CS279 Course Overview

Joe Hoffert
Distributed Real-time Embedded (DRE) Group
Institute for Software Integrated Systems
Vanderbilt University

A4

DG

What i1s CS279 About?

¢ This class is about picking an interesting
software project and building it using an agile
development approach

Step 3.

CS 279 Course Information

«CS 279 class web page *Required textbooks

swww.dre.vanderbilt.edu/~jhoffert/cs279/

My office hours in Featheringill Hall room None!!!

226 are
eTues/Thurs 2:25pm to 4:25pm

Please send all questions to
[hoffert@dre.vanderbilt.edu

I'll send the answers to the class
mailing list

mailto:jules@dre.vanderbilt.edu�

CS 279 Ground Rules

- Build cycles must be completed on time
—AMoH—rastheyret—ewri— All group projects!!!
- Bring your laptops every day (just in case)

- Your in-class participation is expected (e.g., answering
guestions)

« You'll get out of this course what you put into it so be
prepared to work hard

- Be prepared for occasional guest lectures

- No quizzes, no tests, no exam -» instead: weekly demos,
code reviews, and a final demo

. Avail yourself of help, e.qg., office hours, TAs, mailing list

CS 279 Course Contents

*Focus on developing large-scale | assume you know Java or C++

software projects in a team setting: fairly well, e.g., you know how to
use Eclipse, the classpath,
Java/C++ compilers, STL, ACE,
etc.

*Code must be turned in every build
cycle

* Agile software development practices

must be followed *Feel free to ask me questions via

email/class/office hours related to:
*Bi-weekly demos of code

*Eclipse
-Everyone must be a member of a team .Java, C++
working on a large scale software
project e Framework XYZ
*The course will completely revolve e Patterns

around producing quality software. «Development practices

| will introduce advanced topics in
Java/C++, patterns, etc. to aid the
projects

e Promoting your open source
project

eEfcC...

5

CS 279 Course Contents

My main goal of the class is to facilitate <Every member of each team must
and guide everyone through the contribute
Implementation of a larger scale

: . . Although | will be focused on
software project using agile development

groups as a whole, | will also pay
*You will learn by doing attention to each team member’s

-Feel free to suggest advanced topics individual effort

that you would like to cover in class: | will look at Google code/SVN to

- Java web applications see who committed what code

| will look at the bug tracking

e Cool threading stuff _
system to see who was reporting

«Java generics/C++ templates errors
«Java annotations | will look at project wikis to see
-Etc. who posted what

| will pay attention in class to who

| am also free to help outside of class _ y ot _ _
IS contributing to the discussion

with any questions you have

6

CS 279 Course Work

e There will be ~6 build cycles

* All projects must be implemented in
Java or C++

*Can be done on Windows, Linux,
Mac, etc.

*Must be done as a team

*Your grade will be based on:
* 70% bi-weekly build cycle execution
*20% final project demo/presentation

*10% in-class participation

«Waiting until the end of the course
and trying to code everything
(regardless if it works) will produce
a poor grade

* A key part of the course is staying
on the development schedule,
following the development
guidelines, and contributing each
class period

*Feel free to use any open source
code that you want (as long as you
aren’t just ripping it off or writing a
wrapper around it)

Lessons from Conan

& The secret of steel has
always carried with it a
mystery. You must learn its
riddle, Conan. You must
learn its discipline. For no naer
one - no one in this world TH:“T*
can you trust. Not men, not
women, not beasts. Steel

you can trust

/gﬂ o

'!

-

¥

A

oo W ipESCRETLN

Lessons from Agile Development

4 The secret of code has
always carried with it a
mystery. You must learn its
riddle, undergrad. You must
learn its discipline. For no naer
project manager - no GLADIATOR
developer in this world can
you trust. Not UML diagram,
not test plan, not architect

hype. Code you can trust

¢ (ifitis thoroughly tested)

o RN

oo wWibpEscngEtoa

Lessons from Agile Development

¢ We will be using an Agile
development process in

CS279
4 Short concentrated build
cycles that focus on working GLAIATOR
code | ;
¢ Client-focused, we will be % "
demoing each others’ \pn’
software at the end of each - = "*
build cycle

't

il

o RN

oo wWibpEscngEtoa

10

CS279 Development Cycle

¢ We willuse a 2 week development cycle that will start
on Tuesdays

¢ 15t Tuesday of cycle:

Discuss/select user stories in class (rough drafts
prepared before class)

Discuss code design for selected user stories

& 15t Thursday of cycle:

Barebones code skeletons for user stories checked in
before class

Each group designs tests for another group’s user
stories (your barebones code needs to be sufficient for
others to design tests for)

Discuss test coverage and testing strategies
Advanced Java or C++ topic introduced (time permitting)
& 1stcycle starts Tuesday, Jan. 26

11

12

CS279 Development Cycle (15t Tuesday)

¢ 15t Tuesday of cycle:

Discuss/select user stories in class (rough drafts prepared
before class)

Each team member presents a user story.

