
TENA
Technical Introduction

Course

Dr. Edward T. Powell
TENA Architect

Friday, February 16, 2007

2

Schedule

5 Minutes Introduction
10 Minutes TENA Mission and Organization
15 Minutes Some Uses of TENA
45 Minutes TENA Architecture Overview
45 Minutes Stateful Distributed Objects, the TENA Meta-

Model, and the TENA Object Model
Break

15 Minutes TENA Integrated Development Environment
30 Minutes TENA Definition Language
30 Minutes Patterns Used in the Middleware API

Break
2 Hours TENA Middleware Release 5 API
15 Minutes Where To Go From Here

3

Goals of the Course

 Attendees
 Anyone who wants to know more about TENA, the TENA Middleware, or

how to create interoperable “logical ranges”
 Anyone who will be testing or using the TENA Middleware

 Goals
 Provide an overview of TENA concepts and components
 Provide users with information on the TENA Middleware software

 What you should get out of this course
 Understand what TENA is
 Understand how to create your Logical Range Object Model (LROM)
 Understand what functionality is being provided by the TENA Middleware
 Understand the key programming issues needed to use the TENA

Middleware

TENA Mission and Organization

5

TENA
Mission

 Enable Interoperability among Range systems, Facilities, Simulations,
C4ISR systems in a quick, cost-efficient manner

 Foster Reuse for Range asset utilization and for future developments

Currently, range systems tend to be non-interoperable,
“stove-pipe” systems
The purpose of TENA is to provide the architecture and
the software implementation necessary to:

Lay the Foundation for Future Test and Training Range
Instrumentation

 Support the Warfighter (Joint Vision 2010/2020)
 Enable SBA, STEP, CEE, JSB, and JDEP
 Foster Test and Training Integration
 In the long term: SAVE MONEY!

6

TENA
Project Objectives

Define a common Architecture for the test/training range
community – called “TENA” (Test & Training Enabling
Architecture)
 Define a common Object Model to be used across the ranges
 Define and build a common software middleware that will:

 Use the object model
 Enhance interoperability and reuse among the ranges

Common understanding of range processes
– the Logical Range Concept of Operations

Define and prototype common Tools to configure and
conduct multi-range, synthetic test events or training
exercises
 Create distributed, synthetic battlespaces with real weapon systems
 Link multiple ranges together to form a larger, cohesive range
 Enable testing, assessment, experimentation, and training of weapon

system interoperability, C4ISR, and system-of-systems

7

Where TENA SDA Fits in DoD

Office Of The Secretary Of Defense (OSD)

Congress

Deputy Secretary Of Defense
Secretary Of Defense

USec Nv
ASecs Nv

USec Ar
ASecs Ar

Ch of Stf
Army

USec AF
ASecs AF

Ch of Stf
AF

Ch of Nv
Ops

Comman-
dant
MC

CoS Army
CNO

CoS AF
Commandant MC

Vice Chairman
Joint Staff

Dir Spec Pgms

DUSD A&T

DUSD L&MR

DUSD Ins & Env

ASD NII

Sec Air ForceSec Navy

UNIFIED/COCOMS

USD Policy USD Comp USD P&R DOT&E USD AT&L

Chairman JCS

Dir Admin & Mgt
Dir Net Assmnt

ASD Pub Affairs
ASD Legislative Affairs

Gen Counsel
ATSD Intel OVst

DoD IG
ATSD Civ Spt

Dir Def Sys
DUSD Intl Tec Sec
DUSD Indus Policy
Dir Disadvantage Bus
Dir Proc/Acq Policy
Dir DCMA

DLSA
DSCA
DSS
DTRA
MDA
NSA
NIMA

DARPA
DCA
DCAA
DCMA
DFAS
DISA
DIA
DLA

AFIS
Def POW/MP Office
DoD Edu Activity
DoD HR Activity
Of of Econ Adjustment
TRICARE Mgt Activity
Wash Hq Service

DD SE

DDT&E

DOD Fld ActivitiesDefense Agencies

Dir DR&E

ATSD NBC Def

Dir TRMC

Sec Army Dir DSB

Dir MDA

Dir Admin

Dir Int Coop

Dir Aq R&A

CTEIP

JFCOM

JNTC

TENA SDA

JMETC

8

TENA SDA Organization

Program Manager
George Rumford

Development Group
Steve Bachinsky

Event Support Group
Gene Hudgins

Coordination
Jerry SantosSoftware Team

Russ Noseworthy

Integration
Kevin Alix

Design
Kurt Lessmann

Business Manager

Architect
Ed Powell

Systems Engineering

Deputy PM
Jason Lucas

9

TENA Development Strategy

 TENA is revised based on user feedback and lessons
learned from working software implementations

 TENA will be revised in the future based on future
Implementations

TENA is based on real-world tests at real ranges

User
Feedback

Lessons
Learned

User
Feedback

Lessons
Learned

User
Feedback

Lessons
Learned

Implementations
Implementations

Implementations
Implementations

Implementations
Implementations

Test &
Training
Enabling

Architecture
(TENA)

10

Architecture Management Team
(TENA AMT)

 AMT Members:
 329 Armament Systems Group (329 ARSG)
 Aberdeen Test Center (ATC), Aberdeen Proving Ground, MD
 Air Armament Center (AAC), Eglin AFB, FL
 Air Force Flight Test Center (AFFTC), Edwards AFB, CA
 Army Operational Test Command (OTC), Fort Hood, TX
 Common Training Instrumentation Architecture (CTIA)
 Dugway Proving Ground (DPG)
 Electronic Proving Ground (EPG)
 integrated Network Enhanced Telemetry (iNET)
 Interoperability Test and Evaluation Capability (InterTEC)
 Joint Fires Integration & Interoperability Team (JFIIT)
 Joint National Training Capability (JNTC)
 Naval Air Warfare Center – Aircraft Division
 NAWC – Weapons Division
 Naval Aviation Training Systems Program Office (PMA-205)
 Naval Undersea Warfare Center (NUWC)
 NAVSEA Warfare Center - Keyport
 P5 Combat Training System (P5CTS)
 Pacific Missile Range Facility (PMRF)
 Redstone Technical Test Center (RTTC)
 T&E/S&T Non-Intrusive Instrumentation
 White Sands Missile Range (WSMR)

 Design Decisions / Trade-offs / Status / Technical Exchanges of Lessons Learned / Use
Cases / Testing / Issues & Concerns Identification, Investigation & Resolution

Meetings every
3 months

Advising Members:
• BMH Associates, Inc.
• Boeing
• Cubic Defense
• DRS
• Embedded Planet
• EMC
• Kenetics
• MAK Technologies
• NetAcquire
• Science Applications International

Corporation (SAIC)
• Scientific Research Corporation (SRC)
• Scientific Solutions, Inc. (SSI)

11

TENA is an Open Architecture

 SEI defines an Open System as “a collection of interacting software,
hardware, and human components designed to satisfy stated needs with
interface specifications of its components that are fully defined,
available to the public, maintained according to group consensus, in
which the implementations of the components conform to the interface
specifications.”

 TENA is maintained according to a consensus of its users assembled as
the TENA Architecture Management Team (AMT)
 TENA Architectural Specification is publicly defined and available on the web
 TENA Middleware Specification (API) is publicly available on the web
 TENA Object Model is publicly available and downloadable without restriction

 An Event Designer can create or modify object models for a given event to
satisfy their particular event requirements

 TENA Middleware exists and is being used to support real events
 Built on open source software – CORBA ACE/TAO
 Government owned, without proprietary software
 Plans in place for open source release

Some Uses of TENA

13

Joint Training,
Analysis, and

Simulation Center

Global
Command &

Control System

Integrating
Software

TENA Gateway

Range Integration in Millennium
Challenge 2002 (MC02)

Joint
Network

Command, Control,
Communications, Computers,
Intelligence Feed

Blue Forces

Opposing Forces

• Aircraft & air targets
• Ships
• Ground forces

• Ships
• Ground forces
• Aircraft

Electronic Counter-measures
Range/China Lake

Nellis AFB

National Training
Center/Ft. Irwin

Land Range/China Lake

Sea Range/Point Mugu

TENA Gateway

TENA Gateway

TENA Gateway

TENA Gateway

TENA Gateway

US Marines/So. California
Logistics Airfield

Modeling &
Simulation

Feed

http://www.dtic.mil/cgi-bin/army_photoform.pl?photo=Dec1999/zodiac.jpg�
http://www.af.mil/photos/photogallery/images/6.jpg�
http://www.dtic.mil/cgi-bin/army_photoform.pl?photo=Feb2002/navigation.jpg�
http://www.dtic.mil/cgi-bin/army_photoform.pl?photo=Feb1997/bradley.jpg�
http://www.chinfo.navy.mil/navpalib/ships/carriers/lincoln/abe-alaska.jpg�
http://www.surfpac.navy.mil/shipsnav/JPJ/jpj1.gif�

14

VAST / IMPASS
Over-the-Water Scoring

CDSA
Dam Neck, VA

NVP, RSCP

TENA on NIPRNET

TENA on Microwave

Eglin CCF
Eglin AFB, FL
NVP, RSCP

Eglin Range Site A-15
NVP, RSCP, IMPASS

TENA on Fiber NCSS
Panama City, FL

NVP

GPS
Acoustic Processing
Communication Link

Shipboard Processing
Map Rendering
Virtual Target

VAST: Navy Virtual At Sea Training System
IMPASS: Integrated Maritime Portable Acoustic
Scoring and Simulator Buoy System

NVP: Navy Visualization Program
RSCP: Range Safety Control Program

15

JCIDEX 03 / TENA Activity

ARDS GPS Pods

JTIDS
Terminal

ARDS
GND STN

JTIDS TENA IF
Gateway

ARDS
TENA IF

JECG Display

-Rangeview –

(Analysis

(AMO, TSPI, JTIDS,

Instrumentation)

Casualty Assessment Workstation
(A/G, G/G, A/A geo-pairing)

Router

Router

SA/AAR Display

JECG Display
Rangeview

JECG Display

Camp Shelby MS

Ft. Rucker (opt)

Gulfport

CRTC

Live Infrastructure

Gulfport/Shelby/Camden MOA

Router
TENA Display

Rangeview

Eglin AFB

CRTC
TACTS

GND STN

TACTS
TENA IF

Gateway

SA/AAR Display

- PCDS -

(TSPI)

Router

JCIET

ADNET

TACTS Pods

SA/AAR Display

- PCDS -

SA/AAR Display

CRTC LAN

16

AUV Fest 2003
SIMDIS

RF

Acoustic
RS-232

Static Mine
Locations

TCP

Seahorse

Crawler

REMU
S

CETUS

Range
Craft

Range
Buoy

Range Control

Range
Data

Gateway

TENA

Range Information
Display Center

(Keyport)

AUV Fest Ops Center
(Keyport)

Newport

17

SIMDIS Use of TENA

 Duration testing using SCORE TSPI data feed
Four consecutive days

 Win XP, Red Hat 9, Solaris 5.8
 Processed 180,000+ entities

Two consecutive days
 Win XP, Red Hat 9
 Processed 53,000+ entities

 Results and observations
No issues with discovery latency
No issues with update latency
No issues with CPU usage
No issues with memory usage

SCORE TSPI Feed

TENA

Southern
California

NRL
Washington, DC

18

Threat Systems Test
of TENA

 Testing and analysis by Scientific Research Corporation (SRC)
 Results and observations:

TENA Middleware appears stable and predictable
TENA Object Model format is sufficient for representation of threat systems
TENA provides satisfactory functionality and performance to be utilized within a threat

simulation scenario and for fielding threat simulations

Target Simulation

TENA Middleware

G75 “Giraffe” Radar Simulation

TENA Middleware

G75 “Giraffe” Radar Simulation

TENA Middleware
Atlanta Huntsville Charleston

19

JNTC Horizontal Thrust Event
Jan 04

Range Integration & Instrumentation Solution
DIS DIS

DIS TENA

TENA

29 Palms
WRC Event Network

IGRS TENA
Proxy

PCDS
DisplayTENA

Twentynine Palms

ARDS
ARDS TENA Gateway

TENA

TENA

Nellis

TENA JTASC WRC Event Network

TENA/HLA
Gateway
(GOTH)

PCDS
DisplayTENA

TENA
HLA

JTASC

TENA Server

TENA

Existing
Air

Warrior
T-1

TENA

Nellis WRC Event Network

PCDS
Display
(CAOC)

Air Warrior TENA Gateway

Rangeview
Display
(CAOC)

Rangeview
Display

(GW Control)
TENA TENA

Rangeview
Display

TENA

Rangeview
Display

TENA

NTC-IS
TENA Gateway

PCDS
DisplayNTC DBST Hub

ITM

NTC-IS (CIS)

AW CSS

Rangeview
Display

VBrick

VBrick
NTSC
Video

VBrick

IGRS

Metrics
Capture

ARDS
Ground
Station NTC WRC Event Network

NTC Ft. Irwin

ARDS
Ground
Stations

T-1 from Tierfort Mtn. to 930 thru 988

TENA

File/Chat
Server

WRC
Horizontal

Event DISA
DATMS
Network

Unclassified
TENA

Gateway
& Server

NTSC
Video

NTSC
Video

20

NNS / EM

WinTrack
w/DLLRemote

Operator

ILH
Database

ILH

3D World

Weibel Radar Integration

GPS

All Systems using TENA

Weibel
Radar

21

Joint Red Flag 2005

22

 Goal: demonstrate commercial-off-the-shelf (COTS) TENA operation in
the following domains:
 Real-time (strict constraints on data acquisition and response time)
 Direct hardware interfaces not standard on COTS desktops

 Aerospace serial I/O formats (synchronous, telemetry, special protocols, etc.)
 GPS (time and position)
 Analog input/output
 Digital and pulse input/output
 IRIG timing
 Avionics buses (1553, ARINC, 1394)
 GPIB (IEEE-488) instrumentation

 Inexpensive, ruggedized, mobile form-factor
 Accomplishments:

 NetAcquire hardware/software product now successfully runs TENA
 Direct synchronous serial hardware interface to FPS-16 radar system is

supported
 Radar system data auto-populated into TENA Radar SDO in real-time
 Little or no programming required to support different radar data formats

 NetAcquire runs a true real-time operating system, device drivers, and
application software
 Provides TENA with deterministic and bounded response times

TENA in Real-Time Embedded
Instrumentation by NetAcquire

23

TENA Used to Distribute 4-
Dimensional Weather Data

 Team from Dugway Proving Ground Meteorology Division, National Center for
Atmospheric Research, and Keane Corporation developed a sophisticated weather server
using TENA

 Weather information generated by real-time, 4D data acquisition is processed by the TENA
Weather Server and made available to TENA-enabled test event clients

 Distributed Test Events need weather data:
 Wind, temperature, barometric pressure, precipitation, time (4th dimension)

TENA Weather Server Data Flow WSMR Temperature and Wind Fields

24

InterTEC Air Combat Mission
JMETC Event

E-2C (Pax River)

Red Air Threats (JIMM)

F-16 (Edwards Live)

F-22 (Edwards Live)

F-15(Eglin)

F-35 (Fort Worth)

F/A-18 (Pax River)

F/A-18 (China Lake)

CVN (Point Loma)

E-2C (Pt Mugu Live)

• TENA used in
this large
distributed LVC
C4I Link-16 test
event for data
distribution of
instrumentation,
test control and
distributed
simulation
between multiple
sites 10 locations, 12 different applications, 56

instances of those apps linked together

25

TENA Used to Control Video
Distribution Services with IO Range

 TENA used to implement video distribution system for Information Operations
(IO) Range in Austere Challenge 06 exercise.
 CONUS and OCONUS client terminals (30+) received video streams over SIPRNet.

