macro_Command

\ 4

Expression_Tree Iterator _Impl

/\

Expression_Tree_Iterator

I |
In_Order_Expression_Tree_lIterator_Impl —| Post_Order_Expression_Tree_lIterator_Impl

Level Order_Expression_Tree_lterator_Impl Pre_Order_Expression_Tree_lterator_Impl

94

Pattern & Framework Tutorial D r @u g Douglas C. Schmidt
Solution: Abstract Object Creation

Instead of

Expression_Tree Command command
= new Print_Command ();

Use

Expression_Tree Command command
= command_Tfactory.make command (“‘print™);

where command_factory is an instance of
Expression _Tree Command_Factory or anything else that makes sense

wrt our goals

Expression_Tree_Command_Factory_Impl

/\

Concrete_Expression_Tree
Command_Factory_Impl

95

A 4

Expression_Tree _Command_Factory

Pattern & Framework Tutorial

B r (L!u g Douglas C. Schmidt

Expression _Tree Command_Factory

Interface for Abstract Factory pattern used to create appropriate command
based on string supplied by caller

Expression Tree Command Factory

Interface:

Expression

Tree

(Expression_Tree Context &tree context)

Expression Tree Command Factory

(const Expression_Tree_Command_Factory &f)

void operator= (const Expression_Tree_Command_Factory &f)

~Expression_Tree_Command_Factory (void)

Command make

command (const std::string &S)

Expression

Tree

Command make

format_command (const std::string &)

Expression

Tree

Command make

expr_command (const std::string &)

Expression

Tree

Command make

print._command (const std::string &)

Expression

Tree

Command make

eval_command (const std::string &)

Expression

Tree

Command make

quit_command (const std::string &)

Expression

Tree

Command make

macro_command (const std::string &)

Commonality: Provides a common interface to create commands

Variability: The implementations of the expression tree command
factory methods can vary depending on the requested commands

96

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�

Pattern & Framework Tutorial

7Y

qun/

Douglas C. Schmidt

'_—;

Factory Structure

Expression_Tree_Command_
Factory

\ 4

Expression_Tree_Command _
Factory_Impl

/\

Concrete_Expression_Tree
Command_Factory Impl

make_format_command() - - -
make_expr_command() ----
make_print_command() - - -+
make_eval_command() ----
make_macro_command() - - +

Expression_Tree_Command

A 4

Expression_Tree_Command_Impl

| /\

_______ L 5| F

ormat_Command

make_quit_command() =~~~

_______________ ----F> Expr_Command

Eval_Command

Macro_Command

mmmm----------——-——--------3 Quit_ Command

Note use of Bridge pattern to encapsulate
variability & simplify memory management

97

Pattern & Framework Tutorial B r C:j S g Douglas C. Schmidt

Factory Method class creational

Intent

Provide an interface for creating an object, but leave choice of object’s
concrete type to a subclass

Applicability

when a class cannot anticipate the objects it must create or a class
wants its subclasses to specify the objects it creates

Structure
Creator
N
Product factoryMethod() o-—-|---— product = factoryMethod()
T anOperation()
ConcreteProduct (€= ConcreteCreator
factoryMethod() = return new concreteProducty) N

98

Pattern & Framework Tutorial D rQ ! r Douglas C. Schmidt

-’ o
Factory Method class creational

Consequences Known Uses
+By avoiding to specify the class nhame of the e InterViews Kits

concrete class &the detaills of its creation the « ET++

client code has become more flexible WindowSystem
+The client is only dependent on the interface « AWT Toolkit
- Construction of objects requires one additional . The ACE ORB (TAO)

class in some cases . BREW

Implementation
e There are two choices here

» The creator class is abstract & does not implement creation
methods (then it must be subclassed)

» The creator class is concrete & provides a default
Implementation (then it can be subclassed)

e Should a factory method be able to create different variants? If so
the method must be equipped with a parameter

