
Control Message June 9, 1998 3:32 pm 1

Control Message
An Object Behavioral Pattern for Managing Protocol

Interactions

Joe Hoffert and Kenneth Goldman
{joeh,kjg}@cs.wustl.edu

Distributed Programing Environments Group
Department of Computer Science,

Washington University, St. Louis, MO. 63130, U.S.A.

Abstract

Often in distributed applications, protocols are used to negotiate functionality between dis-
tributed components. It can be difficult to manage the interactions of protocol messages when
they are negotiating functionality between these distributed components. The Control Message
pattern simplifies message management by allowing messages to suspend and resume their exe-
cutions based on replies received. This pattern can be generalized to objects waiting for events.
An example usage is shown along with the benefits and liabilities of using the pattern. An imple-
mentation outline is also provided along with some sample code. Finally, patterns related to the
Control Message pattern are listed.

1.0 Intent
Encapsulate a protocol message as an object to allow it to wait for and handle certain events
during its execution. This allows an object using the Control Message pattern to suspend itself
waiting for events and to resume execution once a desired event has occurred. It also allows the
object to determine for itself the events which are of interest.

2.0 Also Known As
Microthread pattern?, Protocol pattern?, Rendezvous pattern?[maybe not applicable yet?]

3.0 Classification
Object Behavioral for Distributed or Multi-Threaded Applications.

4.0 Motivation & Context
Often in distributed applications, protocols are used to negotiate functionality between
distributed components. As part of a protocol one component receives a request for some
distributed functionality. It will then collaborate with one or more other components to provide
the requested functionality.

Control Message June 9, 1998 3:32 pm 2

Protocol negotiations may be needed, for example, to determine which options (if any) are
supported for a particular functionality. They may also be needed to determine if the
functionality can be realized between the targeted components. The protocol determines the valid
messages and their interactions. It also defines valid negotiations of functionality. It specifies
how message interactions should occur and what the legal possibilities are.

The interaction of components to enable some specified functionality is illustrated in Figure 1.

One component sends a request to another component. To achieve the desired functionality the
enabling component collaborates with a third component. It sends a message to this collaborating
component saying "Here are all the options I support for the requested functionality. Which of
these do you support if any?" The collaborating component may then respond "I do not support
what you need", "There's not enough common functionality between us to do the job", or "I
support what you need but with these qualifications." The enabling component needs to wait on
the collaborating component's response to proceed.

There may be several negotiation or collaboration stages between distributed components to
accommodate certain functionality. The distributed components may need to do some processing
on their own, send off a message to the other coordinating components, and then wait for a reply.
This cycle may occur several times before the desired capability is enabled. It is important to
note here that messages between components may cross process and machine boundaries.

Command objects [1] are good for encapsulating requests and replies. However,Command
objects by themselves are unable to support negotiations (i.e., the interactions of protocols)
between distributed components. They lack the ability to suspend and resume their executions.
They also lack the ability to check for events that might be of interest to them. TheControl

FIGURE 1. Interaction Diagram For Protocol Negotiation

Requesting Enabling Collaborating

request
proposal

negotiation/qualification

wait for status
wait for reply

setup negotiated
functionality

setup negotiated
functionality

Component Component Component

acknowledge end of setup

acknowledge end of setup

wait for
acknowledgment

request
status

process or
machine boundary

process or
machine boundary

Time

Control Message June 9, 1998 3:32 pm 3

Message pattern uses theCommand pattern to encapsulate requests as objects. Additionally, it
allows these objects to execute for a time, suspend execution to wait for events, and resume
execution when events of interest have arrived.

Complex protocols can be simplified using theControl Message pattern. AProtocol creates the
appropriateControlMessages. The ControlMessages are then told to send themselves to the
appropriate components. When an initialControlMessage is received by another component it is
told to run itself. TheControlMessage will then execute until it needs to coordinate with another
component or components. At this point, it will suspend its execution waiting for the appropriate
coordination event. TheControl Messages determine how and where they will be suspended.

Since Control Messages suspend themselves waiting for certain events, there needs to be an
object that services events. Each component in the application using theControl Message pattern
needs to notifyControlMessages when new events that might be of interest occur. In this regard,
it makes sense to have anEventMonitor. There may be several different types ofEventMonitors
depending on the need of the application.