Appropriate scope for each story?

Appropriate number of user stories?

User stories assigned to team members?

How do user stories fit with end-semester user stories?

Discuss code design for selected user stories
What design approach makes sense?
Patterns appropriate for a user story?
What kind of infrastructure is needed?
Potential problems?

13

CS279 Development Cycle (15t Thursday)

& 15t Thursday of cycle:

Barebones code skeletons for user stories checked in before
class

Any superfluous code for the current (and past) user stories?

Does all code relate to a user story?

Patterns used/appropriate?

Each group designs tests for another group’s user stories
(your barebones code needs to be sufficient for others to
design tests for)

What design approach makes sense?

What kind of infrastructure is needed?

Potential problems?

Discuss test coverage and testing strategies
Automation/scripting (e.g., ACE “push button” tests)
Who should write tests?
Who should run tests?
What attitude should the tester(s) have (e.g., cooperative, antagonistic)?
Regression tests
Profilers

14

User Stories

What is a “user story”?

A user story should be a
short 1-2 sentence
explanation of something
that a user can do with the
software:

A student can add a new course to
his/her schedule

A player can view the results of a
match

User stories must be
assigned to team members

Team members will be
graded on their assigned
user stories & integrated
functionality

& Each user story will be

15

simple but will require a lot
of things to work under the
hood

User stories emphasize
working fully integrated
software rather than large
bodies of un-integrated code

At the end of the build cycle,
If auser can’'t complete the
story, it isn’t finished

What is actually
needed to make
the story work

User Stories

Later stories can
be integrated into
the existing base

¢ Atthe beginning, you should
pick fewer user stories since
you will need to build the
“hidden base” of software
beneath it

4 Later,you can increase the #
of user stories per build
cycle because the bulk of
your base is complete

Hidden base

16

18

Code Design

Patterns should be used wherever possible

We will learn new patterns as needed in
class

Testing is critical, your code must be
designed so that it can easily be tested

Plan to use mock objects early on for
complex parts (e.g., faking remote server
Interaction)

Agile development assumes that code will
be refactored and extended

Make sure that your code doesn’t exhibit
tight coupling
You will be refactoring your code after code

reviews....tightly-coupled code will land you
in a world of painful code rewriting

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

L b 5 TR T e e Vle] 4 o S

Foreword by Grady Booch

Coding Standards

4 Basic coding standards:

The code format standard should be what you get when run the
Eclipse automated code formatter (ctrl + shift + f)

Groups should agree on variable naming conventions. |
recommend all lowercase letters for local variables, all caps for
static variables, and one of the following for member variables:

Foo myVariable; //All references to foo use “this”
this.myVariable =;

Foo myVariable_;
myVariable = ...

Proper Java package naming
org.myprojectname.foo.bar

¢ You must use an open source license
License headers should be at the top of each source file!
| recommend the Apache License v2

19

20

Example Apache License Header

/**

Copyright 2010 Joe Hoffert

Licensed under the Apache License, Version 2.0 (the "License™);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to iIn writing, software
distributed under the License is distributed on an "AS 1S BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.
**/

ook % X R 3k X X F 3k X X %
ok % X R 2 X X F 3k X X %

21

Project Requirements

Every group must maintain their project in

Google code Google

You must use SVN or CVS (preferably SVN)

You must maintain a wiki that provides -‘
detailed instructions on how to build, run, '

and test your code

You must produce a binary distribution at SUBVERSION
the end of each build cycle

22

SVN Commit Rules

¢ Rule #1: Never ever ever commit code that
doesn’t compile

NFL equivalent of checking
in code that doesn’t compile

_— —

'S

23

SVN Commit Rules

¢ Rule #2: Always include a commit comment that
briefly summarizes what changes you are
checking in

24

SVN Commit Rules

¢ Rule #3: Always try to make sure your code
passes the unit tests before checking it in

e

-'..-
I e .-
L]

TESTING

i D i

SVN Comment Conventions

When you commit code use the following conventions

25

For user stories, prefix with “US” + cycle + “.” + and user story number
followed by normal text comments (e.g., US3:2 ...).

For unit tests, prefix “UT” + cycle + “.” + and user story number followed
by normal text comments (e.g., UT3:2 ...).

For integration tests, prefix “IT” + cycle + “.” + and user story number
followed by normal text comments (e.g., IT3:2 ...).

For bugs/issues use “B” prefix followed by issue ID plus normal text
comments (e.g., B7 ...).

CS279 Development Cycle Requirements

€ Every user story needs at least one associated unit test or
Integration test.

¢ SVN comments need to be specified accurately (e.g., using
“UT3:2” for unit tests).