99

UNIX open() syscall

Pattern & Framework Tutorial D r C’:; S € Douglas C. Schmidt

Abstract Factory object creational
Intent
create families of related objects without specifying subclass names
Applicability

when clients cannot anticipate groups of classes to instantiate
Structure

AbstractFactory [Client
createProductA()
createProductB() AbstractProductA =
| |
== ProductA2 ProductA1 = --,
1 1
i |
ConcreteFactory1 - ! ConcreteFactory2 | - ______ i
createProductA() E createProductA() E :
createProductB() : createProductB() : | AbstractProductB I"—'—:
1 1 1

I /k |
. | |

See Uninitialized State Factory &
Expression_Tree Event Handler for Factory pattern variants

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Abstract Factory object creational

Consequences Known Uses

+ flexibility: removes type (i.e., subclass) — InterViews Kits
dependencies from clients — ET++

+ abstraction & semantic checking: hides WindowSystem
product’s composition — AWT Toolkit

— hard to extend factory interface to create new — The ACE ORB (TAO)
products

Implementation
e parameterization as a way of controlling interface size

« configuration with Prototypes, i.e., determines who
creates the factories

 abstract factories are essentially groups of factory
methods

101

Pattern & Framework Tutorial r G" G Douglas C. Schmidt

Summary of Command & Factory Patterns
AbstractFactory

Expression_Tree_Command_
Factory_Impl
Concrete_Expression_Tree_
Command_Factory_Impl
Expression_Tree
Command_Impl

Expression_Tree
Event_Handler

Expression_Tree
Command_Factory

Expression_Tree
Context

Expression_Tree
Command

Expr_Command Eval_Command

Command

102

Pattern & Framework Tutorial r @u G Douglas C. Schmidt

Overview of State Pattern

Expression_Tree_ Expression_Tree_
Context State
Uninitialized_
State

Pre_Order_ Post_Order_ In_Order_ Level_Order_
Uninitialized_State Uninitialized_State Uninitialized_State Uninitialized_State
Pre_Order_ Post_Order_ In_Order_ Level_Order_
Initialized_State Initialized_State Initialized_State Initialized_State

<< use >>

State =~ LTl > Interpreter

103

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Ensuring Correct Protocol for Commands

Goals: % tree-traversal -v
— Ensure that users format [in-order]
follow the correct expr [expression]
protocol when entering print [in-order|pre-order|post-order|level-order]
commands eval [post-order]
Constraints/forces: quit
— Must consider context ~ fo.rme}t ln—order/[Protocol violation]
of previous commands > print in-order

to determine protocol Error: Expression_Tree_State::print called
conformance, e.g., in invalid state

— Format must be called
first

— expr must be called
before print or eval

— Print & eval can be
called in any order

104

Pattern & Framework Tutorial B r C’:; S g Douglas C. Schmidt

Solution: Encapsulate Command History as States

e The handling of a user command depends on the history of prior
commands

e This history can be represented as a state machine

make_tree()

format *_Order_
0 Uninitialized
State

* Order_
Initialized
State

print() eval()
@ quit() make_tree()

Uninitialized
State

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Solution: Encapsulate Command History as States

e The state machine can be encoded using various subclasses that enforce
the correct protocol for user commands

Expression_Tree_Context

Expression_Tree_state

|

Uninitialized_State

A\ 4

In_Order_Uninitialized_State Level_Order_Uninitialized_State Fost_Crder_Uninitialized_5State Fre_Crder_Uninitialized_State
In_Drder_Initialized_State Level_Crder_Initialized_State Fost_Order_Initialized_State Fre_Crder_Initialized_State

Note use of Bridge pattern to encapsulate
variability & simplify memory management

106

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Expression _Tree Context

Interface for State pattern used to ensure that commands are invoked
according to the correct protocol

Interface: _ _
void format (const std::string &new_format)

void make_tree (const std::string &expression)
void print (const std::string &format)
void evaluate (const std::string &format)
Expression_Tree_State * state (void) const
void state (Expression_Tree_State *new_state)
Expression_Tree & tree (void)
void tree (const Expression_Tree &new_tree)

Commonality: Provides a common interface for ensuring that expression
tree commands are invoked according to the correct protocol

Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested

operations & the current state

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�

Pattern & Framework Tutorial s) @ S f-: Douglas C. Schmidt

il

Expression_Tree State

Implementation of the State pattern that is used to define the various
states that affect how users operations are processed