EventMonitors are aware of any relevant events that are received by a component. When an
event is received, theEventMonitor will pass along the event to any waitingControlMessages of
which it is aware. For example, theEventMonitor may have a queue of suspended
ControlMessages that are interested in events. This functionality is encapsulated in the
waitingFor method.

When a new event arrives theEventMonitor will iterate through itsControlMessages invoking
their takingOver methods with the event as an argument. TheControlMessage’s takingOver
method checks if theControlMessage wants to take over the event. If it does, it consumes the
event. Thus, theEventMonitor will stop querying its remaining suspendedControlMessages for
that particular event (cf. theExternal Chain of Responsibility pattern [2]).

When aControlMessage receives an event of interest it checks to see if it has all the information
or resources needed to continue execution. If so, it will unregister itself from theEventMonitor
and resume its execution. Otherwise, it will continue to be suspended waiting for events. The
current execution state of theControlMessage is kept so that the object knows the appropriate
context when resuming execution.

5.0 Example Usage
Some of the protocols supported by the C++ class library in the Playground distributed
programming environment [3] are non-trivial and involve several different types of messages.
Some of the messages need to wait for replies at several different stages of their executions. For
example, in the lifetime of aProposedLinkMessage it can wait on up to three different kinds of
messages depending on its current execution state. It also knows what types of responses are
appropriate for its particular execution state. It will report an error if the response is inappropriate
for a given state. Moreover, several protocol negotiations may be occurring simultaneously. In
the case of the Playground C++ class library where this pattern is used the only type of events
that are of interest are incoming messages. Hence, theEventMonitors in Playground are
MsgMonitors.

Control Message June 9, 1998 3:32 pm 4

When aControlMessage gets to the point where it needs to wait for a reply from another process
it suspends itself on aMsgMonitor where replies are received. TheControlMessage keeps track
of its execution state internally so that it knows how to resume execution when it processes a
reply. When a reply comes in each suspendedControlMessage is asked if it wants to handle the
reply. If it does then it resumes its execution based on its current execution state. This cycle of a
ControlMessage suspending and resuming itself may happen several times before the message
completes its execution.

6.0 Applicability:

Use theControlMessage pattern when you want to:

• enable protocols where messages need to interact with and wait for each other;and

• facilitate the protocol messages crossing machine, process, or thread boundaries;or

• have objects that compete for scarce and/or non-shareable resources. One object starts with the
resource. When it is done it relinquishes the resource. This could be noted as an event by an
EventMonitor and theEventMonitor can pass this event to any suspendedControlMessages
waiting for that resource;or

• process multiple negotiations simultaneously without blocking. Using theControlMessage pat-
tern, an application can process multiple protocol negotiations at the same time without one of
the negotiations blocking all the others. AControlMessage does not need to run to completion
before any otherControlMesssage is also allowed to run. Several negotiations, represented by
severalControlMessages, may be ongoing concurrently.

Do not use theControlMessage pattern if you:

• only need simple messages passed between components with no replies or negotiations.

FIGURE 2. Playground Example

MsgMonitorControlMessage
suspend()

ProposedLinkMessage

suspend()

unsuspend()

unsuspend()

resume()
takingOver()

resume()
takingOver()

ConnectRequestMessage

suspend()
unsuspend()
resume()
takingOver()

execution stateexecution state

waitingFor()
addMonitoring()
removeMonitoring()

run()

run()run()

ConnectionProtocol
createOutgoing()
createIncoming()

Control Message June 9, 1998 3:32 pm 5

7.0 Structure

8.0 Participants

• Protocol (ConnectionProtocol)

- creates the actual concreteControlMessages applicable to a protocol.

• ControlMessage (ControlMessage)

- defines the interface for all the concreteControlMessages.

• ConcreteControlMessage (ConnectRequestMessage, ProposedLinkMessage)

- implements theControlMessage interface.

• EventMonitor (MsgMonitor)

- passes events toControlMessages that are suspended waiting for events.

9.0 Collaborations

• ConcreteControlMessages add themselves toEventMonitors (via theaddMonitoring
method) when they are interested in incoming events. They remove themselves from
theEventMonitors (via theremoveMonitoring method) when they are no longer inter-
ested in incoming events.

10.0 Consequences

10.1 Benefits

The ControlMessage pattern offers the following benefits:

Separation of Concerns: The Control Message pattern decouples messages from their
receivers. This not only alleviates the overhead of tying messages to specific receivers but also
accommodates multiple receivers for any one message.