 TENA auto-code generation enabled rapid development and integration of
software
 Reduced technical risk and resulted in zero software failures during live fire event periods.

 Video Distribution Server
published availability of real-time
and recorded data streams via
Stateful Distributed Objects
(SDO)

26

Talisman Sabre 07

Canberra

Sydney
Newcastle

Townsville

Perth

PACOM

JFCOM – JNTC

Shoalwater Bay Training Area

High-Range Training Area

ADFWC

MWTS

Simpson Trunk

27

TS07 Simulation Backbone

HLA 1.3

GATEWAY:
•Filter
•Convert

MWTS

DIS

ASE

JSAF JSAF
Reports

LOG VBS

VBS / JSAF
Interface

TENA

Land 134 AS ACMI
US ACMI

I-HITS US sites

GOTH
GATEWAY

C2
•AS/US MTF
•Link 11/16
•OTH Gold
•VMF

Live C2

Mentor

??

C2PC/
C2CE

C4IG

JT
EN

28

TS07 Extended ITQ-45 System

TENA Architecture

30

What is an Architecture?

 An architecture is a segmentation of a system (or system of
systems) such that the primary pieces are identified, as well as
their purpose, function, interfaces, and inter-relatedness, along
with guidelines for their evolution over time

 Architectures put constraints on developers. These constraints
make possible the achievement of higher level goals

 These higher-level goals are called the system’s driving
requirements

 An architecture is a bridge from requirements to design

Detailed
Requirements

Driving
Requirements

Detailed
Design

Decisions

Start

31

Technical Driving Requirements

1. Interoperability
 The characteristic of a suite of independently-developed components,

applications, or systems that implies that they can work together, as part
of some business process, to achieve the goals defined by a user or
users

2. Reusability
 The characteristic of a given component, application, or system that

implies that it can be used in arrangements, configurations, or in
enterprises beyond those for which it was originally designed

3. Composability
 The ability to rapidly assemble, initialize, test, and execute a system from

members of a pool of reusable, interoperable elements
 Composability can occur at any scale—reusable components can be

combined to create an application, reusable applications can be
combined to create a system, and reusable systems can be combined to
create an enterprise

32

Achieving Interoperability and
Reuse

 Interoperability requires
 A common architecture
 An ability to meaningfully communicate

 A common language
 A common communication mechanism

 A common context
 A common understanding of

the environment
 A common understanding of time
 A common technical process

Reuse and Composability require the above, plus
 Well defined interfaces and functionality

for the application to be reused
 Place to store reusable components

TENA OM, Middleware

TENA

TENA Object Model (OM)
TENA Middleware, LRDA

SEDRIS
(as part of the TENA OM)

TENA Technical Process

Reusable Tools,
Repository
Repository

33

TENA Architecture Overview

Non-TENA Applications

Range
Resource

Application

Reusable
Applications

Reusable
Applications

Non-TENA Communications

TENA

Range Resource
Application

Data
Collectors

HWIL

Range
Resource

Application

Repository
Utilities

TENA
Object

TENA
ObjectTENA

Object

Infrastructure
Management and
Planning Utilities

Object Model
Utilities

TENA Utilities

TENA Common Infrastructure

TENA Applications

Non-TENA
System

Non-TENA
System

TENA Tools

Gateway

TENA MiddlewareTENA
Repository

TENA Middleware
Logical
Range
Data

Archive

34

Operational Architecture
(including ConOps)

Three Phases
 Pre-Event / Event / Post-Event

Five Activities
 Requirements / Planning / Set-up / Execution / Analysis & Reporting

Event
Execution

Event Construction,
Setup and Rehearsal

Requirements
Definition

Event Planning

Pre-Event Event

Analysis & Reporting

Post-
Event

1

2

3

4

5

35

TENA Uses the Concept of a
Logical Range

 Logical Range – a suite of TENA Resources, sharing a
common object model, that work together for a given range
event

 TENA Resources are:
 Range Resource Applications - compiled to use the services provided by

the TENA Middleware for interaction
 Gateway Applications - to bridge TENA systems to legacy or other

protocols or architectures
 TENA Tools and Utilities - configured for a particular event

Common Object Model
 Logical Range Object Model (LROM) – the object definitions used in a

particular event

36

Test
Control
Station

Remote
Viewer

Logical Range
Simple Example

TENA specifies an architecture for range
resources participating in logical ranges

Communication Mechanism (Network, Shared Memory, etc.)

Radar

37

Logical Range
Simple Example

 TENA specifies a peer-to-peer architecture for logical ranges:
 Applications can be both clients and servers simultaneously
 In their role as servers, applications serve TENA objects called “servants”
 In their role as clients, applications obtain “proxies,” representing other

applications’ servants
 The TENA Middleware, the TENA objects, and the user’s application

code are compiled and linked together

Test
Control
Station

Communication Mechanism (Network, Shared Memory, etc.)

Remote
Viewer

TENA Middleware

TENA Application C

User
Application

Code

Servant Proxy

Proxy ProxyServant

TENA Middleware

TENA Application B

User
Application

Code
Proxy Proxy

Proxy Proxy Proxy

TENA Middleware

TENA Application A

User
Application

Code

Servant
ServantServant

38

TENA Common Infrastructure

Components:
 Repository
 Logical Range Data Archive
 Middleware

Purpose:
 Provide the common, standardized, software mechanism that makes

communication about objects in the TENA Object Model as efficient and
simple as possible throughout the entire range event lifecycle

TENA
Repository TENA Middleware

Middleware
Services

Logical Range
Data Archive

TENA Common Infrastructure

39

TENA Repository
Purpose and Requirements

 Purpose: to contain all the
information relevant to
TENA that is not specific to
a given logical range

Requirements:
 Store the TENA Object Model in all its forms including standard

implementations
 Store meta-data about all of its contents
 Store TENA software (middleware, schemas, tools, gateways, reusable

applications, and reusable components)
 Store all TENA documentation
 Store information from previous logical range executions for future reuse

(including lessons learned)
 Provide an easy-to-use secure interface to all of this information

 The Repository is a database-of-databases, like the world-
wide web.
 Except it has more meta-data, more security, more unification

TENA
Repository TENA Middleware LRDA

TENA Common
Infrastructure

40

TENA Repository
Multi-Tiered Straw-Man Design

This design is not “part of the architecture” — it is included
to help illustrate the concept

Obviously a web-based solution is the first step

U
til

iti
es

In
fr

as
tr

uc
tu

re

DatabaseDatabase

Database
Server

Database
Server

DatabaseDatabase

Database
Server

Database
Server

DatabaseDatabase

Database
Server

Database
Server

Repository
Services

Repository
Services

Federated
Broker

Federated
Broker

Federated
Broker

Federated
Broker

Information
(Web/App)

Server

Information
(Web/App)

Server

Repository
Manager

Repository
Manager

Repository
Browser

Repository
Browser

Information
(Web/App)

Server

Information
(Web/App)

Server

Repository
Services

Repository
Services

Repository
Browser

Repository
Browser

Tier 1:
Raw Information

Tier 2:
Organization
& Unification

Tier 3:
Presentation

Tier 4:
Repository Access

All Repository
Components

41

TENA Middleware
Purpose and Requirements

 Purpose: high-performance,
real-time, low-latency
communication
infrastructure used by range resource
applications and tools during execution

Requirements:
 Fully support TENA Meta-Model
 Be easy to use
 Be highly reliable
 Many varied communication strategies and media

 Including management of quality-of-service
 Including object-level security services

 Be high-performance, including
 Support multiple information filtering strategies
 Support user-defined filtering criteria

 Support a wide variety of range-relevant platforms (HW/OS/compiler)
 Be technology neutral

TENA Middleware LRDA

TENA Common
Infrastructure

TENA
Repository

42

TENA Middleware
Current Design Overview

Logical
Range

Developers

TENA
Developer

COTS /
GOTS

Inheritance

Composition

TENA Middleware API

The ACE ORB (TAO)

TENA Objects Interests

Object Framework

Callback
SchedulerAuthenticator

D
ia

gn
os

tic
s Security Distributed Interest-Based

Message Exchange (DIME)

Pluggable Protocols

Adaptive Communication Environment (ACE)

QoS Support

43

Logical Range Data Archive
Purpose and Requirements

 Purpose: store and provide
for the retrieval of all of the
information associated with
a logical range execution

Requirements:
 Store and serve initialization information
 Store all data created in a logical range execution  high-performance
 Store information at (possibly) multiple collection points  distributed
 Support a “temporal” understanding of collected information  temporal
 Support run-time queries as much as possible  real-time
 Support post-event analytical queries

 These things are non-trivial
Does not have to be a single database running on a single

computer (but could be)
 Perhaps a federated multi-database running on many computers

throughout the logical range

TENA
Repository TENA Middleware LRDA

TENA Common
Infrastructure

44

Logical Range Data Archive
Straw-Man Design

 Considerations:
 Multiple/alternative collection strategies

(centralized vs. distributed)
 Performance – where to collect what?
 Management – throughout lifecycle
 Unification – either during or after event

Scenario data,
Pointers to other data,

Meta-data,
Summary data,

Unified data (post-event)

Private
Data

Archive
Private

Data Archive
Server

Master Data
Archive Server

Gateways

Data
Archive

Manager

Data
Collector

LROM Data
Archive

Network

Local
Data

Example Range Resource Application Computer

Public
Data

Data
Collector

Public
Data

Coordination,
Control

External
Data

Meta-
Data

Coordination,
Control

Coordination

LROM
Data Archive

Server

Master Data Archive

Public
Data

User
Application

Code
ServantProxyServantServant Proxy

TENA Application

TENA
Middleware

LROM Data
Archive

LROM
Data Archive

Server

45

TENA Compliancy Levels

Uses the TENA
Middleware

Defined as TENA
Objects

TENA Level 1

Uses the TENA
Middleware

Defined as TENA
Objects

Standard use and
definition of Time

Only uses the
TENA Middleware

Data Archiving
(when available)

Uses Standard
Objects (whenever
possible)

Standard Control

TENA Level 3

Uses the TENA
Middleware

Defined as TENA
Objects

Standard use and
definition of Time

Only uses the
TENA Middleware

TENA Level 2

46

Gateways

Gateways provide a means of bridging TENA systems to
non-TENA systems

Gateways are TENA applications but may also conform to
other architectures

 The most important gateways will bridge TENA to the HLA
and to C4ISR systems

Application

O-1

Application

O-2

Application

O-3

Application

O-4

TENA
Application

T-1

TENA
Application

T-2

TENA
Application

T-3

TENA
Application

T-4

TENA Gateway

O
th

er
 M

id
dl

ew
ar

e

“Other”
Objects

TENA
LROM
Objects

Tr
an

sl
at

or

Rules/
Code

TE
N

A
M

id
dl

ew
ar

eN
et

w
or

k

N
et

w
or

k

47

Gateway Builder

 MSR Program is focused on integration of distributed live, virtual, and
constructive (LVC) systems into a common synthetic battle space that
comprises various simulation protocols, training ranges, live systems and
platforms

 Gateway Builder streamlines integration process and reduces time and effort of
creating gateways

 Gateway Builder is a flexible, extensible, graphically driven tool that
automatically
generates gateways
to bridge simulation
and live protocols

 Gateway Builder
supports mappings
between TENA, DIS,
and HLA and
message-based
protocols using
any object model

Gateway Builder Simplified Block Diagram
12 Oct 2006

48

Gradual Deployment of TENA

Other sites

New TENA
Application

Existing
Range

Application

Existing
Range

Application

Existing
Range

Application

Existing
Range

Application

Existing
Range

Application

Existing
Range

Application

Now
Range Protocols

New TENA
Application

Existing
Range

Application

Existing
Range

Application

Existing
Range

Application

Existing
Range

Application

Re-architected
TENA-compliant

Application

New TENA
Application

Re-architected
TENA-compliant

Application

A Few
Years

Event-
ually

Existing
Range

Application

Re-architected
TENA-compliant

Application

Re-architected
TENA-compliant

Application

Re-architected
TENA-compliant

Application

New TENA
Application

New TENA
Application

New TENA
Application

Range Protocols

Range Protocols

Other sites

Other sites

TENA-
Range

Gateway

TENA-
Range

Gateway

TENA-
Range

Gateway

Questions?