Interface:

virtual void format (Expression_Tree_Context &context,
const std::string &new_format)

virtual void make_tree (Expression_Tree Context &context,
const std::string &expression)

virtual void print (Expression_Tree Context &context,

const std::string &format)
virtual void evaluate (Expression_Tree_Context &context,
const std::string &format)

Commonality: Provides a common interface for ensuring that expression
tree commands are invoked according to the correct protocol

Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested

operations & the current state

http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html�
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html�

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

State object behavioral

Intent

Allow an object to alter its behavior when its internal state changes—the
object will appear to change its class

Applicability
— When an object must change its behavior at run-time depending on
which state it is in

— When several operations have the same large multipart conditional
structure that depends on the object's state

Structure
Context &lam e State
Reguest() O Hanale()
I
e A
state->Handle() |
ConcreteStateA ConcreteStateB
Handle]) Handie{)

109

Pattern & Framework Tutorial D rQ ! C Douglas C. Schmidt

-’ \o»
State object behavioral
Consequences Known Uses

+ It localizes state-specific behavior & ~ * The State pattern & its

partitions behavior for different states ~ @pPplication to TCP connection
protocols are characterized in:

+ |t makes state transitions explicit Johnson, R.E. & J. Zweig.
: “Delegation in C++. Journal of
+ State objects can be shared Object-Oriented Programming,”
— Can result in lots of subclasses that 4(11):22-35, November 1991
are hard to understand e Unidraw & Hotdraw drawing

Implementation tools

 Who defines state transitions?
» Consider using table-based alternatives

» Creating & destroying state objects

110

Pattern & Framework Tutorial r @u G Douglas C. Schmidt

Summary of State Pattern

Expression_Tree_ Expression_Tree_
Context State
Uninitialized_
State

Pre_Order_ Post_Order_ In_Order_ Level_Order_
Uninitialized_State Uninitialized_State Uninitialized_State Uninitialized_State
Pre_Order_ Post_Order_ In_Order_ Level_Order_
Initialized_State Initialized_State Initialized_State Initialized_State

<< use >>

State =~ LTl > Interpreter

111

Pattern & Framework Tutorial r G:} S G Douglas C. Schmidt

Overview of Application Structure Patterns

Reactor Singleton

Expression_Tree Expression_Tree
Event_Handler Context

Verbose_Expression_ Macro_Expression_

Tree_Event_Handler Tree_Event_Handler

Expression_Tree_ Strate gy

Command

Expression_Tree
Command_Factory

<< create >>

G et

112

Pattern & Framework Tutorial g)r (? o Douglas C. Schmidt
p

Driving the Application Event Flow

Constraints/forces:

Goals:
— Decouple expression tree application from — Don’t recode existing
the context in which it runs clients
— Support inversion of control — Add new event handles

without recompiling

EXPRESSION
TREE
FUNCTIONALITY

STL
algorithms

-
-
-

INVOKES

113

Pattern & Framework Tutorial D r @ u g

Douglas C. Schmidt

Solution: Separate Event Handling from
Event Infrastructure

e Create a reactor to detect input on various sources of events & then
demux & dispatch the events to the appropriate event handlers

e Create concrete event handlers that perform the various operational
modes of the expression tree application

e Register the concrete event handlers with the reactor
e Run the reactor’s event loop to drive the application event flow

Reactor

<>

register_handler()
remove_handler()
run_event_loop()

end_event_loop()

[
»

Event_Handler

|

Expression_Tree_Ewvent_Handler

f

Macro_Comimand_Expression_Tree_Event_Handler

Verbose Expression_Tree_Event_Handler

114

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Reactor & Event Handler

An object-oriented event demultiplexor & dispatcher of event handler
callback methods in response to various types of events

Interface:

virtual void ~Event_Handler (void) =0
virtual void delete_this (void)

virtual void handle_input (void)=0

uses

/

~Reactor (void)
void run_event_loop (void)
void end_event_loop (void)
void reqgister_input_handler (Event Handler *event_handler)
void remove_input_handler (Event_Handler *event_handler)
static Reactor *instance (void)

