
CS279 Course Overview

Joe Hoffert
Distributed Real-time Embedded (DRE) Group

Institute for Software Integrated Systems
Vanderbilt University

What is CS279 About?

 This class is about picking an interesting
software project and building it using an agile
development approach

2

3

•Required textbooks

None!!!

CS 279 Course Information

•CS 279 class web page
•www.dre.vanderbilt.edu/~jhoffert/cs279/

•My office hours in Featheringill Hall room
226 are
•Tues/Thurs 2:25pm to 4:25pm

Please send all questions to
jhoffert@dre.vanderbilt.edu

I’ll send the answers to the class
mailing list

mailto:jules@dre.vanderbilt.edu�

4

CS 279 Ground Rules
• Build cycles must be completed on time

• Work must be your own* All group projects!!!

• Bring your laptops every day (just in case)

• Your in-class participation is expected (e.g., answering
questions)

• You’ll get out of this course what you put into it so be
prepared to work hard

• Be prepared for occasional guest lectures

• No quizzes, no tests, no exam  instead: weekly demos,
code reviews, and a final demo

• Avail yourself of help, e.g., office hours, TAs, mailing list

5

CS 279 Course Contents
•Focus on developing large-scale
software projects in a team setting:

•Code must be turned in every build
cycle

•Agile software development practices
must be followed

•Bi-weekly demos of code

•Everyone must be a member of a team
working on a large scale software
project

•The course will completely revolve
around producing quality software.

•I will introduce advanced topics in
Java/C++, patterns, etc. to aid the
projects

•I assume you know Java or C++
fairly well, e.g., you know how to
use Eclipse, the classpath,
Java/C++ compilers, STL, ACE,
etc.

•Feel free to ask me questions via
email/class/office hours related to:

•Eclipse

•Java, C++

•Framework XYZ

•Patterns

•Development practices

•Promoting your open source
project

•Etc…

6

CS 279 Course Contents

•My main goal of the class is to facilitate
and guide everyone through the
implementation of a larger scale
software project using agile development

•You will learn by doing

•Feel free to suggest advanced topics
that you would like to cover in class:

•Java web applications

•Cool threading stuff

•Java generics/C++ templates

•Java annotations

•Etc.

•I am also free to help outside of class
with any questions you have

•Every member of each team must
contribute

•Although I will be focused on
groups as a whole, I will also pay
attention to each team member’s
individual effort

•I will look at Google code/SVN to
see who committed what code

•I will look at the bug tracking
system to see who was reporting
errors

•I will look at project wikis to see
who posted what

•I will pay attention in class to who
is contributing to the discussion

7

CS 279 Course Work

•There will be ~6 build cycles

•All projects must be implemented in
Java or C++

•Can be done on Windows, Linux,
Mac, etc.

•Must be done as a team

•Your grade will be based on:

•70% bi-weekly build cycle execution

•20% final project demo/presentation

•10% in-class participation

•Waiting until the end of the course
and trying to code everything
(regardless if it works) will produce
a poor grade

•A key part of the course is staying
on the development schedule,
following the development
guidelines, and contributing each
class period

•Feel free to use any open source
code that you want (as long as you
aren’t just ripping it off or writing a
wrapper around it)

Lessons from Conan

 The secret of steel has
always carried with it a
mystery. You must learn its
riddle, Conan. You must
learn its discipline. For no
one - no one in this world
can you trust. Not men, not
women, not beasts. Steel
you can trust

8

Lessons from Agile Development

 The secret of code has
always carried with it a
mystery. You must learn its
riddle, undergrad. You must
learn its discipline. For no
project manager - no
developer in this world can
you trust. Not UML diagram,
not test plan, not architect
hype. Code you can trust

 (if it is thoroughly tested)

9

Lessons from Agile Development

 We will be using an Agile
development process in
CS279

 Short concentrated build
cycles that focus on working
code

 Client-focused, we will be
demoing each others’
software at the end of each
build cycle

10

CS279 Development Cycle
 We will use a 2 week development cycle that will start

on Tuesdays

 1st Tuesday of cycle:
– Discuss/select user stories in class (rough drafts

prepared before class)
– Discuss code design for selected user stories

 1st Thursday of cycle:
– Barebones code skeletons for user stories checked in

before class
– Each group designs tests for another group’s user

stories (your barebones code needs to be sufficient for
others to design tests for)

– Discuss test coverage and testing strategies
– Advanced Java or C++ topic introduced (time permitting)

 1st cycle starts Tuesday, Jan. 26
11

CS279 Development Cycle (1st Tuesday)
 1st Tuesday of cycle:

– Discuss/select user stories in class (rough drafts prepared
before class)
 Each team member presents a user story.
 Appropriate scope for each story?
 Appropriate number of user stories?
 User stories assigned to team members?
 How do user stories fit with end-semester user stories?