Stateful Distributed Objects,
the TENA Meta-Model,

and the TENA Object Model

51

What is a Meta-Model, and
Why is it Important?

What is a Meta-Model?
 A meta-model is “a model that defines an abstract language for expressing

other models,” from Common Warehouse Metamodel specification by Dr.
Daniel T. Chang.

 All computer languages have meta-models
 The TENA Meta-Model describes the features of objects defined in an

LROM
Why is it important?

 The TENA Meta-Model is the architectural construct that specifies both the
rules for defining an LROM and the requirements for the middleware

52

Every Computer Language Has A
Meta-Model

(…and They’re All Different)

C++
 Classes, structs == classes, abstract base classes, multiple inheritance,

composition, generics, functions, methods, operators, fundamental types,
exceptions, arrays, etc.

Java
 Classes, interfaces, exceptions
 No structs, no functions, no generics, no multiple inheritance

CORBA IDL
 Interfaces, structs, valuetypes, sequences, enumerations, multiple

inheritance of interfaces, unions
 No classes

HLA
 HLA Classes (objects), interactions, attributes, single inheritance
 No interfaces, no composition, no functions/methods, no ...

53

Requirements for Defining the
TENA Meta-Model

Must support distributed computing
Must be rich enough in features to support the object

modeling needs of the entire test and training range
community
 Objects and Messages

Must provide a semantic unification of information amenable
to the creation of a simple, yet powerful, standard TENA
Object Model

Must be as easy to use and understand as possible given
the above requirements

These requirements led to the invention of the Stateful
Distributed Object, combining the best features of
CORBA and the HLA in one easy-to-use concept

54

Stateful Distributed Objects

An SDO is an object that provides a location-transparent
interface to its methods as well as the notion of state
 The state of an SDO is data that is disseminated from the creator of an

instance of an SDO to all parties that have subscribed to that SDO
 With an SDO proxy, a subscriber can invoke methods on its interface

and read the state of the SDO as if it were local data
 As modifications to a given SDO’s state are disseminated from its

publisher, subscribers are notified that new values of the state data are
available

An SDO servant exists only in a single application, in a
single process space
 This application is called the “server” or the “owner” of this particular

SDO servant
 There is only one owner application of any particular SDO instance at

any one time

55

Clients and Proxies,
Servers and Servants

Remote Method Invocation
 Work always performed on the server

Proxy Object on Client
Proxy for Object 27

Remote Interface

Publication State
Interface

Publication State
Cache

Local Methods
Interface

Servant Object on Server
Object 27

Remote Interface

Publication State

Local Methods
Interface

Client Application Server Application

TENA Middleware TENA Middleware

Network

User
Application

Remote
Interface

Implementation

Local Methods
Implementation

Local Methods
Implementation

User
Application

56

Clients and Proxies,
Servers and Servants

 Publication State Dissemination and Access

Proxy Object on Client
Proxy for Object 27

Remote Interface

Publication State
Interface

Publication State
Cache

Local Methods
Interface

Servant Object on Server
Object 27

Remote Interface

Publication State

Local Methods
Interface

Client Application Server Application

TENA Middleware TENA Middleware

Network

User
Application

Remote
Interface

Implementation

Local Methods
Implementation

Local Methods
Implementation

User
Application

“Set”
Methods

57

Clients and Proxies,
Servers and Servants

 Local Methods used on both Client and Server
 Always performed locally on either client or server

Proxy Object on Client
Proxy for Object 27

Remote Interface

Publication State
Interface

Publication State
Cache

Local Methods
Interface

Servant Object on Server
Object 27

Remote Interface

Publication State

Local Methods
Interface

Client Application Server Application

TENA Middleware TENA Middleware

Network

User
Application

Remote
Interface

Implementation

Local Methods
Implementation

Local Methods
Implementation

User
Application

58

Local Classes

The concept of local methods are implemented in what are
called “local classes”

Local classes are simply classes that get moved in their
entirety (identity, state, and behavior) from servers to clients

Local classes can be contained in SDOs
A “message” is a special type of local class that can be sent

from an application to any subscribing applications
 Messages can contain other messages as well as contain local classes

59

Representing a Meta-Model

“Pseudo-UML” is used, since formal UML is not as compact
or communicative

A “class” can contain
an unlimited number

of other classes

A “class” can inherit
from at most one

other class

A “class” is a part of the
vocabulary defined in the

stereotype “TENA Element”

A “class” can contain one
or more operations

60

TENA Meta-Model
Release 5.2.2

= may extend/inherit from = may contain = uses

61

TENA Objects
are Compiled In

Why use compiled-in object definitions?
 Strong type-checking

 Don’t wait until runtime to find errors that a compiler could detect
 Performance

 Interpretation of methods/attributes has significant impact
 Ability to easily handle complex object relationships
 Conforms to current best software engineering practices

How do you support compiled-in object definitions?
 Use a language like CORBA IDL to define object interface and object

state structure
 Use code generation to implement the required functionality

 Thus the concept of the TENA Definition Language (TDL)
was created
 Very similar to IDL and C++

62

Creating a TENA Application
LROM
object

definitions

TENA
Middleware

Library

relies on
User

Application
code

Generated
LROM
Source
Code

LinkerLinker

CompilerCompiler

Created by the
logical range
developers

LROM
object

implemen-
tations

Created by the
range resource

developers

Logical
Range
Data

Archive
Schema

Logical Range
Data Archive

Data
Archive
Manager

Data
Archive
Manager

Read by

Creates

Object Model Utilities:
Code Generator

Object Model Utilities:
Code Generator1 2

3

LROM
Object
Library

Application
Object
Code

User
Application

Code
ServantProxyServantServant Proxy

TENA
Middleware

TENA Application

User
Application

Code
ServantProxyServantServant Proxy

TENA
Middleware

TENA Application

63

The Logical Range Object Model

A Logical Range Object Model (LROM) consists of those
object definitions, derived from whatever source, that are
used in a given logical range execution to meet the
immediate needs and requirements of a specific user for a
specific range event

The LROM is the common object model shared by all TENA
resource applications in a logical range

The concept of an LROM is necessary because it will not be
possible to create the entire standard TENA Object Model
before the first logical range is created.
 As time progresses, each LROM will contain more standard elements and

fewer elements that are chosen on an ad hoc basis
TENA must be deployable gradually – the LROM concept

supports this requirement

64

The Standard
TENA Object Model

 Enables semantic interoperability among range resource
applications

 Provides the “common language” that all range resource
applications use to communicate
 It will eventually encode almost all information communicated among

range resource applications
Object Model Stages

 User-Defined Objects – objects defined solely for the purpose of a given
logical range by TENA users

 TENA SDA Supported Objects – objects developed and supported by
the TENA SDA, defined as potential standards, which are undergoing test
and evaluation by the community prior to standardization

 TENA Standard Objects – objects developed and supported by the
TENA SDA, which have been approved for standardization by the AMT

65

TENA Standard Object Models

 TENA-Platform:
 TENA-Platform-v3.1
 TENA-PlatformDetails-v3
 TENA-Affiliation-v1
 TENA-UniqueID-v2
 TENA-PlatformType-v1
 DIS-EntityType-v2
 TENA-Munition-v2.1
 TENA-Engagement-v3.1
 TENA-Organization-v1
 TENA-EmbeddedSystem-v2
 TENA-EmbeddedSensor-v2
 TENA-EmbeddedWeapon-v2

 TENA-AMO:
 TENA-AMO-v1

 TENA-TSPI:
 TENA-TSPI-v4
 TENA-Time-v1.1
 TENA-Position-v1
 TENA-Velocity-v1
 TENA-Acceleration-v1
 TENA-Orientation-v1
 TENA-AngularVelocity-v1
 TENA-AngularAcceleration-v1
 TENA-ORM-v1
 TENA-SRF-v1
 TENA-SRFserver-v1

 TENA-Radar-v2
 TENA-GPS-v2

66

TENA-TSPI-v4

67

TSPI v4 with Coordinate
Conversions

Proxy Object on Client Servant Object on Server
Platform 27

TSPI
Local Methods
Interface

Client Application Server Application

TENA Middleware TENA Middleware

Network

User
Application

Coordinate
Conversions

Local Methods

User
Application

Position
Local Methods
Interface

Private data

Case 1: Reading and writing in the same coordinate system

Platform 27

TSPI
Local Methods
Interface

Coordinate
Conversions

Local Methods

Position
Local Methods
Interface

Private data

Geocentric-
Position

get_geocentric
Position()
Geocentric

SRF

set_geocentric
Position()

Geocentric
SRF

Geocentric-
Position

Get

Get

Get

Get

Set

Set

Set

Set

Get

Get

Get

Get

Set

Set

Set

Set

68

TSPI v4 with Coordinate
Conversions

Proxy Object on Client Servant Object on Server
Platform 27

TSPI
Local Methods
Interface

Client Application Server Application

TENA Middleware TENA Middleware

Network

User
Application

Coordinate
Conversions

Local Methods

User
Application

Position
Local Methods
Interface

Private data

Case 2: Reading and writing in different coordinate systems
 Write in Geocentric (ECEF), read in Geodetic (latitude/longitude/altitude)

Platform 27

TSPI
Local Methods
Interface

Coordinate
Conversions

Local Methods

Position
Local Methods
Interface

Private data

Geodetic-
Position

get_geodetic
Position()
Geodetic

SRF

set_geocentric
Position()

Geocentric
SRF

Geocentric-
Position

Get

Get

Get

Get

Set

Set

Set

Set

Get

Get

Get

Get

Set

Set

Set

Set

69

TENA-Platform-v3.1

70

TENA-PlatformDetails-v3

71

TENA-Engagement-v3.1

72

Web-Based Code Generation

TDL-to-C++ compiler uses a Web front end, because it:
 Allows bug fixes and additions to the code generator without having to re-

disseminate it to the community
 Allows AMT to collect information on object models being designed so

progress can be made toward the standard TENA Object Model
 Allows collaboration with users on their object model designs
 Allows code generator to be written for less than the full complement of

TENA Middleware platforms, if necessary

73

Object Model Distributions

Two Types of Object Model Distributions
 Object Model Definition – specifies the types (e.g., classes, messages,

enums) and their interface signatures and/or attributes
 Object Model Implementation – Provides executable code that adheres to

a particular definition
 Object Model Components

 Object model definitions can “import” other definitions
 Applications are required to install every object model definition and any

pre-built implementations being used
 Namespace changes with pre-built implementations complicates the

automatic generation of “BasicImpl” applications
OM Distribution Bundles

 Currently developed mechanism for TENA Repository to bundle imported
definitions and available implementations into a single downloadable file

 Need to expand on this capability to automatically install all of the
individual components

74

Web Site OM Support
ht

tp
://

w
w

w
.te

na
-s

da
.o

rg
/re

po
si

to
ry

75

Browse Repository

76

Upload TDL Files

77

Download Model Definition

78

Remember: Need to Download
Definition and Implementation

79

Future Auto-code Generation
With TENA

 Our desire is for the input to the TENA auto-code generator be standard XMI
(generated from UML)

 Challenges: XMI not yet implemented in a standard way by tool vendors, and
current auto-code generation capability is based on TDL

 Current Interim Solution – Use MagicDraw plug-in to create TDL from UML
 Next Steps

 Implement TENA Metamodel in Eclipse Modeling Framework using ECore representation –
define TENA Modeling Language (TML)

 Create XMI  TML, TDL  TML translators
 API and framework being developed to support various “code generation plugins” used to

automatically create specialized code based on FreeMarker templates

Basic
Impl

Test
Impl

OM
Definition

User
Plugins

TDL
TML

tena.omc.backend.
DataModel

Code Generation Plugins

UML XMI
(Rose)

UML XMI
(Magic Draw 12)

…

Bi-directional
Model Transforms

Summary So Far

81

TENA Solutions to
Interoperability Challenges

On-the-Wire Specification vs. API Standard

Single Reference Frame vs. Multiple Reference Frames

Single Level vs. Multiple Levels of Compliancy

Run-Time Interpreter vs. Compile-Time Integration

Hand-Coded vs. Auto-Code-Generated Interfaces

Centralized (Client/Server) vs. Peer-to-Peer

API Standard allows future technological advances for data transmission
to be much more cost-effectively incorporated

Multiple Reference Frames allow different range systems to operate in
the coordinate system most optimum for their range

Multiple Levels of Compliancy allow a more meaningful definition of
compliancy to be used among Range engineers & investment managers

Compile-Time Integration allows for inconsistencies to be discovered
when the software is being upgraded vice during the event

Auto-Code-Generated Interfaces can be produced more reliably and
tremendously faster than traditional hand-coded interfaces

Peer-to-Peer gives more flexibility to exercise designers – can emulate
client/server if necessary

82

DoD Directive on TENA
Business Initiative Council TE-09

Common Test and Training Range Architecture Policy (CTTRAP)

 Leverages lessons learned from past directives including Ada, HLA, and
JTRS

 Establishes a flexible process where the Services make the final
determination on TENA compliancy for their systems on a case-by-case
basis
 TENA compliancy must not adversely impact cost, schedule, or performance of

the individual range system
 All new range systems will be required to use TENA
 All existing range systems that are having their data distribution

mechanism upgraded will be required to use TENA
 The Directive applies if the current version of TENA satisfies the

interoperability requirements of the new or upgraded range system. If
not, the interoperability requirements for the new system will be
identified so the appropriate upgrades to TENA can be made by CTEIP

 OSD(P&R) and DTRMC will oversee the sustainment of TENA

83

Summary of What We Have

 A Working Implementation of the Architecture
 TENA Middleware currently works on Windows, Linux, and Sun

 A Process to Develop and Expand the Architecture
 CTTRA Workshops and AMT Meetings

 A Technical Strategy to Deploy the Architecture
 Gateways provide interim solutions as TENA interfaces

 A Definition of Compliancy
 Levels of compliancy to enhance communication among

systems engineers and investment decision makers

An Architecture for Ranges, Facilities, and
Simulations to Interoperate, to be Reused, to be

Composed into greater capabilities

84

Important Contact Information

 Project Website: http://www.tena-sda.org
 Download TENA Middleware
 Submit Helpdesk Case (http://www.tena-sda.org/helpdesk)

 Use for all questions about the Middleware

 TENA Feedback: feedback@tena-sda.org
 Provide technical feedback on TENA Architecture or Middleware
 Ask technical questions regarding the TENA architecture or project
 Provide responses to AMT action items
 Request TENA training

http://www.tena-sda.org/�
http://www.tena-sda.org/helpdesk�
mailto:feedback@tena-sda.org�

Questions?