Commonality: Provides a common interface for managing & processing
events via callbacks to abstract event handlers

Variability: Concrete implementations of the Reactor & Event_Handlers
can be tailored to a wide range of OS demuxing mechanisms &
application-specific concrete event handling behaviors

115

http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html�

Pattern & Framework Tutorial s) G S Q Douglas C. Schmidt

il

Reactor Interactions

: Main Program : Exression Tree : Reactor : Synchronous

Event Handler Event
‘ Demultiplexer
con. Event _
1. Initialize Handler Events |register_handler()]
,0/7856' get_handle()
» —_— — 9
| Handle |
-~ — - - — 1 - = 4
2. EVé’/?l‘. handle_events() L [Handles | select() event
handling — > >
/7&5‘6' i andle_event() =- — — "
P | — service() ”’r’ | Handles

Observations
e Note inversion of control

e Also note how long-running event handlers can
degrade the QoS since callbacks steal the reactor’s
thread!

See main.cpp for example of using Reactor to drive event loop

g)r n-‘-; u 0

Pattern & Framework Tutorial "

Douglas C. Schmidt

Reactor

Intent

allows event-driven applications to demultiplex & dispatch service
requests that are delivered to an application from one or more clients

Applicability

— Need to decouple event handling from event
detecting/demuxing/dispatching

— When multiple sources of events must be handled in a single thread

object behavioral

Reactor *

Structure Event Handler

handle_events() dispatches

handle_event ()
register _handler() * oWns
‘ get_handle()
remove handler() Handle

| @ * notifies 4

handle set

<<uses>> \V

Concrete Event Concrete Event

Synchronous

Handler A

Handler B

Event Demuxer

select ()

handle_event ()
get_handle()

handle_event ()

get_handle()

117

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Reactor object behavioral
Consequences Known Uses
+ Separation of concerns & portability * InterViews Kits
+ Simplify concurrency control o ET++ WindowSystem
— Non-preemptive AWT Toolkit
o X Windows Xt

Implementation ACE & The ACE ORB (TAO)

e Decouple event demuxing
mechanisms from event dispatching

 Handle many different types of
events, e.g., input/output events,
signals, timers, etc.

118

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Supporting Multiple Operation Modes

% tree-traversal -v /J Verbose mode]

format [in-order]

expr [expression]

print [in-order|pre-order|post-order|level-order]
eval [post-order]

quit

> format in-order

> expr 1+4*3/2

> eval post-order

Goals:

— Minimize effort required
to support multiple
modes of operation

— e.g., verbose &
succinct

Constraints/forces:

— support multiple
operational modes 7

- don't tightly couple the

operational modes with [succinct mode]
the program structure)
to enable future

enhancements > 1+4*3/2

:
119

%06 tree-traversal

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Solution: Encapsulate Algorithm Variability

Implement algorithm once in base class & let subclasses define variant parts

void handle_input (void) { // template method
Event_Handler prompt_user (); // hook method

/\

Expression_Tree_ Event Handler

std::string input;

: it (get_input (input) == false) // hook method
handle_input() o--------=---- | L Reactor: :instance ()->end_event_loop ();

pronjpt_usero Expression_Tree Command command
get_input() = make_command (input); // hook method

make _command()
execute_command()

/\ }

[|
Verbose_ Expression_ Macro_Command_
Tree_Event Handler Expression_Tree_

Event Handler

it (lexecute_command (command)) // hook method
Reactor: :instance ()->end_event loop ();

Expression_Tree Command make_command

rompt_user
prompt_ 0 (const std::string &input) {

make_command() @ prompt_user() return

: rnake_;xnnrnand()C>-——- command_factory_.make_macro_command (input);
}
|

Expression_Tree_Command make_command
(const std::string &input) {
return
command_factory_.make _command (input);
by

120

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Expression_Tree Event Handler

Provides an abstract interface for handling input events associated with the
expression tree application

Interface:

virtual void handle_input (void)
static Expression_Tree Event Handler * make handler (bool verbose)
virtual void prompt_user (void)=0
virtual bool get_input (std::string &)
virtual Expression_Tree_Command make command