12

– Discuss code design for selected user stories
 What design approach makes sense?
 Patterns appropriate for a user story?
 What kind of infrastructure is needed?
 Potential problems?

CS279 Development Cycle (1st Thursday)
 1st Thursday of cycle:

– Barebones code skeletons for user stories checked in before
class
 Any superfluous code for the current (and past) user stories?
 Does all code relate to a user story?
 Patterns used/appropriate?

13

– Each group designs tests for another group’s user stories
(your barebones code needs to be sufficient for others to
design tests for)
 What design approach makes sense?
 What kind of infrastructure is needed?
 Potential problems?

– Discuss test coverage and testing strategies
 Automation/scripting (e.g., ACE “push button” tests)
 Who should write tests?
 Who should run tests?
 What attitude should the tester(s) have (e.g., cooperative, antagonistic)?
 Regression tests
 Profilers

User Stories

 What is a “user story”?

 A user story should be a
short 1-2 sentence
explanation of something
that a user can do with the
software:
– A student can add a new course to

his/her schedule
– A player can view the results of a

match

 User stories must be
assigned to team members

 Team members will be
graded on their assigned
user stories & integrated
functionality

14

User Stories

 Each user story will be
simple but will require a lot
of things to work under the
hood

 User stories emphasize
working fully integrated
software rather than large
bodies of un-integrated code

 At the end of the build cycle,
if a user can’t complete the
story, it isn’t finished

15

The user story…..

What is actually
needed to make
the story work

User Stories

 At the beginning, you should
pick fewer user stories since
you will need to build the
“hidden base” of software
beneath it

 Later, you can increase the #
of user stories per build
cycle because the bulk of
your base is complete

16

Later stories can
be integrated into
the existing base

Hidden base

Code Design
 Patterns should be used wherever possible

– We will learn new patterns as needed in
class

 Testing is critical, your code must be
designed so that it can easily be tested
– Plan to use mock objects early on for

complex parts (e.g., faking remote server
interaction)

 Agile development assumes that code will
be refactored and extended
– Make sure that your code doesn’t exhibit

tight coupling
– You will be refactoring your code after code

reviews….tightly-coupled code will land you
in a world of painful code rewriting

18

Coding Standards
 Basic coding standards:

– The code format standard should be what you get when run the
Eclipse automated code formatter (ctrl + shift + f)

– Groups should agree on variable naming conventions. I
recommend all lowercase letters for local variables, all caps for
static variables, and one of the following for member variables:
 Foo myVariable; //All references to foo use “this”
 this.myVariable = ….;

 Foo myVariable_;
 myVariable_ = ….;

– Proper Java package naming
 org.myprojectname.foo.bar

 You must use an open source license
– License headers should be at the top of each source file!
– I recommend the Apache License v2

19

Example Apache License Header
/**
* Copyright 2010 Joe Hoffert *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); *
* you may not use this file except in compliance with the License. *
* You may obtain a copy of the License at *
* *
* http://www.apache.org/licenses/LICENSE-2.0 *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.*
* See the License for the specific language governing permissions and *
* limitations under the License. *
**/

20

Project Requirements

 Every group must maintain their project in
Google code

 You must use SVN or CVS (preferably SVN)

 You must maintain a wiki that provides
detailed instructions on how to build, run,
and test your code

 You must produce a binary distribution at
the end of each build cycle

21

SVN Commit Rules

 Rule #1: Never ever ever commit code that
doesn’t compile

22

NFL equivalent of checking
in code that doesn’t compile

SVN Commit Rules

 Rule #2: Always include a commit comment that
briefly summarizes what changes you are
checking in

23

SVN Commit Rules

 Rule #3: Always try to make sure your code
passes the unit tests before checking it in

24

SVN Comment Conventions

When you commit code use the following conventions
– For user stories, prefix with “US” + cycle + “:” + and user story number

followed by normal text comments (e.g., US3:2 …).
– For unit tests, prefix “UT” + cycle + “:” + and user story number followed

by normal text comments (e.g., UT3:2 …).
– For integration tests, prefix “IT” + cycle + “:” + and user story number

followed by normal text comments (e.g., IT3:2 …).
– For bugs/issues use “B” prefix followed by issue ID plus normal text

comments (e.g., B7 …).

25

CS279 Development Cycle Requirements

 Every user story needs at least one associated unit test or
integration test.

 SVN comments need to be specified accurately (e.g., using
“UT3:2” for unit tests).