Break

12

6

39

1
2

4

5

11
10

8

7

TIDE 1.1 Overview

88

TIDE-Based
TENA Development Process

TENA Repository

TIDE

TENA Middleware Developer
Publish TENA

Middleware Distributions

Object Model Developer Application Developer

TIDE

Download
Object
Models

Publish
Object
Models

Develop
and Document

Object
Models

Publish OM
Implementations,

Applications

Develop and
Document OM

Implementations,
Applications

Download
Object
Models,

Middleware

89

TIDE 1.1 Features

Customizable TENA Projects – NEW!
CDT Integration – IMPROVED!
 TENA Repository Exploring
 Installing/Uninstalling TENA Middleware
 Installing/Uninstalling and Requesting Object Models
 Installing/Uninstalling Implementations
Creating TENA Projects – IMPROVED!
 Importing Existing TENA Projects
Configuring TENA Projects – NEW!
Building TENA Projects
Comparing TENA Projects with their Pristine Copy
Migrating TENA Projects between middleware releases
Migrating TENA Projects between object model releases

90

Customizable TENA Projects

 Allows users to generate code
based on specific capabilities
(e.g., publish SDO Munition,
subscribe to message
Detonation, etc.) instead of all
possible capabilities (i.e., publish
and subscribe all SDOs and
messages)

91

CDT Integration

 TENA Projects are now CDT (http://www.eclipse.org/cdt/) compliant C++
projects. This enables CDT features such as code completion, indexing,
cross referencing, etc.

http://www.eclipse.org/cdt/�

92

TENA Repository Exploring

Allows users to browse locally installed TENA middleware,
object models and implementations

Allows users to browse remote repositories (e.g.,
https://www.tena-sda.org/tide/) for TENA middleware, object
models and implementations

https://www.tena-sda.org/tide/�

93

TENA Repository Exploring

94

Installing/Uninstalling TENA
Middleware

Allows users to install the TENA Middleware from remote
repositories locally

Allows users to remove previously installed TENA
Middleware

95

Installing/Uninstalling TENA
Middleware

96

Installing/Uninstalling and
Requesting Object Models

Allows users to install object model definitions and its
dependencies from remote repositories locally

Allows users to request object model definitions from
remote repositories

Allows users to remove previously installed object models

97

Installing/Uninstalling and Requesting
Object Models

98

Installing/Uninstalling
Implementations

Allows users to install object model implementations and its
dependencies from remote repositories locally

Allows users to remove previously installed
implementations

99

Installing/Uninstalling
Implementations

100

Creating TENA Projects

Allows users to customize (e.g., specify namespace, target
middleware version, OMC plugin, capabilities and
implementations to reuse) and generate TENA projects

101

Creating TENA Projects

102

Creating TENA Projects

103

Importing Existing TENA Projects

Allows users to import into TIDE, existing TENA projects
that were developed without TIDE

104

Importing Existing TENA Projects

105

Configuring TENA Projects

Allows users to specify target build platform (e.g., xp-vc80),
add custom preprocessor definitions, include paths,
libraries, source files and make targets.

106

Configuring TENA Projects

107

Building TENA Projects

Allows users to compile and link TENA projects

108

Building TENA Projects

109

Comparing TENA Projects with their
Pristine Copy

Allows users to determine their changes to the generated
TENA projects

Number of changed classes is a good indicator of the
conflicts that user will need to resolve when migrating to a
different object model or middleware release

110

Comparing TENA Projects
with their Pristine Copy

111

Migrating TENA Projects between
Middleware releases

Assists users in porting their TENA projects to a different
TENA middleware release
 (e.g., from TENA-v5.1 to TENA-v5.1.1)

112

Migrating TENA Projects between
Middleware releases

113

Migrating TENA Projects between
object model releases

Assists users in porting their TENA projects to a different
object model release
 (e.g., from TENA-Platform-v3 to TENA-Platform-v3.1)

114

Migrating TENA Projects between
object model releases

115

Summary

 TIDE is a developer utility that is expected to significantly enhance the
usability of TENA
 Browsing local and remote object models
 Building and installing object models
 Managing changes with new object model and middleware versions

 Download Now!
 https://www.tena-sda.org/display/TIDE

https://www.tena-sda.org/display/TIDE�

TENA Definition Language

117

Designing Your Own LROM

Understand the information needs of your logical range
 What applications are serving what objects?
 What applications are consuming what objects?

Define your LROM
 Use a UML tool to design your objects and their relationships
 Remember the TENA meta-model focuses on SDOs, local classes, and

messages
 Encode your LROM manually in an ASCII text file in TDL

 Or, use the TDL Generation Tool (available on the TENA web site) to
create a TDL file (MagicDraw 9.5 and 12 users)

Upload your TDL file to the Web-based code generator
Retrieve the generated software from the web site
Write a test application to test your LROM

118

Why is TDL being used?

 TDL is a text format for defining SDOs, messages, local
classes, and all the auxiliary information needed for an
LROM

 TDL was designed to be an unambiguous text
representation of the LROM

 TDL is based on the OMG’s Interface Definition Language
(IDL), but has extensions to deal with SDOs
 The extensions are designed to be familiar to C++ and Java programmers

 TDL is NOT C++

119

TENA Meta-Model
Release 5.2.2

= may extend/inherit from = may contain = uses

120

Package

 The syntax for package is:
package packageName
{
// all of the material
// in this namespace

};

 All LROMs MUST be contained in at
least one package

 An example package:
package Utility
{
local class VelocityLTP
{
float x;
float y;
float z;

};
};

 Fully qualified names are written
using the “::” operator

 For example, the VelocityLTP struct
defined above in package Utility is
referenced in the following manner:
Utility::VelocityLTP

 Packages can be nested, like so:
package OMsample
{
package Utility
{
local class VelocityLTP
{
float x;
float y;
float z;

};
};

};

 In this case, the fully qualified name for
VelocityLTP is

OMSample::Utility::VelocityLTP

121

Fundamental Data Types

 The following basic types are supported by TDL:
 short — 2-byte signed integers
 unsigned short — 2-byte unsigned integers
 long — 4-byte signed integers
 unsigned long — 4-byte unsigned integers
 long long — 8-byte signed integers
 unsigned long long — 8-byte unsigned integers
 float — 4-byte floating point numbers (roughly 7 decimal digits of accuracy)
 double — 8-byte floating point number (roughly 17 decimal digits of accuracy)
 boolean — can only take two values: TRUE and FALSE
 char — a single byte interpreted as an ASCII character
 string — a sequence of characters
 octet — a byte with no intended interpretation, simply eight bits
 void — a null return value for a method

122

Local Classes

 Local classes are simply classes that get
moved in their entirety (identity, state, and
behavior) from servers to clients

 An example local class is:

// Assume definition of class Entity and
// enumeration TrackingInstrumentationType

local class EntityTrackingData
{
Entity * theEntity; // SDO Pointer
short highestOrderDerivative; // data element
TrackingInstrumentationType type; // Enumeration
long numberOfArticulations; // data element

void increaseArticulations(); // local method
};

A local class may:
be used as a parameter or a

return value in an operation
 inherit from at most one other

local class
 contain SDO pointers
 contain vectors
 contain enumerations
 contain fundamental types
 contain other local classes
 contain messages
 contain operations/methods

that provide behavior—these
methods have access to the
other elements of the local
class

 contain elements marked as
private or readonly

be contained in SDOs
be contained in vectors
be contained in messages

123

Messages

 A message is a complex data type containing
both operations/methods and state information,
exactly like a local class, except that messages
can be sent using the TENA Middleware’s
messaging service as bursts of information
 E.g., “Fire,” “Detonation,” or “Missile Away”

messages

local class Point
{
double x;
double y;
double z;

string plainString();
};

message PointMessage
{
Point location;
long MessageID;
void doit();

};

A message may:
be used as a parameter or a

return value in an operation
 inherit from at most one other

message type
 contain SDO Pointers
 contain vectors
 contain enumerations
 contain fundamental types
 contain other messages
 contain local classes
 contain operations/methods

that provide behavior—these
methods have access to the
other elements of the
message

 contain elements marked as
private or readonly

be contained in SDOs
be contained in vectors
be contained in local classes

124

Private Local Class and
Message Attributes

 Local class and message methods have the ability to have
private attributes
 private attributes are accessible only to local methods

local class Currency
{
private double internalRepresentation_;

float get_ValueInDollars();
float get_ValueInYen();

void set_ValueInDollars(in float dollars);
void set_ValueInYen(in float yen);

};

125

Read-Only Local Class and
Message Attributes

 Local class and message methods have the ability to have
read-only attributes
 read-only attributes can be directly read, but only written by local methods

local class UniqueID
{
readonly unsigned short siteID;
readonly unsigned short applicationID;
readonly unsigned long objectID;

unsigned long long get_key();
void set_Null();
boolean isNull();
boolean isEqual(in UniqueID otherID);
void set_Values(in unsigned short site,

in unsigned short app, in unsigned long obj);
};

126

Enumerations

 An enumeration represents a user-defined
type that can take one of several
pre-defined values

 Enumerations are used as type-safe
alternatives to creating attributes as
unsigned longs

enum Months
{
Januarius,
Februarius,
Martius,
Aprilis,
Maius,
Junius,
Quinctilis,
Sextilis,
Septembris,
Octobris,
Novembris,
Decembris

};

 Note that enumeration values are comma-delimited

An enumeration may:
be used as a parameter or a

return value in an operation
be contained in local classes
be contained in messages
be contained in SDOs
be contained in vectors

127

Vectors

 Vectors are resizable arrays of a specific type
 Vectors in TDL map to std::vector< T > in

C++
// simple vector example is:
class ArrayOfLongs {
vector<long> myArray;

};

// vector of local classes
local class TestLocalClass
{
long longVal;
double doubleVal;

};

class ArrayOfTestLocalClasses
{

vector<TestLocalClass> myStructArray;
};

// vector of vectors
class VectorOfVectorOfLongs {
vector< vector < long > > myArray;

};

A vector may:
be used as a parameter or a

return value in an operation
 contain SDO pointers that

point to a type of SDO
 contain fundamental types
 contain enumerations
 contain another vector
 contain local class instances
 contain message instances
be contained in SDOs
be contained in a local class
be contained in a message

Note: Users may not limit
vectors to a fixed size

128

SDO Pointers

 An SDO pointer represents a distributed
“pointer” to an SDO class
 Using a pointer to an SDO, a user can navigate

directly to that SDO
 When a user uses (dereferences) a pointer, he gets

a proxy to the SDO, including the current version of
the SDO’s publication state

 An individual SDO Pointer refers to a particular type
of SDO

class Entity
{
unsigned long entityType;
// … other entity parameters

}

class EntityTrackingData
{
Entity * theEntity; // SDO Pointer
short highestOrderDerivative;
long numberOfArticulations;
vector< long > data;

};

An SDO pointer :
 refers to a specific type of

SDO
 is created in TDL using the

C++ syntax for a pointer (“*”)
may be used as a parameter

or a return value in an
operation

may be contained in vectors
may be contained in local

classes
may be contained in

messages
may be contained in SDOs

129

SDOs
Defining SDO Classes

 An example of an SDO class is:

class Sensor
{

string state;
boolean onTrack;
string trackingMode;

vector<SensorTrack> sensorTracks;

string point(in double azimuth,
in double altitude,
inout double power);

};

 Each parameter requires a direction
indicator: “in,” “out,” or “inout”
 in for parameters going into the method
 out for parameters coming out of the method
 inout for parameters that go in, get changed, then come back out again

An SDO class may:
 inherit from at most one other

SDO
be referred to by SDO pointers
 implement (multiple) interfaces
 contain fundamental types
 contain SDO Pointers
 contain vectors, but SDOs may

not be contained in vectors (only
vectors of SDO pointers are
permitted)

 contain enumerations
 contain local classes
 contain messages
 contain other SDOs
 contain operations

130

SDOs
Inheritance

Use “: extends” after the class or local class name to
specify implementation inheritance

class Participant
{
string name;
string type;
long ID;
long displayColor;
string iconScheme;
long trackLength;

};

class Platform : extends Participant
{
float fuel;
string bestSource;
Sensor longRangeSensor;

};

131

SDOs
Interfaces

 An interface defines a set of
related method signatures

 An example interface is:
interface Controllable
{

string initialize();
string start();
string stop();

};

 In this example, the remotely-invocable interface Controllable
contains three method signatures, each taking no parameters and
returning a string

 Interfaces inherit from one another using the following syntax:
interface ExtraControllable : extends Controllable
{

string destroy();
};

Interfaces:
may inherit from (extend) one

or more other interfaces
may be implemented by SDO

classes
must contain at least one

method signature

132

SDOs
Implementing Interfaces in

Classes
Use “: implements” after the class name to specify

inheritance

interface Controllable
{
string initialize();
string start();
string stop();

};

class Participant : implements Controllable
{
string name;
string type;
long ID;
long displayColor;
string iconScheme;
long trackLength;