(const std::string &input)=0

virtual bool execute_command
(Expression_Tree_Command &)

Commonality: Provides a common interface for handling user input
events & commands

Variability: Subclasses implement various operational modes, e.g.,

verbose vs. succinct mode
Note make handler () factory method variant

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html�

Pattern & Framework Tutorial B r (’_:; S g Douglas C. Schmidt

Template Method class behavioral
Intent
Provide a skeleton of an algorithm in a method, deferring some steps to
subclasses
Applicability

— Implement invariant aspects of an algorithm once & let subclasses define
variant parts

— Localize common behavior in a class to increase code reuse
— Control subclass extensions

Structure
AbstractClass
TemplateMeathod{) G- -f------------ PrimitiveQperationi(}
PrimitiveCperalion i) LA
PrimitiveOperation2() PrimitiveOpearation2()

;

ConcreteClass

PrimitiveOperation 1()
PrimitiveCparation2()

122

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Template Method class behavioral
Consequences
+ Leads to inversion of control (“Hollywood principle”: don't call us — we'll
call you)

+ Promotes code reuse
+ Lets you enforce overriding rules
— Must subclass to specialize behavior (cf. Strategy pattern)

Implementation

 Virtual vs. non-virtual template method

* Few vs. lots of primitive operations (hook method)
« Naming conventions (do_*() prefix)

Known Uses

e InterViews Kits

o ET++ WindowSystem
 AWT Toolkit

« ACE & The ACE ORB (TAO)

123

Pattern & Framework Tutorial B r C:j S g Douglas C. Schmidt

Strategy object behavioral

Intent

define a family of algorithms, encapsulate each one, & make them
Interchangeable to let clients & algorithms vary independently

Applicability
— when an object should be configurable with one of many algorithms,
— and all algorithms can be encapsulated,
— and one interface covers all encapsulations

Structure
Context (Composition) k> »| Strategy (Compositor)
contextinterface() algorithminterface()

ConcreteSirategyA ConcreteStrategyB ConcreleStrategyC

algorithminterface() algorithminterface() algorithminterface()

124

Pattern & Framework Tutorial D A QL r

LI RE Douglas C. Schmidt
Strategy object behavioral
Consequences Known Uses
+ greater flexibility, reuse InterViews text formatting
+ can change algorithms dynamically RTL register allocation &
— strategy creation & communication scheduling strategies
overhead e ET++SwapsManager

calculation engines

 The ACE ORB (TAO) Real-
time CORBA middleware

— Inflexible Strategy interface

— semantic incompatibility of multiple
strategies used together

Implementation See Also
« exchanging information between a * Bridge pattern (object
structural)

Strategy & its context

e static strategy selection via
parameterized types

125

Pattern & Framework Tutorial s) G S Q Douglas C. Schmidt

=
Comparing Strategy with Template Method
Strategy Template Method
+ Provides for clean separation + No explicit forwarding necessary
between components — Close coupling between subclass(es) &
through interfaces base class
+ Allows fp_r dynamic — Inheritance hierarchies are static &
composition cannot be reconfigured at runtime
+ Allows for flexible mixing & — Adding features through subclassing
matching of features may lead to a combinatorial explosion
— Has the overhead of — Beware of overusing inheritance—
forwarding inheritance is not always the best
— Suffers from the identity choice
Crisis — Deep inheritance hierarchy (6 levels &
— Leads to more fragmentation more) in your application is a red flag

Strategy is commonly used for blackbox frameworks
Template Method is commonly used for whitebox frameworks

126

Pattern & Framework Tutorial r G:} S G Douglas C. Schmidt

Summary of Application Structure Patterns

Reactor Singleton

Expression_Tree Expression_Tree
Event_Handler Context

Verbose_Expression_ Macro_Expression_

Tree_Event_Handler Tree_Event_Handler

Expression_Tree_ Strate gy

Command

Expression_Tree
Command_Factory

<< create >>

G et

127

Pattern & Framework Tutorial s) @ S f-: Douglas C. Schmidt

il

Implementing STL Iterator Semantics

Goals:

— Ensure the proper semantics of post-increment operations for STL-based
Expression_Tree_ lterator objects

Constraints/forces:

— STL pre-increment operations are easy to implement since they simply
iIncrement the value & return *this, e.qg.,

iterator &operator++ (void) { ++...; return *this; }
— STL post-increment operations are more complicated, however, since must

make/return a copy of the existing value of the iterator before
Incrementing its value, e.g.,

iterator &operator++ (int) {
iterator temp = copy *this; ++...; return temp;

}

— Since our Expression_Tree lterator objects use the Bridge pattern
It is tricky to implement the “copy_*this” step above in a generic way

128

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Solution: Clone a New Instance From a
Prototypical Instance

Expression_Tree_lterator | j mpl_

Expression_Tree_lterator_Impl

- > clone()
operator++ (int) ¢
it yAN
| | '
: In_Order_Expression_Tree_lIterator_Impl Post_Order _Expression_Tree_Iterator_Impl
|
. | clone() clone()
|
|
! Level Order_Expression_Tree_lterator_Impl Pre_Order_Expression_Tree_lterator_Impl
1
i clone() clone()
1
iterator
Expression_Tree lterator::operator++ (int)
{
iterator temp (impl_->clone ());
++Cimpl_);

return temp;

}

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Expression_Tree Iterator Impl

Implementation of Iterator pattern used to define various iterations
algorithms that can be performed to traverse an expression tree

Interface: Expression Tree Iterator Impl

(const Expression_Tree &tree)
virtual Component_Node * operator * (void)=0
void operator++ (void)=0

virtual bool operator== (const Expression_Tree
Iterator _Impl &) const=0

virtual bool operator!= (const Expression_Tree
Iterator _Impl &) const=0

virtual Expression_Tree_Iterator _Impl * clone (void)=0

Commonality: Provides a common interface for expression tree iterator
Implementations

Variability: Each subclass implements the clone() method to return a

deep copy of itself

As a general rule it's better to say ++iter than iter++

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html�

Pattern & Framework Tutorial D r ..n_:; S € Douglas C. Schmidt

Prototype object creational

Intent

Specify the kinds of objects to create using a prototypical instance &
create new objects by copying this prototype

Applicability

— when a system should be independent of how its products are
created, composed, & represented

— when the classes to instantiate are specified at run-time; or

Client protatype o« Prototype
Operation() 9 Cloney]
= £ ;
p = prototype—=Clona(] [|
ConcretePrototype | | ConcretePrototype2
Cloned) ¢ i | Clone() @
— : | S ——
ratum copy of s=if | return copy of self |

131

Pattern & Framework Tutorial D r .;’5 S g Douglas C. Schmidt
Prototype object creational
Consequences Known Uses
+ can add & remove classes at runtime by — The first widely known
cloning them as needed application of the Prototype

pattern in an object-oriented

+ reduced subclassing minimizes/eliminates - _
language was in ThingLab

need for lexical dependencies at run-time

— every class that used as a prototype must — Coplien describes idioms
itself be instantiated related to the Prototype

: ++ '
— classes that have circular references to rpna;;errelggrrncles é‘ \?a{\r/;iions
other classes cannot really be cloned y P
Implementation — Etgdb debugger for ET++

_ Use prototvpe manaager — The music editor example is
P P ° based on the Unidraw

— Shallow vs. deep copies drawing framework

— Initializing clone internal state within a
uniform interface

132

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Part I11: Wrap-Up: Observations

Patterns & frameworks support Patterns are applicable in all
- design/implementation at a more stages of the OO lifecycle
abstract level — analysis, design, & reviews
— treat many class/object interactions - realization & documentation
as a unit _ reuse & refactoring

— often beneficial after initial design
— targets for class refactorings

e Variation-oriented
design/implementation

— consider what design aspects are
variable

— identify applicable pattern(s)
— vary patterns to evaluate tradeoffs
— repeat

133

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Part I1l1: Wrap-Up: Caveats

Don’t apply patterns & frameworks blindly
« Added indirection can yield increased complexity, cost

« Understand patterns to learn how to better develop/use
frameworks

Resist branding everything a pattern
 Articulate specific benefits
« Demonstrate wide applicability

* Find at least three existing examples from code other than your
own!