 Again, all issues/bugs need to be either
– Resolved by the end of the cycle OR
– Justification for rescoping

26

Bugs

 If a team member checks in code
and you notice that it breaks
something, you must report it as a
bug in the bug tracker (e.g., issues
in google code)

 Make sure that you provide
sufficient information to reproduce
the bug

 All bugs either
– must be cleaned up by the end of the

build cycle or
– used as a rational for rescoping a user

story

27

CS279 Development Cycle

 2nd Tuesday:
– Initial story implementations turned in (checked into

SVN before class)
– In-class code reviews of user story implementations
– Bug/Issue discussions
– Advanced Java/C++ topic introduced (time permitting)

 2nd Thursday:
– Code refactored per code review recommendations

(checked into SVN before class)
– Binary distributions made available as file releases

(checked into SVN before class)
– User stories demoed
– In-class user acceptance testing
– Advanced Java/C++ topic introduced (time permitting)

28

CS279 Development Cycle (2nd Tuesday)

 2nd Tuesday:
– Initial story implementations turned in (checked into

SVN before class)
– In-class code reviews of user story implementations

 Teams make presentations
 Any in-cycle refactoring/changes of direction?
 What (potential) problems are there?
 Any patterns used?
 Does all the code relate to the user stories?

– Bug/Issue discussions
 Were any bugs found
 Did any issues or concerns arise while coding?

– Advanced topic, e.g., patterns (time permitting)

29

CS279 Development Cycle (2nd Thursday)

 2nd Thursday:
– Code refactored per code review recommendations

(checked into SVN before class)
 Teams present refactoring work
 Briefly describe bugs reported

– Binary distributions made available as file releases
(checked into SVN before class)

– User stories demoed
 Each team demos the user stories for the cycle

– In-class user acceptance testing
 One team runs the user stories for another project

– Lessons learned for projects
– Lessons learned for cycle

 Different structure, interaction, format helpful in class

– Advanced topic, e.g., patterns (time permitting)

30

Implementing User Stories

 Only build the minimum of what is
needed to realize the user story

 All code created during the build cycle
should be directly traceable back to a
user story

 On the 2nd Tuesday, we will do in class
code reviews
– I will do code reviews for anyone who doesn’t

have their code reviewed in class

 Code will need to be refactored by the
following Thursday per the code
review recommendations

31

Implementing User Stories

 At the beginning, it is ok to “fake” or
use mock objects for parts of the
implementation

 For example, you may want to fake the
communication with a remote server
by creating a mock object that
automatically returns the expected
answers or stock data

32

What if I Just Can’t Get X to Work?

 If you realize that a user story is much
harder than expected to implement,
don’t panic
– Discuss the issue with your group and send me

email saying that you are going to postpone the
user story until the next build cycle

– Prioritize your other user stories and finish them
– At the latest, you must notify me by the start of

class on the 2nd Tuesday

 Start early so that you can predict if
you aren’t going to finish a user story

 If you have a midterm, etc. during a
build cycle, go easy on yourself and
pick easier/fewer user stories

33

In-class User Acceptance Testing

34

 On the last class of a build cycle, we
will first let each team demo their
working user story implementations

 Groups will then test each others’
user story implementations

 Every group will be required to
have a binary distribution that
other groups can download to
test

 Groups must have all usage
directions posted on their project
wiki (i.e., no hand holding)

 Groups can bring in user surveys
to get feedback from users
(optional)

Binary Distributions
 A binary distribution should be a compiled version of

the code that can be run fairly easily by a user

 Examples:
– A jar file, launch script, and instructions (always include

a license file too)
– A Java launcher, such as launch4j
– An Eclipse plugin distribution
– A set of project binaries and an ANT file to run them
– A C++ executable for the target environment

35

Bi-weekly Grading
 (20pts) Were all of the user stories completed or

properly postponed?

 (20pts) Were adequate tests created and executed for
the code?

 (20pts) Were bugs properly reported and addressed?

 (20pts) Did the new features pass user acceptance
testing?

 (20pts) Does the code adhere to the development
standards and was it refactored after the code review?

 (10pts Bonus) Did you bring up an interesting new topic
in class and provide examples for it (e.g., code/uml)?

 ***I reserve the right to change the weighting/grading
criteria during the semester

36

	CS279 Course Overview
	What is CS279 About?
	CS 279 Course Information
	CS 279 Ground Rules
	CS 279 Course Contents
	CS 279 Course Contents
	CS 279 Course Work
	Lessons from Conan
	Lessons from Agile Development
	Lessons from Agile Development
	CS279 Development Cycle
	CS279 Development Cycle (1st Tuesday)
	CS279 Development Cycle (1st Thursday)
	User Stories
	User Stories
	User Stories
	Code Design
	Coding Standards
	Example Apache License Header
	Project Requirements
	SVN Commit Rules
	SVN Commit Rules
	SVN Commit Rules
	SVN Comment Conventions
	CS279 Development Cycle Requirements
	Bugs
	CS279 Development Cycle
	CS279 Development Cycle (2nd Tuesday)
	CS279 Development Cycle (2nd Thursday)
	Implementing User Stories
	Implementing User Stories
	What if I Just Can’t Get X to Work?
	In-class User Acceptance Testing
	Binary Distributions
	Bi-weekly Grading