};

133

SDOs
Interfaces and Inheritance

An SDO class can inherit from (extend) only a single base
class but can implement multiple interfaces

All base classes or interfaces referenced must be either
defined or declared before they are used

The syntax is:

// Assume the interfaces “Controllable” and “Test”
// and the classes “Participant” and “Sensor” have
// already been defined

class Platform : extends Participant
, implements Controllable, Test

{
float fuel;
string bestSource;
Sensor longRangeSensor;

};

134

SDOs
Composition

 Composition is the ability to include SDOs in other SDOs
 The PlatformSDO contains in its publication state a SensorSDO

with the name longRangeSensor

class Sensor {
string point (in float azimuth, in float altitude,

inout float power);
string state;
boolean onTrack;
string trackingMode;

};

class Platform {
float fuel;
string bestSource;
Sensor longRangeSensor;

};

-fuel : float
-bestSource : String
-longRangeSensor : Sensor

Platform

+point(in azimuth : float, in altitude : float, inout power : float) : double

-state : String
-onTrack : bool
-trackingMode : String

Sensor

UML

TDL

string

135

User Defined Exceptions

Both local class methods and SDO
methods support user-defined
exceptions

 Exceptions in TDL are mapped directly
into C++ exceptions

package test {
exception BadRadarCommand {

string messageFromRadar;
};

exception FaultyRadar {
};

class Radar {
void sendCommand (in string command) raises BadRadarCommand;

void checkRadar () raises (BadRadarCommand, FaultyRadar);
};

};

Exceptions:
may be raised from local

class methods
may be raised from SDO

remote methods
may contain fundamental

types
may contain enumerations

Defining exceptions is only
required for remote methods.
For local methods, standard C++
exceptions can often suffice,
e.g., std::bad_alloc

136

Oneway Remote Methods

Oneway methods were added to the meta-model for R5
 oneway methods must have void as their return type
 oneway methods may not raise exceptions
 oneway methods return immediately* after their invocation

package test {

class Radar {
oneway void sendCommand

(in string command);
};

};

* “Immediately” doesn’t mean instantaneously, there is still work done to marshall the remote method
and hand it to the operating system, but the method returns relatively quickly compared to a regular
non-oneway method

137

Possible Future Enhancements

Constants
Ability to recognize non-TDL types (“native”)
 Local methods directly on SDOs
Other data structures such as maps, deques, queues, trees
 SDOs containing vectors of SDOs
Bitsets

138

Sample Object Model

Delivered as part of the TENA Middleware Distribution
Remember that this Object Model is only a sample to help

teach the user community about TDL

139

Sample OM in TDL

package OMsample
{
local class Time
{

unsigned long nanoseconds;
long seconds;

};

local class Position
{

double x;
double y;
double z;

};

local class Identifier
{

string name;
string type;
unsigned long ID;
string convertToString();

};

class Platform
{

Identifier ident;
double fuel;
Time time;
Position position;

};

message LocationMessage
{

Identifier ident;
Position location;

};

};

Questions?

Patterns Necessary to Understand
The TENA Middleware API

142

What are Design Patterns?

A Design Pattern is a pattern of inter-related software
classes that can be used (and re-used) to solve a particular
problem

 Patterns allow developers to codify knowledge about how to
solve certain software problems
 Prevents having to “reinvent the wheel”

Design Patterns make it easier to reuse successful designs
and architectures

Design Patterns make it easier to communicate your designs
and architectures to other developers

Design Patterns are “discovered,” not “invented”

143

Design Patterns History

Design Patterns: Elements of Reusable Object-Oriented
Software; Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides; Addison-Wesley, 1998

Buy this book!!!
 First codification of the concept of design patterns in

software
 Based on a similar concept in the realm of (building) architecture

 The most influential book (and concept) in computer science
in the last 15 years

An entire patterns “industry” has grown up based on this
original work

Another good book: Pattern-Oriented Software Architecture,
Volume 2, Patterns for Concurrent and Networked Objects;
Douglas Schmidt et al., 2000

144

Patterns Catalogued
in Design Patterns

1. Abstract Factory
2. Adapter
3. Bridge
4. Builder
5. Chain of Responsibility
6. Command
7. Composite
8. Decorator
9. Facade
10. Factory Method
11. Flyweight
12. Interpreter

(1) Design Patterns, p 8.

12. Iterator
13. Mediator
14. Memento
15. Observer
16. Prototype
17. Proxy
18. Singleton
19. State
20. Strategy
21. Template Method
22. Visitor

145

Frameworks

 Collections of classes that form the structure for the solution to
a group of problems

 Generic and tailorable
 Flexible and extensible

Framework ApproachProcedural Approach

Library 1 Library 2

Your Code

call

Your Code

Object
Class 1 Object Class 2

Object
Class 3

Framework API

Client API

call

call

Frameworks obey the “Hollywood Principle”: “Don’t call us, we’ll call you.”

Your Code

146

Factory Method Pattern

 Intent – Define an interface for creating an object, but let
subclasses decide which class to instantiate
 The Factory Method lets a class defer instantiation to subclasses

 Motivation
 Factories are used when the one party knows what object to create and

the other party knows when that object needs to be created

 Structure – parallel class hierarchies

Product

ConcreteProduct

ProductFactory

create()

ConcreteProductFactory

create()

return new ConcreteProduct

Defined by the middleware
developers (in advance)
Defined by the application
developers (later)

“Work” Classes Factories

147

Factory Method Pattern Process

 Framework (middleware) developers define
 Product base class
 ProductFactory base class

 Application developers write
 ConcreteProduct class
 ConcreteProductFactory class

 In their application program, application developers do the following
 Instantiate an instance of a ConcreteProductFactory
 Hand this instance to the middleware

 At the right time during execution, the middleware uses the
ConcreteProductFactory object given to it by the application to
instantiate an instance of a ConcreteProduct
 The middleware holds onto the ConcreteProductFactory as a
ProductFactory and polymorphically invokes the create() method

148

Factory Method Pattern
TENA Middleware Example

 Each SDO may have its own methods that the user must write but
that the middleware must instantiate and use

 The user must write their own “SDOname::RemoteMethodsImpl”
class, and also a factory for this class so the middleware can
instantiate it

OMsample::Platform::RemoteMethodsInterface

OMsample::Platform::RemoteMethodsImpl

OMsample::Platform::RemoteMethodsFactoryInterface

createRemoteMethods(
OMsample::Platform::ServantPublicationStateView &);

OMsample::Platform::RemoteMethodsFactoryImpl

createRemoteMethods(
OMsample::Platform::ServantPublicationStateView &);

return std::auto_ptr< OMsample::Platform::RemoteMethodsInterface >(
new OMsample::Platform::RemoteMethodsImpl(

rServantPublicationState, _pFactoryHolder));

149

Command Pattern

 Intent – Encapsulate a method call as an object
 Motivation – Sometimes it’s necessary to issue requests to

objects without knowing anything about the operation being
requested or the receiver of the request
 Separates the intent of calling a method with the execution of calling the method,

in time, code location, code developer, or caller
 Method calls can be queued, logged, prioritized, etc.

 Structure
 Invoker wants to call the Receiver::action() performed

Invoker Command

execute()

Receiver

Action()

ConcreteCommand

execute()

receiver->action()

150

Command Pattern in the TENA
Middleware

 The TENA Middleware uses the command pattern to encapsulate
callbacks to the application

 When the TENA Middleware needs to inform the application of
something, it can’t immediately call the user’s callback code
 The TENA Middleware can’t rely on the user’s code being re-entrant

 The TENA Middleware needs to use callbacks in the following
situations:
 New proxy discovered
 Servant for an already-discovered proxy has been deleted by its server
 Publication state of already-discovered proxy has been updated

TENA
MW

TENA::Middleware::Callback::Callback

execute()

User::SomeUserClass

SomeUserMethod()

OMsample::Platform::DiscoveryCallbackImpl

execute()

someUserClass->someUserMethod()

151

How does the Middleware Get the
Callback Commands??

 By merging the command pattern and the factory method pattern

OMsample::Platform::DiscoveryCallbackFactory
std::auto_ptr< Callback > create(OMsample::Platform::ProxyPtr const &);

OMsample::Platform::DiscoveryCallbackFactoryImpl
std::auto_ptr< Callback > create(OMsample::Platform::ProxyPtr const &);

TENA::Middleware::Callback::Callback

execute()

TENA
MW

User::SomeUserClass

SomeUserMethod()

TENA MW Callback Factory
Discovery
Callback

create()
constructor()

execute() do user stuf f

Network User App
deliver data

evokeCallbacks()

OMsample::Platform::DiscoveryCallbackImpl

execute()

152

Observer Pattern

 Intent
 Define a relationship between an object (the “subject”) and a number of other

objects (“observers”) such that when the subject object is changed in some way,
all observer objects are notified that the subject has changed

 Motivation
 Need the ability to maintain consistency between classes without making the

classes tightly coupled
 Based on a portion of the Smalltalk “Model-View-Controller” paradigm

 Structure – parallel class hierarchies again

Subject

Attach(Observer)
Detach(Observer)
Notify()

Update()

Observer

ConcreteSubject

GetState()
SetState()

return subjectState

ConcreteObserver

Update()

observerState
observerState =

subject->GetState()

observers

subject

For all o in observers
{ o->Update() }

1..*

1

153

Observer Pattern in the TENA
Middleware

 An SDO’s cached publication state (in proxies) is updated as
soon as it is received off of the network

 Normally, an application would not know of this update until it
next read the publication state

 The TENA Middleware
provides a notification
service so that the application
can be notified when a proxy’s
publication state is updated
 The user can “place an observer”

on a proxy

SDO Proxy

Remote Interface

Publication
State Cache

V1

Observer

Observer

Observer

TENA Middleware

NetworkPublication
State Cache

V2

Questions?

Break

12

6

39

1
2

4

5

11
10

8

7

TENA Middleware Overview and
the Release 5 API

157

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

158

TENA Web Portal
http://www.tena-sda.org/

Registered user
account
required

Contains
 News
 Meeting Notices
 Documentation
 Middleware
 Object Models
 Training

Materials

159

Downloading the Release

http://www.tena-sda.org/repository

160

Downloading the Release

161

Installing the Middleware

162

Supported Platforms
 Ardence ETS - NetAcquire (HW integrated Windows Real-Time OS) Microsoft Visual C++ 7.1 (bundled)
 Embedded Planet (embedded Linux OS) GCC 3.2.2 (bundled)
 Linux - Fedora Core 3 GCC 3.4.4 — Support for this platform is ending
 Linux - Fedora Core 4 GCC 4.0.2 — Support for this platform is ending
 Linux - Fedora Core 5 GCC 4.1.1
 Linux - Fedora Core 6 GCC 4.1.1 — New for R5.2.2
 Linux - Fedora Core 6, 64-bit GCC 4.1.1 — New for R5.2.2
 Linux - Red Hat 8 GCC 3.2 — Support for this platform is ending
 Linux - Red Hat 9 GCC 3.2.2 — Support for this platform is ending
 Linux - Red Hat Enterprise Workstation 4 GCC 3.4.4
 Linux - Red Hat Enterprise Linux 5 GCC 4.1.1 — New for R5.2.2
 Linux - SUSE 10.1 GCC 4.1.0
 Mac OS X 10.4.7 GCC 4.0.1 — New for R5.2.2 Universal Binary (Intel and Power PC) support
 Solaris 8 GCC 3.2.3 — Support for this platform is ending
 Solaris 10 Sun SPRO 5.8
 Solaris 10, 64-bit Sun SPRO 5.8
 Windows 2000 Microsoft Visual C++ .NET 2003 (aka Visual C++ 7.1) — Support for this platform is ending
 Windows Server 2003 Standard Microsoft Visual C++ .NET 2003 (Visual C++ 7.1)
 Windows Server 2003 Standard, 64-bit Microsoft Visual C++ .NET 2005 (Visual C++ 8.0) — New for R5.2.2
 Windows XP Microsoft Visual C++ .NET 2003 (Visual C++ 7.1)
 Windows XP Microsoft Visual C++ 2005 (Visual C++ 8.0)
 Windows Vista Microsoft Visual C++ 2005 (Visual C++ 8.0) — New for R5.2.2. User-specific HW/SW

testing recommended prior to operational use

163

Middleware Installation

TENA Folder
Each TENA Release gets its own
folder
DLLs and TENA-specific apps
Training OM Distributions
Documentation (separate download)
Sample Application Lives Here
Include Files (both for TENA and
for Object Models definitions
and implementations)

Source code for Object Models
implementations (empty at start)
TDL files for all installed OMs
All libraries

Installation Scripts

164

Directory Structure

2

165

sampleApplication – TENA
Release 5.2.2 Example Program

 Exercises some (but not all) TENA Middleware Features
Comes with all you’ll need to build it
After installation is complete, build the sampleApplication

executable
 Launch the Network Naming Service and Execution Manager
 Launch sampleApplication
What sampleApplication does

 Joins the Execution
 Publishes and Subscribes to a Platform SDO
 Sets the initial values of the Platform’s state
 Goes into a loop changing state values
 After loop completion, resigns from the Execution

166

Look into the
SampleApplication Folder

Open the solution file
(Windows)

Where the sample
application main
program exists

Where the object-
model-
implementation-
specific software is
located

167

Build sampleApplication

168

Build Results

169

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

170

Logical Range Execution Applications

 Logical Range Execution – the name for a given instance
of a logical range

 Two Logical Range-wide applications provide the logical
range with important functionality
 Network Naming Service (NNS) – Global directory
 Execution Manager (EM) – contains information on a given logical

range execution I am execution MC02RI and
my address is <...>

networkNamingService executionManager

userApplication

What’s the address for the
ExecutionManager for

MC02RI?

I’m joining MC02RI?