Pattern & framework design even harder than OO design!

134

Pattern & Framework Tutorial D r C’:; S g Douglas C. Schmidt

Concluding Remarks

Patterns & frameworks promote

. . . CLIENT 702@ _Oj COMPONENT [@
e /ntegrated design & implementation I 2| smrvav
reuse D —

PORTABLE OBJECT ADAPTER

e uniform design vocabulary

understanding, restructuring, & team
communication

e a basis for automation

a “new” way to think about OO
design & implementation

135

Pattern & Framework Tutorial s) @ S f-: Douglas C. Schmidt

il

Pattern References

Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,
0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,
0-470-05902-8

Pattern-Oriented Software Architecture, Vol. 5, Buschmann, et al.,
0-471-48648-5

136

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Pattern References (cont'd)

More Books
Analysis Patterns, Fowler; 0-201-89542-0
Concurrent Programming in Java, 2" ed., Lea, 0-201-31009-0

Pattern Languages of Program Design
Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds., 0-201-89527-7
Vol. 3, Martin, et al., eds., 0-201-31011-2
Vol. 4, Harrison, et al., eds., 0-201-43304-4

Vol. 5, Manolescu, et al., eds., 0-321-32194-4
AntiPatterns, Brown, et al., 0-471-19713-0
Applying UML & Patterns, 2? ed., Larman, 0-13-092569-1
Pattern Hatching, Vlissides, 0-201-43293-5
The Pattern Almanac 2000, Rising, 0-201-61567-3

137

Pattern & Framework Tutorial D r @ S g Douglas C. Schmidt

Pattern References (cont'd)

Even More Books

Small Memory Software, Noble & Weir, 0-201-59607-5

Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-31957-7
Smalltalk Best Practice Patterns, Beck; 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.,
0-201-18462-1

Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5
Building Parsers with Java, Metsker, 0-201-71962-2

Core JZEE Pattemns, Alur, et al., 0-130-64884-1

Design Patterns Explained, Shalloway & Trott, 0-201-71594-5
The Joy of Patterns, Goldfedder, 0-201-65759-7

The Manager Pool, Olson & Stimmel, 0-201-72583-5

138

Pattern & Framework Tutorial D r G S g Douglas C. Schmidt

Pattern References (cont'd)

Early Papers
“Object-Oriented Patterns,” P. Coad; Comm. of the ACM, 9/92
“Documenting Frameworks using Patterns,” R. Johnson; OOPSLA '92

“Design Patterns: Abstraction & Reuse of Object-Oriented Design,”
Gamma, Helm, Johnson, Vlissides, ECOOP '93

Articles

Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,
Java Developers Journal, C++ Report

How to Study Patterns
http://www.industriallogic.com/papers/learning.html

139

Pattern & Framework Tutorial B r C’:; S € Douglas C. Schmidt

Pattern-Oriented Conferences

PLoP 2009: Pattern Languages of Programs
October 2009, Collocated with OOPSLA

EuroPLoP 2010, July 2010, Kloster Irsee, Germany

See hillside.net/conferences/ for
up-to-the-minute info

140

http://hillside.net/conferencesnavigation.htm�

Pattern & Framework Tutorial s) @ S f-: Douglas C. Schmidt

il

Mailing Lists

patterns@cs.uiuc.edu: present & refine patterns
patterns-discussion@cs.uiuc.edu: general discussion
gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns

siemens-patterns@cs.uiuc.edu: discussion on
Pattern-Oriented Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface patterns

business-patterns@cs.uiuc.edu: discussion on patterns for
business processes

Ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed
systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