€ Again, all issues/bugs need to be either
Resolved by the end of the cycle OR
Justification for rescoping

26

27

Bugs

If ateam member checks in code
and you notice that it breaks
something, you must report it as a
bug in the bug tracker (e.g., issues
In google code)

Make sure that you provide
sufficient information to reproduce
the bug

All bugs either

must be cleaned up by the end of the
build cycle or

used as a rational for rescoping a user
story

Guaranteed

28

¢

CS279 Development Cycle

2"d Tuesday:

Initial story implementations turned in (checked into
SVN before class)

In-class code reviews of user story implementations
Bug/Issue discussions
Advanced Java/C++ topic introduced (time permitting)

¢ 2"9 Thursday:

Code refactored per code review recommendations
(checked into SVN before class)

Binary distributions made available as file releases
(checked into SVN before class)

User stories demoed
In-class user acceptance testing
Advanced Java/C++ topic introduced (time permitting)

CS279 Development Cycle (2"d Tuesday)

¢ 2"d Tuesday:

Initial story implementations turned in (checked into
SVN before class)

In-class code reviews of user story implementations
Teams make presentations
Any in-cycle refactoring/changes of direction?
What (potential) problems are there?
Any patterns used?
Does all the code relate to the user stories?

Bug/Issue discussions
Were any bugs found
Did any issues or concerns arise while coding?

Advanced topic, e.g., patterns (time permitting)

29

30

CS279 Development Cycle (2" Thursday)

¢ 2"9 Thursday:

Code refactored per code review recommendations

(checked into SVN before class)

Teams present refactoring work
Briefly describe bugs reported

Binary distributions made available as file releases
(checked into SVN before class)
User stories demoed

Each team demos the user stories for the cycle

In-class user acceptance testing
One team runs the user stories for another project

Lessons learned for projects

Lessons learned for cycle
Different structure, interaction, format helpful in class

Advanced topic, e.g., patterns (time permitting)

31

Implementing User Stories

Only build the minimum of what is
needed to realize the user story

All code created during the build cycle
should be directly traceable back to a
user story

On the 2" Tuesday, we will do in class
code reviews

| will do code reviews for anyone who doesn’t
have their code reviewed in class

Code will need to be refactored by the
following Thursday per the code
review recommendations

Implementing User Stories

¢ Atthe beginning, it is ok to “fake” or
use mock objects for parts of the
Implementation

¢ For example, you may want to fake the
communication with a remote server
by creating a mock object that
automatically returns the expected
answers or stock data

32

What if | Just Can’'t Get X to Work?

¢ If you realize that a user story is much
harder than expected to implement,
don’t panic
Discuss the issue with your group and send me

email saying that you are going to postpone the
user story until the next build cycle

Prioritize your other user stories and finish them

At the latest, you must notify me by the start of
class on the 2" Tuesday

4 Start early so that you can predict if
you aren’t going to finish a user story

¢ If you have a midterm, etc. during a
build cycle, go easy on yourself and
pick easier/fewer user stories

33

34

In-class User Acceptance Testing

On the last class of a build cycle, we
will first let each team demo their
working user story implementations

Groups will then test each others’
user story implementations

¢ Every group will be required to
have a binary distribution that
other groups can download to
test

¢ Groups must have all usage
directions posted on their project
wiki (i.e., no hand holding)

& Groups can bring in user surveys
to get feedback from users
(optional)

35

Binary Distributions

¢ A binary distribution should be a compiled version of
the code that can be run fairly easily by a user

¢ Examples:

A jar file, launch script, and instructions (always include
a license file too)

A Java launcher, such as launch4;

An Eclipse plugin distribution

A set of project binaries and an ANT file to run them
A C++ executable for the target environment

36

Bi-weekly Grading

(20pts) Were all of the user stories completed or
properly postponed?

(20pts) Were adequate tests created and executed for
the code?

(20pts) Were bugs properly reported and addressed?

(20pts) Did the new features pass user acceptance
testing?

(20pts) Does the code adhere to the development
standards and was it refactored after the code review?

(10pts Bonus) Did you bring up an interesting new topic
In class and provide examples for it (e.g., code/uml)?

***| reserve the right to change the weighting/grading
criteria during the semester

	CS279 Course Overview
	What is CS279 About?
	CS 279 Course Information
	CS 279 Ground Rules
	CS 279 Course Contents
	CS 279 Course Contents
	CS 279 Course Work
	Lessons from Conan
	Lessons from Agile Development
	Lessons from Agile Development
	CS279 Development Cycle
	CS279 Development Cycle (1st Tuesday)
	CS279 Development Cycle (1st Thursday)
	User Stories
	User Stories
	User Stories
	Code Design
	Coding Standards
	Example Apache License Header
	Project Requirements
	SVN Commit Rules
	SVN Commit Rules
	SVN Commit Rules
	SVN Comment Conventions
	CS279 Development Cycle Requirements
	Bugs
	CS279 Development Cycle
	CS279 Development Cycle (2nd Tuesday)
	CS279 Development Cycle (2nd Thursday)
	Implementing User Stories
	Implementing User Stories
	What if I Just Can’t Get X to Work?
	In-class User Acceptance Testing
	Binary Distributions
	Bi-weekly Grading