OK, I’ll introduce
you to the other
members of the

execution, and the
multicast groups to

use

Here it is

171

networkNamingService (NNS)

 Supports the requirement that each Execution must have a
unique name

Only one NNS process is required on any network
 Multiple independent NNS may co-exist if they use different “endpoints”
 Endpoint = iiop://<host name or IP address>:<port>

 The first step in creating an Execution is for the user to start
the NNS process, if it is not already running
 Manually provide it with the “endpoint” reference
-ORBlistenEndpoints iiop://<host name or IP addr>:<port>

172

executionManager (EM)

 An executionManager process exists for each execution
 Keeps track of execution-wide information
 Only used when applications join, resign, or change subscriptions; it is NOT used

for data distribution
 The second step in creating an execution is to manually start the EM for

the specific LRE
executionManager

-ORBdefaultInitRef corbaloc:iiop:<Hostname>:<portNumber>
-executionName <ExecutionName>
[-multicastProperties <baseMulticastAddress>:<portNumber>:

<numberOfMulticastAddresses>]

173

Provide the Execution Manager with
Enough Multicast Groups

 If you are going to use UDP multicast to disseminate SDO state, you
must provide the Execution Manager with enough multicast addresses

 Currently, state information for each SDO type and interface is sent to a
different multicast address (imperfect hashing algorithm is used)
 If you have 9 SDOs, 1 interface, and 1 message in your Object Model, you should

provide the Execution Manager with at least 11 multicast addresses
 You must provide multicast addresses in a contiguous block, for

example:
-multicastProperties 239.192.1.1:54321:11

base address port # of
addresses

 this provides addresses 239.192.1.1 through 239.192.1.11
 IANA (www.iana.org) advises that multicast addresses range between

239.192.0.0 and 239.255.255.255 and that port numbers range between
49152 and 65535
 To be perfectly conformant, multicast addresses should be in the blocks between

239.192.000.000-239.251.255.255 Organization-Local Scope [Meyer,RFC2365]
239.255.000.000-239.255.255.255 Site-Local Scope [Meyer,RFC2365]

174

Firewall Detection

 The Execution Manager verifies that each TENA application
attempting to join an execution is able to receive network
traffic

Any application that is unable to receive network traffic is
prevented from joining

 The Execution Manager will try for 2 seconds (default) to
contact a joining execution
 This time can be changed using the

TENA_MW_CONNECTION_TIMEOUT environment variable or the
–connectionTimeout option

 If a firewall is present, and the application can’t receive
network traffic, the user needs to:
 open the appropriate ports on the firewall
 specify to the application behind the firewall the port to listen on using the
–ORBlistenEndpoints option discussed previously

 Look at the TENA Middleware FAQ for more info
 https://www.tena-sda.org/doc/5.1/FAQ/pg_faq.html

https://www.tena-sda.org/doc/5.1/FAQ/pg_faq.html�

175

Execution Manager Takes
Commands From the User

176

Execution Manager Records When
Applications Join

177

List

178

Stats

179

Diagnostics Log

All messages from the Middleware are redirected to a file
named
diagnosticsLog-YYYY-MM-DD-HHMMSS-PID.txt
 Note that this file is created in the directory where the application starts.

That directory must be writable, or the Middleware will fail to initialize by
throwing a std::runtime_error exception from
TENA::Middleware::init()

 The first line of every diagnostics log file is the name of the
application, as reported by argv[0]. Every entry in the
diagnostics log file is time-stamped.

 To redirect the log to the console, use the
–noDiagnosticsLog command line option

180

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

181

Object Model Distributions

 It is important to understand how to use the code generated
when an object model has been submitted and built for you

We use as an example the USTB object model

Distributions are given to the users in two (2) files
 The Definition File
 The Basic Implementation File

182

What the OM Distributions Look
Like

183

Installing the OMs

184

The OM Definition

185

The OM Basic Implementation

186

The OM Test Programs

187

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

188

Understanding the TENA Middleware
API Calls

Many TENA Middleware API calls consist of instantiating a
particular object and initializing it with an initial value that is
the return value from a function

C++ review
 <type_name> <variable_name> (<initial_value>);

int i (1); OR float x (sqrt (2));
 <type_name> <variable_name> = <initial_value>;

int i = 1; OR float x = sqrt (2);

 Example:

OMsample::Platform::ServantFactoryPtr
pServantFactory (
pSession->
createServantFactory<OMsample::Platform::ServantTraits>(
pPublicationInfo));

189

Steps to Join an Execution

 Create a TENA::Middleware::Configuration object,
passing in parameters

 Initialize the TENA::Middleware::Runtime by calling the
TENA::Middleware::init() function

 Using this Runtime object, create an Execution object that
represents your Execution
 Each execution is bound together by a single logical range object model
 An application may join multiple executions if it wants (e.g., if it wants to

“bridge” two different executions, or monitor two different executions, etc.)

 Using the Execution object, get a Session object
 A “Session” object is an interaction point for an application with an execution
 Sessions contain publication/subscription information
 Applications may use multiple sessions for each execution if they wish

190

API to Join an Execution

std::string executionName (“MC02RI”);
std::string sessionName (“MySession”);

// Construct new Configuration object
// Assumes argc, argv contain ORBdefaultInitRef info
TENA::Middleware::Configuration config (

argc, argv, “config.txt”, “test”);

// Get pointer to Runtime object
TENA::Middleware::RuntimePtr pRuntime (

TENA::Middleware::init(config));

// Get Execution
TENA::Middleware::ExecutionPtr pExecution (

pRuntime->joinExecution(executionName));

// Get Session
TENA::Middleware::SessionPtr pSession (

pExecution->createSession(sessionName));

191

TENA::Middleware::Configuration

Constructor:
TENA::Middleware::Configuration::Configuration (
int & argc,
char ** argv,
std::string const & filename = "",
std::string const & prefix = "")

 Function:
 parses options from command line, environment variables (starting with

“TENA_MW_”) and a file
 All options are parsed using a case-insensitive match
 Command Line arguments are parsed first and take precedence over the

same argument specified in environment variables and/or the file
 Unless the option takes multiple values, then all will be valid

 Environment variables have “TENA_MW_” and all “_” characters removed
before parsing

 Arguments in the specified file are parsed with the string “prefix” removed
from the front of the option

192

TENA::Middleware::Configuration
Example

TENA::Middleware::Configuration config (
argc, argv, “config.txt”, “”);

What it Does
 Parses argc and argv for middleware configuration options
 Parses any environment variables starting with “TENA_MW_”
 Parses options contained in “config.txt” that begin with “test”

Sample TENA configuration file
Blank lines are ignored.
The '#' character starts an EOL-terminated comment.

ORBdefaultInitRef : Naming Service Endpoint, e.g.
"corbaloc:iiop:<hostname>:<port>"
ORBdefaultInitRef=corbaloc:iiop:192.168.1.101:58725

193

Options Accepted by the Middleware

 -ORBdefaultInitRef <IOR prefix>
 This option provides the TENA application with the information necessary

to contact the networkNamingService, e.g., -ORBdefaultInitRef
corbaloc:iiop:<hostname>:<port>

 -ORBlistenEndpoints <endpoint>
 The endpoint on which the TENA application should listen for requests
 -ORBlistenEndpoints iiop://192.168.1.10:9999

 -configFile <file name> — for additional options
 -multicastTTL <TTL integer>

 When using multicast, to transmit data across multiple LANs, the routers
that control the exchange of data between the LANs must be configured
to pass IP multicast. As a protection against mistaken router
configurations (e.g., router loops), every IP multicast datagram is tagged
with a Time to Live (TTL) value. The TTL value is decremented every time
an IP multicast datagram reaches a router.

194

Additional Middleware Options

 -multicastInterface <interface>
 Sometimes it is desirable for hosts with more than one network interface

to use a non-default network interface to transmit IP multicast data (i.e.,
when using TENA::Middleware::BestEffort). On UNIX or Linux,
setting this option to the name of a network interface (e.g., "eth0") will
cause that interface to be used for multicast traffic. On Windows, this
option must be set to the hostname or IP address of the desired network
interface.

 -multicastSendBufferSize <size in bytes>
 -multicastReceiveBufferSize <size in bytes>

 This controls the size of the OS buffer used to hold data to be
transmitted/received on an IP multicast socket. Since IP multicast is "best
effort" (i.e., unreliable), attempts to transmit data faster than the network
can support will result in a buffer overrun and data will be lost in some
OS-specific way (most OSes will discard the entire buffer). Legal values
are 1024 <= multicastSendBufferSize <= 8388608, i.e., from 1 KB to
8 MB. The default value is 131072, i.e., 128 KB.

195

Additional Middleware Options

 -disableStructuredExceptionTranslation
 In a Microsoft application, several types of application runtime errors will

raise what Microsoft calls "structured exceptions". These exceptions are
incompatible with standard C++ exceptions (e.g., they can only be caught
in a catch (...) block) and must be translated into a meaningful C++
exception. By default, the TENA Middleware translates all structured
exceptions into a C++ exception class named
DCT::Utils::StructuredException. Unfortunately, translating
Microsoft structured exceptions hampers debugging a C++ application
with Microsoft's debugger. This option disables the translation of Microsoft
structured exceptions to facilitate debugging Microsoft application

 -noDiagnosticsLog
 send diagnostics to stdout instead of a file

 see http://www.tena-sda.org/doc/ for the documentation of
the TENA::Middleware::Configuration class

https://www.tena-sda.org/doc/5.1/ProgrammersGuide/df/d4c/classTENA_1_1Middleware_1_1Configuration.html

http://www.tena-sda.org/doc/�
https://www.tena-sda.org/doc/5.1/ProgrammersGuide/df/d4c/classTENA_1_1Middleware_1_1Configuration.html�

196

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

197

Steps to Publish a Servant SDO

Outside of your main program
 Define your object model
 Implement each object’s RemoteMethodsImpl.cpp
 Create Factories for your RemoteMethodsImpl implementations (or just

use the default factories provided by the code generator)
 In the main program

 Instantiate the appropriate PublicationInfoImpl object
 Inform the middleware you intend to create servants of this particular type

by calling createServantFactory<>():
 You will obtain a ServantFactory from this step

 Instantiate your SDO servant using the ServantFactory you just
obtained
 Each individual servant object needs to be created so that its

publication state is disseminated using either unreliable UDP multicast
(called “BestEffort”) or multiple reliable TCP unicasts
(“Reliable”)

 Update your SDO’s publication state to give it its initial values

198

Remote Methods

 For each type of SDO that the user needs to publish, the
user needs to create a “RemoteMethodsImpl” class that
inherits from an abstract base class generated from the
object model

 Why?
 The “RemoteMethodsImpl” class needs to be written by the user

because this class’s methods are where the specific user behavior occurs
 These are the methods that perform some action

 Therefore, the TENA Middleware developers or the TDL compiler
couldn’t write these methods since only the users know what they
want these methods to accomplish

 Auto-code-generated basicImpl files are provided with
each OM
 The TENA Hands-On Training course will cover in-depth the use of the

basicImpl files

199

API for Publishing and Instantiating a
Servant SDO

// Create a PublicationInfo object
OMsample::Platform::PublicationInfoPtr
pPlatformPublicationInfo(
new OMsample::Platform::BasicImpl::PublicationInfoImpl);

// Get a ServantFactory object
// Provide it the RemoteServantMethodsFactory and get
// back the PlatformServantFactory
OMsample::Platform::ServantFactoryPtr
pPlatformServantFactory(
pSession->createServantFactory<

OMsample::Platform::ServantTraits >(
pPlatformPublicationInfo));

// Instantiate the servant SDO using the ServantFactory
// In this example the servant’s state will be disseminated
// using UDP multicast (BestEffort) when updated
OMsample::Platform::ServantPtr pPlatformServant(
pPlatformServantFactory->createServantUsingDefaultFactory(
TENA::Middleware::BestEffort));

200

Updating the Servant’s Publication
State

 To change a servant’s publication state, the TENA
Middleware uses the concept of “updaters”

Updaters allow sets of publication state attributes to be
modified “atomically”

{
// Get an updater
std::auto_ptr<OMsample::Platform::PublicationStateUpdater>
pUpdater (pPlatformServant->createUpdater());

// Update the publication state
pUpdater->set_name(“M1A1-001”);

// Commit the changes atomically
pPlatformServant->commitUpdater(pUpdater);

}

201

Transactional Behavior for State
Updaters

Once an updater is obtained, a user can do three things:
 Commit the updater – make and disseminate the changes
 Rollback the updater – do not make or disseminate the changes
 Let the updater go out of scope – do not make or disseminate the

changes
Methods on the servant:

void
commitUpdater (
std::auto_ptr< PublicationStateUpdater >);

void
rollbackUpdater (
std::auto_ptr< PublicationStateUpdater >);

202

TENA Middleware Overview
and the Current Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

203

SDO Subscription Services

 Subscription services deal with how an application can
become a client (consumer) of objects created and served
by other applications

 To access objects created by other applications a
programmer must make a subscription request to the TENA
Middleware
 Programmers may subscribe only on the basis of an object’s class (which

must be defined in the LROM)
 Class-level subscriptions can be made on any class within the OM,

including contained classes
 TENA objects (SDOs) are “atomic” units

204

Proxies

 The result of subscription is that the TENA Middleware
provides the application with one or more “proxies”
 Proxies “stand in” for servants, and represent them
 Proxies have a similar interface to another object (the servant)
 A proxy is, in effect, a read-only representative, in your process space, of

a servant that exists elsewhere, typically in another process space
 A user receives proxies in the form of what are called

“ProxyPtr”s
 A ProxyPtr behaves much like a C++ pointer to a Proxy

 There are three basic functions that one can perform with a
proxy:
1. Invoke remote methods on the servant
2. Get the publication state so that it can be read
3. “Let go” of the proxy if you are no longer interested in it

205

Subscription Process

Outside of your main program
 Create the LROM
 Write the DiscoveryCallbackImpl and
DiscoveryCallbackFactoryImpl classes