http://hillside.net/patterns/mailing.htm�

	Slide Number 1
	Goals of this Presentation
	Tutorial Overview
	Part I: Motivation & Concepts
	Part I: Motivation & Concepts
	Part I: Motivation & Concepts
	Recurring Design Structures
	A Pattern…
	Four Basic Parts of a Pattern
	Example: Observer
	Observer object behavioral
	Modified UML/OMT Notation
	Observer object behavioral
	Observer object behavioral
	Design Space for GoF Patterns
	GoF Pattern Template (1st half)
	�GoF Pattern Template (2nd half)
	Life Beyond GoF Patterns
	Overview of Pattern Sequences & Languages
	Benefits & Limitations of Patterns
	Overview of Frameworks
	Slide Number 22
	Slide Number 23
	Categories of OO Frameworks
	Slide Number 25
	Applying SCV to an Avionics Framework
	Applying SCV to an Avionics Framework
	Comparing Reuse Techniques
	Taxonomy of Reuse Techniques
	Benefits of Frameworks
	Benefits of Frameworks
	Benefits of Frameworks
	Limitations of Frameworks
	Using Frameworks Effectively
	Stages of Pattern & Framework Awareness
	Part II: Case Study: Expression Tree Application
	Overview of Expression Tree Application
	Overview of Expression Tree Application
	Using the Expression Tree Application
	How Not to Design an Expression Tree Application
	How Not to Design an Expression Tree Application
	How Not to Design an Expression Tree Application
	Limitations with the Algorithmic Approach
	An OO Alternative Using Patterns & Frameworks
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Managing Global Objects Effectively
	Solution: Centralize Access to Global Instances
	Singleton object creational
	Singleton object creational
	Expression Tree Structure
	Solution: Recursive Structure
	Overview of Tree Structure & Creation Patterns
	Component_Node	
	Component_Node Hierarchy	
	Composite object structural
	Composite object structural
	Parsing Expressions & Creating Expression Tree
	Solution: Build Parse Tree Using Interpreter
	Interpreter
	Interpreter class behavioral
	Interpreter class behavioral
	Builder object creational
	Builder object creational
	Summary of Tree Structure & Creation Patterns
	Overview of Tree Traversal Patterns
	Encapsulating Variability & �Simplifying Memory Managment
	Solution: Decouple Interface & Implementation(s)
	Expression_Tree
	Bridge object structural
	Bridge object structural
	Tree Printing & Evaluation
	Solution: Encapsulate Traversal	
	Expression_Tree_Iterator
	Expression_Tree_Iterator_Impl
	Iterator object behavioral
	Comparing STL Iterators with GoF Iterators
	Iterator object behavioral
	Visitor
	Print_Visitor
	Print_Visitor Interaction Diagram
	Evaluation_Visitor
	Evaluation_Visitor Interaction Diagram
	Visitor object behavioral
	Visitor object behavioral
	Summary of Tree Traversal Patterns
	Overview of Command & Factory Patterns
	Consolidating User Operations
	Solution: Encapsulate Each Request w/Command	
	Expression_Tree_Command
	List of Commands = Execution History
	Command object behavioral
	Command object behavioral
	Consolidating Creation of Variabilities
	Solution: Abstract Object Creation
	Expression_Tree_Command_Factory
	Factory Structure
	Factory Method class creational
	Factory Method class creational
	Abstract Factory object creational
	Abstract Factory object creational
	Summary of Command & Factory Patterns
	Overview of State Pattern
	Ensuring Correct Protocol for Commands
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Expression_Tree_Context
	Expression_Tree_State
	State object behavioral
	State object behavioral
	Summary of State Pattern
	Overview of Application Structure Patterns
	Driving the Application Event Flow
	Solution: Separate Event Handling from Event Infrastructure
	Reactor & Event Handler
	Reactor Interactions
	Reactor object behavioral
	Reactor object behavioral
	Supporting Multiple Operation Modes
	Solution: Encapsulate Algorithm Variability	
	Expression_Tree_Event_Handler
	Template Method class behavioral
	Template Method class behavioral
	Strategy object behavioral
	Strategy object behavioral
	Comparing Strategy with Template Method
	Summary of Application Structure Patterns
	Implementing STL Iterator Semantics
	Solution: Clone a New Instance From a Prototypical Instance
	Expression_Tree_Iterator_Impl
	Prototype object creational
	Prototype object creational
	Part III: Wrap-Up: Observations
	Part III: Wrap-Up: Caveats
	Concluding Remarks
	Pattern References
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern-Oriented Conferences
	Mailing Lists