 Write the StateChangeCallbackImpl and
StateChangeCallbackFactoryImpl classes (optional)

 Write the DestructionCallbackImpl and
DestructionCallbackFactoryImpl classes (optional)

 Inside your main program
 Instantiate a CallbackInfo object
 Instantiate a SubscriptionInfoImpl object
 Subscribe to the SDO
 Discover proxies (eagerly), i.e., process discovery callbacks
 Read the newly discovered proxy’s state
 Invoke remote methods on a servant via the proxy

206

API for Subscribing to an SDO

// Instantiate a platform CallbackInfo object
OMsample::Platform::BasicImpl::CallbackInfoPtr
pCallbackInfo(new

OMsample::Platform::BasicImpl::CallbackInfo(
std::cout));

// Instantiate a platform SubscriptionInfo object
OMsample::Platform::SubscriptionInfoPtr
pSubscriptionInfo(new

OMsample::Platform::BasicImpl::SubscriptionInfoImpl(
pCallbackInfo));

// Subscribe to Platforms
pSession->subscribeToSDO<
OMsample::Platform::ProxyTraits >(pSubscriptionInfo);

207

Discovering a New Proxy

 Inside the discovery callback object’s execute() method, the new proxy is
placed in the appropriate collection
 The callback object is constructed with a pointer to the proxy to the new object as a

member variable (“_pProxy”)

void OMsample::Platform::BasicImpl::DiscoveryCallbackImpl::execute()
{

_pCallbackInfo->getDiscoveredSDOlist().push_back(_pProxy);
}

 The list itself is also a member variable of the callback object
 How??? This is tricky, but accomplished because the user writes the appropriate

classes:
 main
 OMsample::Platform::BasicImpl::CallbackInfo
 OMsample::Platform::BasicImpl::DiscoveryCallbackFactoryImpl
 OMsample::Platform::BasicImpl::DiscoveryCallbackImpl

 The list is created in main() and passed in circuitously:
main()
CallbackInfo::_discoveredSDOlist
DiscoveryCallbackFactoryImpl::constructor()
DiscoveryCallbackFactory._pCallbackInfo._discoveredSDOlist

DiscoveryCallbackImpl::constructor()
DiscoveryCallbackImpl._pCallbackInfo._discoveredSDOlist

208

CallbackInfo.h
Getting Information out of Callbacks

 The callbackInfo class is used to get proxy information out
of a callback, in this example using an std::list

class CallbackInfo
{
public:

CallbackInfo(std::ostream &);
~CallbackInfo();
std::ostream & getOutputStream();
std::list< OMsample::Platform::ProxyPtr > &
getDiscoveredSDOlist();

private:
CallbackInfo(CallbackInfo const & rhs);
CallbackInfo & operator=(CallbackInfo const & rhs);
std::ostream & _outputStream;
std::list< OMsample::Platform::ProxyPtr >
_discoveredSDOlist;

};

typedef DCT::Utils::SmartPtr< CallbackInfo > CallbackInfoPtr;

209

Reading the SDO’s State

Assume discovery occurred and the proxy was
assigned to pPlatformProxy

Using the “get” method to read the publication state

// using return value from the servant object
// instantiation create a ProxyRef
OMsample::Platform::ImmutablePublicationStatePtr

pPlatformPublicationState(
pPlatformProxy->getPublicationState());

// read the attributes
std::string platformName (
pPlatformPublicationState->get_name());

210

Invoking a Remote Method

After getting the proxy, just invoke the method directly
pPlatformProxy->movePlatformTo(1.0, 2.0);

 This will result in a Remote Method Invocation on the
servant

 Your process will block until this remote method returns
 In the future, “oneway methods” could eliminate the need to block

211

Unsubscribe

 To unsubscribe to an SDO, invoke the appropriate method
on the Session:

pSession->unsubscribeFromSDO<
OMsample::Platform::ProxyTraits >();

212

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

213

Callbacks

 Issues:
 What callbacks are there?
 How does the user write the callbacks they need?
 During execution, how does the user get the callbacks delivered to them?

What Callbacks are there?
 Discovery – callback when a new proxy arrives
 StateChange – callback when a currently known proxy’s publication state

changes
 Destruction – callback when a servant whose proxy your application

holds is deleted by its owner application
 Each of these callbacks use the command and factory

method pattern for their instantiation

OMsample::Platform::XXXXCallbackFactory
std::auto_ptr< Callback > create(OMsample::Platform::ProxyPtr const &);

OMsample::Platform::XXXXCallbackFactoryImpl
std::auto_ptr< Callback > create(OMsample::Platform::ProxyPtr const &);

TENA::Middleware::Callback::Callback

execute()

OMsample::Platform::XXXXCallbackImpl

execute()

214

Writing Callbacks

 Each user must write two
classes for each of the three
types of callbacks
 Factory
 Actual Callback Implementation

Users should look at the
auto-generated “basicImpl”
code for guidance on how to
use these callbacks
 For simple situations, the
basicImpl code may be all a
user needs to get his or her
application running

215

Callbacks in Your Main Program

 The user application must tell the middleware that it is ready
to accept callbacks

 The TENA Middleware provides a unified Callback
evocation interface to provide flexible control over the
programming threading and concurrency issues
 When the middleware wants to inform the user of something, a Callback

object is created and placed in a queue
 The user is able to provide one or more threads of control to the

middleware for executing these callbacks when they deem appropriate
 This interface will support different application threading models (single

threaded, multi-threaded) and different concurrency models (non-
reentrant, reentrant)

216

Invoking a Single Callback
(These are methods on the Session)

size_t evokeCallback()
 Instructs the middleware to execute a callback if one exists in the queue

 The middleware will execute only a single callback at a time – it will return
immediately if no callbacks exist in the queue

 A Boolean value of True returned by the method indicates that there are
additional callbacks remaining on the queue

size_t evokeCallback(
unsigned int const maxWaitInMicroseconds);
 Instructs the middleware to execute a single callback or wait a maximum duration

of time for a callback if one does not exist initially
 The middleware will execute only a single callback at a time – it will return

immediately after processing the callback or expiration of the max time if no
callbacks exist in the queue during the wait period
 The middleware is unable to guarantee that it can honor the maximum

duration since the execution control can be passed to the application for
an indeterminate amount of time

 A Boolean value of True returned by the method indicates that there are
additional callbacks remaining on the queue

217

Invoking Multiple Callbacks
(This is a method on the Session)

size_t evokeMultipleCallbacks(
unsigned int const maxWaitInMicroseconds);
 Used to execute callbacks in the callback queue until the maximum duration is

exceeded
 Allows the middleware to execute multiple callbacks
 User applications may want to use this variation if they operate in a time-based

loop in which they can provide any excess time for each loop to the middleware for
handling callbacks
 An adaptive approach can also be used where the application determines

whether there are still callbacks pending at the end of an
evokeMultipleCallbacks

 If pending, a True return, the application could adjust the maximum duration
thereby providing the middleware more time for processing

 The best routine to use for more than one callback

218

Callback Evocation Examples

 The TENA Middleware provides a set of callback evocation methods
 These methods allow the user application to inform the middleware that callbacks

can be executed
 They return the size of the callback queue

 There are three variations of the callback evocations services, each are
methods on the session object:

// Give me a single callback
size_t more (pSession->evokeCallback());

// Give me a single callback and wait for a maximum
// amount of time (an unsigned integer in microseconds)
size_t more (pSession->evokeCallback(1000));

// Give me multiple callbacks and wait for a maximum
// amount of time (an unsigned integer in microseconds)
size_t more (pSession->evokeMultipleCallbacks(1000));

219

TENA Middleware Overview
and the Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

220

Local Classes

The TENA Middleware also supports the abstract concept of
a local class
 A local class is a generalization of a struct

A struct has state but not methods
 A local class may contain methods and state
 Unlike an SDO, the methods and state of a local class are entirely local to

the process containing the local class instance
The local class concept allows object model definitions to

support client-side methods on local classes contained in
SDOs or Messages.
 Invoking a method on a local class results in local execution of the

method, never a remote method call
Local class methods can be found in the files:
src/.../<LocalClass>/BasicImpl/MethodsImpl.h
src/.../<LocalClass>/BasicImpl/MethodsImpl.cpp

221

Creating and Using a Local Class

Creating a local class
 Create the local class using its Interface::create() method

Example::LocalClassType::Pointer pLC(
Example::LocalClassType::Interface::create());

Using a local class is almost identical to using a smart
pointer to a regular C++ object
pLC->set_longMember(7); // sets member variable
long l = pLC->get_longMember();// gets member variable
pLC->doLocalMethod(); // invoke local method
pLC.reset(); // Deletes the object pointed to by pLC

After reset(), the pointer pLC is no longer valid (i.e. it
points to NULL)

222

Internal Structure of a Local Class
(Example: OMsample::Identifier)

TDL:

223

Polymorphic Local Class
Methods

 Local class methods now behave
polymorphically
 If you have a pointer to a Base, but the underlying object

is really a Derived, then when you do:

pBase->doit();

the implementation of Derived::doit() is executed

<<TENA::LocalClass>>

Base

<<TENA::LocalClass>>

Derived

+doit()

+doit()

224

Local Class Get/Set Issue

 Issue: "I invoked set_foo() on my local class but the state of
the SDO didn't change"
 pUpdater->get_aLocalClass()->set_someAttribute(

someValue);

 get_aLocalClass() returns a clone of the contained local
class, not a reference

225

Local Class Get/Set Issues (cont)

Doing this the right way:

std::auto_ptr< OMsample::Platform::PublicationStateUpdater >
pPlatformUpdater(

pPlatformServant->createPublicationStateUpdater());

// Get a Pointer to the Local Class attribute "time"
OMsample::Time::Pointer
pTime(pPlatformUpdater->get_time());

pTime->set_nanoseconds(2184);
pTime->set_seconds(2457);

pPlatformUpdater->set_time(pTime);

pPlatformServant->commitUpdater(pPlatformUpdater);

226

TENA Middleware Overview
and the Current Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

227

Message Publisher
Supporting Classes

MessageSenderPtr - A message sender is the
middleware object that is used for sending messages of a
particular type with particular communications
characteristics (BestEffort or Reliable)

228

Sending a Message

// Create a MessageSender in the session,
// using the local methods factory
OMsample::LocationMessage::MessageSenderPtr
pLocationMessageSender(
pSession->createMessageSender<

OMsample::LocationMessage::MessageTraits >(
TENA::Middleware::BestEffort));

// Create a Message
OMsample::LocationMessage::Pointer pMessage(

OMsample::LocationMessage::Interface::create());

// Change the value of the integer attribute "MessageID"
pMessage->set_MessageID(12);

// Send the Message
pLocationMessageSender->send(pMessage);

229

Subscribing to Messages

 Supporting classes:
 CallbackInfo - A helper class used to easily pass variables into the

message callback classes that are created when a message is received
 SubscriptionInfoImpl - helper class that assists with callback

factories associated with subscribed message types
 MessageCallbackImpl - The callback class in which the user

provides the behavior that is invoked when a message is received

230

Subscribing to Messages

 Subscribing:
OMsample::LocationMessage::BasicImpl::CallbackInfoPtr
pCallbackInfo (new
OMsample::LocationMessage::BasicImpl::CallbackInfo(
std::cout))

OMsample::LocationMessage::SubscriptionInfoPtr
pSubscriptonInfo (new

OMsample::LocationMessage::BasicImpl::SubscriptionInfoImpl(
pCallbackInfo));

pSession->subscribeToMessage<
OMsample::LocationMessage::MessageTraits >(
pSubscriptonInfo);

Unsubscribing:
pSession->unsubscribeFromMessage<
OMsample::LocationMessage::MessageTraits>();

231

TENA Middleware Overview
and the Current Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

232

SDO Pointer Example

 SDO Pointer Rules:
 An instance of an SDO pointer may be NULL
 An instance of an SDO pointer may be de-referenced to obtain the

instance of SDO to which it refers
 An instance of an SDO pointer may be assigned to another instance of an

SDO pointer of the same type
 An instance of an SDO pointer may be set to refer to an SDO pointer of

the corresponding type

class Driver {};
class Engine {};
class Car

{
Driver * pDriver;
Engine theEngine;

};

TDL:

233

Using SDO Pointers

Creating an SDO Pointer from a Servant (use the same
method to get a pointer from a Proxy):
CarExample::Driver::Pointer pDriver(
pDriverServant->getPointer());

De-Referencing an SDO Pointer
CarExample::Driver::ProxyPtr pDriverProxy(
pDriver->getProxyPtr(

new CarExample::Driver::BasicImpl::SubscriptionInfoImpl);

 Testing the Pointer
if (pDriver.isValid()) { … } // Is the Pointer Valid??

234

SDO Pointer Behavior

 The dereferencing of an SDO pointer results in “instance-
based subscription” to the pointed-to object

Unless the pointed-to object’s proxy has already been
discovered (if that type has been subscribed to by the
application), the dereferencing of an SDO pointer can be a
very expensive operation with multiple network round-trips
 Your application is blocked while this is going on

 If the pointed-to object’s proxy is already being held onto by
your application, then the dereferencing operation is very
quick and optimized

235

TENA Middleware Overview
and the Current Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

236

Casting Proxies

Upcast:
// get pComplexProxy somehow…
SimpleSDO::ProxyPtr
pSimpleProxy(pComplexProxy);

Downcast:
MoreComplexSDO::ProxyPtr
pMoreComplexProxy(
TENA::Middleware::dynamicCast<
MoreComplexSDO::ProxyPtr>(pSimpleProxy));

Check:
if (pMoreComplexProxy.isValid())

{…} // you’ve succeeded.
else
{…}; // you’ve failed, try again.

<<TENA::LocalClass>>

SimpleSDO

<<TENA::LocalClass>>

ComplexSDO

<<TENA::LocalClass>>

MoreComplexSDO

237

Casting SDO Pointers

Upcast:
ComplexSDO::Pointer pComplexPointer(
pComplexSDOServant->getPointer());

SimpleSDO::Pointer
pSimplePointer(pComplexPointer);

Downcast:
MoreComplexSDO::Pointer
pMoreComplexPointer(
TENA::Middleware::dynamicCast<
MoreComplexSDO::Pointer>(pSimpleProxy));

Check:
if (pMoreComplexPointer.isValid())

{…} // you’ve succeeded.
else
{…}; // you’ve failed, try again.

<<TENA::LocalClass>>

SimpleSDO

<<TENA::LocalClass>>

ComplexSDO

<<TENA::LocalClass>>

MoreComplexSDO

238

Casting Local Classes

Upcast:
// create a ComplexLocalClass instance
ComplexLocalClass::Pointer pComplex(
ComplexLocalClass::Interface::create());

// upcast to SimpleLocalClass
SimpleLocalClass::Pointer pSimple(pComplex);

Downcast:
ComplexLocalClass::Pointer pOtherComplex(
TENA::Middleware::dynamicCast<
ComplexLocalClass::Pointer>(pSimple));

Check:
if (pOtherComplex.isValid())

{…} // you’ve succeeded.
else
{…}; // you’ve failed, try again.

<<TENA::LocalClass>>

SimpleLocalClass

<<TENA::LocalClass>>

ComplexLocalClass

239

Casting Messages

Upcast:
// create a ComplexMessage instance
ComplexMessage::Pointer pComplex(
ComplexMessage::Interface::create());

// upcast to SimpleMessage
SimpleMessage::Pointer pSimple(pComplex);

Downcast:
ComplexMessage::Pointer pOtherComplex(
TENA::Middleware::dynamicCast<
ComplexMessage::Pointer>(pSimple));

Check:
if (pOtherComplex.isValid())

{…} // you’ve succeeded.
else
{…}; // you’ve failed, try again.

<<TENA::LocalClass>>

SimpleMessage

<<TENA::LocalClass>>

ComplexMessage

240

Casting Notes

 Servants can neither be cast upward nor downward (this is
on the TENA “Things To Do” list)

When downcasting, if you don’t know what the underlying
type of an object is, you need to continually downcast it to
all the possible types and see which succeeds using the
.isValid() method
 The program structure will be not much different from the case in which

type information can be recovered
 If your object model has type information encoded in it, then you can

switch off this information to make the choice of a cast.
 Remember to always check using the .isValid() method

241

TENA Middleware Overview
and the Current Release 5 API

 TENA Middleware Software Overview
 TENA Executions
Application Development Basics
 Execution Management Services
 SDO Publication Services
 SDO Subscription Services
Callback Services
 Local Classes
Messages
 SDO Pointers
Downcasting
Diagnostics

242

Diagnostics Log

All messages from the Middleware have been redirected to a
file named
diagnosticsLog-YYYY-MM-DD-HHMMSS-PID.txt
 Note that this file is created in the directory where the application starts.

That directory must be writable, or the Middleware will fail to initialize by
throwing a std::runtime_error exception from
TENA::Middleware::init()

 The first line of every diagnostics log file is the name of the
application, as reported by argv[0]. Every entry in the
diagnostics log file is time-stamped.

Questions?

Where To Go From Here
 Performance Test Results
 Getting Help From the Help Desk
 Additional Training and Feedback

245

0.5

1.0

1.5

2.0

2.5

3.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Payload Size (bytes)

La
te

nc
y

(m
ill

is
ec

on
ds

) 0

20

40

60

80

100

120

0.5 1 1.5 2 2.5 3Latency (msec)

#

Release 4 Latency
(Peer-to-Peer, Windows 2000 Pro, 100 Hz

Updates)

Histogram at Zero Payload

Where To Go From Here
 Performance Test Results
 Getting Help From the Help Desk
 Additional Training and Feedback

247

TENA Helpdesk

248

TENA Helpdesk

Helpdesk emails can be “replied to” if you
have an account

249

Creating a New Issue

Where To Go From Here

 Performance Test Results
 Getting Help From the Help Desk
 Additional Training and Feedback

251

Hands-On Training Overview

 The TENA Hands-On Training Course will provide software
developers a hands-on programming experience with the
current release of the TENA Middleware prototype

 The target audience for this course is Software Developers
who have:
 Attended the Technical Introduction Course
 A background in C++, Object-Oriented software, distributed computing,

HLA, and/or CORBA is recommended, but not required
Development exercises will cover the gamut from joining a

Logical Range Execution to Updating and Reading
contained SDOs

252

Important Contact Information

 Project Website: http://www.tena-sda.org
 Download TENA Middleware (http://www.tena-sda.org/repository)
 Submit Helpdesk Case (http://www.tena-sda.org/helpdesk)

 TENA Feedback: feedback@tena-sda.org
 Provide technical feedback on TENA Architecture or Middleware
 Ask technical questions regarding TENA
 Provide responses to AMT action items
 Request TENA training

http://www.tena-sda.org/�
http://www.tena-sda.org/repository�
http://www.tena-sda.org/helpdesk�
mailto:feedback@tena-sda.org�

Questions
or Comments?

	TENA�Technical Introduction Course
	Schedule
	Goals of the Course
	TENA Mission and Organization
	TENA�Mission
	TENA�Project Objectives
	Where TENA SDA Fits in DoD
	TENA SDA Organization
	TENA Development Strategy
	Architecture Management Team (TENA AMT)
	TENA is an Open Architecture
	Some Uses of TENA
	Range Integration in Millennium Challenge 2002 (MC02)
	VAST / IMPASS �Over-the-Water Scoring
	JCIDEX 03 / TENA Activity
	AUV Fest 2003�SIMDIS
	SIMDIS Use of TENA
	Threat Systems Test�of TENA
	Slide Number 19
	Weibel Radar Integration
	Joint Red Flag 2005
	TENA in Real-Time Embedded Instrumentation by NetAcquire
	TENA Used to Distribute 4-Dimensional Weather Data
	InterTEC Air Combat Mission JMETC Event
	TENA Used to Control Video Distribution Services with IO Range
	Talisman Sabre 07
	TS07 Simulation Backbone
	TS07 Extended ITQ-45 System
	TENA Architecture
	What is an Architecture?
	Technical Driving Requirements
	Achieving Interoperability and Reuse
	TENA Architecture Overview
	Operational Architecture �(including ConOps)
	TENA Uses the Concept of a� Logical Range
	Logical Range�Simple Example
	Logical Range�Simple Example
	TENA Common Infrastructure
	TENA Repository�Purpose and Requirements
	TENA Repository�Multi-Tiered Straw-Man Design
	TENA Middleware�Purpose and Requirements
	TENA Middleware�Current Design Overview
	Logical Range Data Archive�Purpose and Requirements
	Logical Range Data Archive�Straw-Man Design
	TENA Compliancy Levels
	Gateways
	Gateway Builder
	Gradual Deployment of TENA
	Questions?
	Stateful Distributed Objects,�the TENA Meta-Model,�and the TENA Object Model
	What is a Meta-Model, and�Why is it Important?
	Every Computer Language Has A�Meta-Model�(…and They’re All Different)
	Requirements for Defining the�TENA Meta-Model
	Stateful Distributed Objects
	Clients and Proxies,�Servers and Servants
	Clients and Proxies,�Servers and Servants
	Clients and Proxies,�Servers and Servants
	Local Classes
	Representing a Meta-Model
	TENA Meta-Model�Release 5.2.2
	TENA Objects�are Compiled In
	Creating a TENA Application
	The Logical Range Object Model
	The Standard�TENA Object Model
	TENA Standard Object Models
	TENA-TSPI-v4
	TSPI v4 with Coordinate Conversions
	TSPI v4 with Coordinate Conversions
	TENA-Platform-v3.1
	TENA-PlatformDetails-v3
	TENA-Engagement-v3.1
	Web-Based Code Generation
	Object Model Distributions
	Web Site OM Support
	Browse Repository
	Upload TDL Files
	Download Model Definition
	Remember: Need to Download Definition and Implementation
	Future Auto-code Generation�With TENA
	Summary So Far
	TENA Solutions to�Interoperability Challenges
	DoD Directive on TENA�Business Initiative Council TE-09�Common Test and Training Range Architecture Policy (CTTRAP)
	Summary of What We Have
	Important Contact Information
	Questions?
	Break
	TIDE 1.1 Overview
	TIDE-Based�TENA Development Process
	TIDE 1.1 Features
	Customizable TENA Projects
	CDT Integration
	TENA Repository Exploring
	TENA Repository Exploring�
	Installing/Uninstalling TENA Middleware
	Installing/Uninstalling TENA Middleware
	Installing/Uninstalling and Requesting Object Models
	Installing/Uninstalling and Requesting Object Models
	Installing/Uninstalling Implementations
	Installing/Uninstalling Implementations
	Creating TENA Projects
	Creating TENA Projects
	Creating TENA Projects
	Importing Existing TENA Projects
	Importing Existing TENA Projects
	Configuring TENA Projects
	Configuring TENA Projects
	Building TENA Projects
	Building TENA Projects
	Comparing TENA Projects with their Pristine Copy
	Comparing TENA Projects�with their Pristine Copy�
	Migrating TENA Projects between Middleware releases
	Migrating TENA Projects between Middleware releases
	Migrating TENA Projects between object model releases
	Migrating TENA Projects between object model releases
	Summary
	TENA Definition Language
	Designing Your Own LROM
	Why is TDL being used?
	TENA Meta-Model�Release 5.2.2
	Package
	Fundamental Data Types
	Local Classes
	Messages
	Private Local Class and�Message Attributes
	Read-Only Local Class and �Message Attributes
	Enumerations
	Vectors
	SDO Pointers
	SDOs�Defining SDO Classes
	SDOs�Inheritance
	SDOs�Interfaces
	SDOs�Implementing Interfaces in Classes
	SDOs�Interfaces and Inheritance
	SDOs�Composition
	User Defined Exceptions
	Oneway Remote Methods
	Possible Future Enhancements
	Sample Object Model
	Sample OM in TDL
	Questions?
	Patterns Necessary to Understand�The TENA Middleware API
	What are Design Patterns?
	Design Patterns History
	Patterns Catalogued�in Design Patterns
	Frameworks
	Factory Method Pattern
	Factory Method Pattern Process
	Factory Method Pattern�TENA Middleware Example
	Command Pattern
	Command Pattern in the TENA Middleware
	How does the Middleware Get the Callback Commands??
	Observer Pattern
	Observer Pattern in the TENA Middleware
	Questions?
	Break
	TENA Middleware Overview and the Release 5 API
	TENA Middleware Overview�and the Release 5 API
	TENA Web Portal�http://www.tena-sda.org/
	Downloading the Release
	Downloading the Release
	Installing the Middleware
	Supported Platforms
	Middleware Installation
	Directory Structure
	sampleApplication – TENA Release 5.2.2 Example Program
	Look into the SampleApplication Folder
	Build sampleApplication
	Build Results
	TENA Middleware Overview�and the Release 5 API
	Logical Range Execution Applications
	networkNamingService (NNS)
	executionManager (EM)
	Provide the Execution Manager with Enough Multicast Groups
	Firewall Detection
	Execution Manager Takes Commands From the User
	Execution Manager Records When Applications Join
	List
	Stats
	Diagnostics Log
	TENA Middleware Overview�and the Release 5 API
	Object Model Distributions
	What the OM Distributions Look Like
	Installing the OMs�
	The OM Definition�
	The OM Basic Implementation
	The OM Test Programs
	TENA Middleware Overview�and the Release 5 API
	Understanding the TENA Middleware� API Calls
	Steps to Join an Execution
	API to Join an Execution
	TENA::Middleware::Configuration
	TENA::Middleware::Configuration Example
	Options Accepted by the Middleware
	Additional Middleware Options
	Additional Middleware Options
	TENA Middleware Overview�and the Release 5 API
	Steps to Publish a Servant SDO
	Remote Methods
	API for Publishing and Instantiating a Servant SDO
	Updating the Servant’s Publication State
	Transactional Behavior for State Updaters
	TENA Middleware Overview�and the Current Release 5 API
	SDO Subscription Services
	Proxies
	Subscription Process
	API for Subscribing to an SDO
	Discovering a New Proxy
	CallbackInfo.h�Getting Information out of Callbacks
	Reading the SDO’s State
	Invoking a Remote Method
	Unsubscribe
	TENA Middleware Overview�and the Release 5 API
	Callbacks
	Writing Callbacks
	Callbacks in Your Main Program
	Invoking a Single Callback�(These are methods on the Session)
	Invoking Multiple Callbacks� (This is a method on the Session)
	Callback Evocation Examples
	TENA Middleware Overview�and the Release 5 API
	Local Classes
	Creating and Using a Local Class
	Internal Structure of a Local Class (Example: OMsample::Identifier)
	Polymorphic Local Class Methods
	Local Class Get/Set Issue
	Local Class Get/Set Issues (cont)
	TENA Middleware Overview�and the Current Release 5 API
	Message Publisher�Supporting Classes
	Sending a Message
	Subscribing to Messages
	Subscribing to Messages
	TENA Middleware Overview�and the Current Release 5 API
	SDO Pointer Example
	Using SDO Pointers
	SDO Pointer Behavior
	TENA Middleware Overview�and the Current Release 5 API
	Casting Proxies
	Casting SDO Pointers
	Casting Local Classes
	Casting Messages
	Casting Notes
	TENA Middleware Overview�and the Current Release 5 API
	Diagnostics Log
	Questions?
	Where To Go From Here
	Release 4 Latency�(Peer-to-Peer, Windows 2000 Pro, 100 Hz Updates)
	Where To Go From Here
	TENA Helpdesk
	TENA Helpdesk
	Creating a New Issue�
	Where To Go From Here
	Hands-On Training Overview
	Important Contact Information
	Questions�or Comments?