FIGURE 3. Structure of the Control Message Pattern

ConcreteControlMessage

suspend()
unsuspend()
resume()
takingOver()
execution state

EventMonitorControlMessage
suspend()
unsuspend()
resume()
takingOver()

waitingFor()
addMonitoring()
removeMonitoring()

Protocol
createOutgoing()
createIncoming()

use execution state to
resume execution

Control Message June 9, 1998 3:32 pm 6

It decouples the object that monitors events (i.e.,EventMonitor) from the object that determines
interest in events (i.e.,ControlMessage). ControlMessages can change the type of events in
which they are interested simply by unregistering themselves with one type ofEventMonitor and
registering with another type ofEventMonitor. Additionally, ControlMessages can register
themselves with multipleEventMonitors if they are interested in several types of events.

Moreover, the policy of deciding howControlMessages are notified of events is separated from
the processing of that event. TheEventMonitor decides how theControlMessages are notified of
an event but theControlMessage decides how to proceed with execution once the event has been
delivered. It is easy to change the policy of how messages are notified without affecting how the
event is processed.

Flexibility: The Control Message pattern allowsControlMessages to suspend and resume
execution any number of times before completing their executions.

Localization of Functionality: TheControl Message pattern allowsControlMessages to have a
life of their own. They need not be managed by any other object and need not have any long-
term dependencies to any objects. All the information needed to execute, suspend execution, and
resume execution (including selection of pertinent events) is encapsulated within the
ControlMessages.

10.2 Liabilities

The ControlMessage pattern has the following liabilities:

Potential Interface Bloat: The ControlMessage pattern increases the size of the interface for
messages due to the extra methods ofsuspend, unsuspend, resume, andtakingOver.

Dangling Suspended Messages/Message “Leaks”: SuspendedControlMessages may never
resume execution if the events for which they are interested are never passed to them. These
messages are still queried when new events arrive which takes up processing time. Timeouts can
be used to remove “outdated” suspended messages but there is always the issue of how long the
timeout should be.

Heavyweight Messages:ControlMessages may be too heavyweight for some applications.
Some protocols only need simple messages passed between components. They may not require
replies or negotiations.

11.0 Implementation

This section describes how to implement the Control Message pattern in C++. The imple-
mentation described below is influenced by the Playground distributed programming envi-
ronment.

• Determine the applicable protocols: Each protocol creates certain types of messages. It also
supports message interactions. Determine which protocols will involve negotiations of mes-
sages or will require messages who executions will be suspended waiting on events. All of the
concreteControlMessages for a relevant protocol are derived from the abstractControlMessage
class. This allows theEventMonitors to treat all concreteControlMessages uniformly.

Control Message June 9, 1998 3:32 pm 7

• Define theControlMessage methods for relevant messages: Each applicableControlMessage
will need to implement the methods as declared by theControlMessage interface. Determine
how each concreteControlMessage will suspend its execution - namely to whichEventMonitor
or EventMonitors will it suspend itself. Determine what applicable state information is needed
so thatControlMessages can resume execution appropriately.

The state information is relevant because each negotiation orControlMessage is not a separate
thread. EachControlMessage must essentially encode its “program counter” in its state It then
saves this “program counter” when it suspends itself and branches to this “program counter”
when its execution is resumed.

It may be that not all concreteControlMessages for a protocol will need to implement all the
ControlMessage methods. There may be only certain messages in a protocol that need this
capability. The other messages need do nothing. If one of theControlMessage methods is
invoked on a concreteControlMessage subclass object that did not define that method a compi-
lation error will be generated indicating that the method is declared but not defined.

• Determine events of interest: Typically, for any distributed application there are several differ-
ent types of events that occur. Determine which events will be of interest for theControlMes-
sage subclasses. Specifically, determine on which eventsControlMessages will want to wait.

• Determine which EventMonitors will handle which events: Once the relevant events have
been determined, the programmer needs to decide how the events will be handled. Specifically,
determine whichEventMonitors will handle which events. There are several different
approaches.

One approach is to have a singleEventMonitor handling all events. This may be appropriate for
applications that do not anticipate the queue of suspended messages to be very large. If typi-
cally there are only a few messages that are waiting for events and there are few events being
passed between components, this strategy probably makes the most sense.

However, if there will be several messages waiting for events and many events coming in to a
component then having a singleEventMonitor may create a processing bottleneck. An undesir-
able amount of time may be spent in theEventMonitor iterating through all the suspended mes-
sages for each incoming event. Additionally, this time is compounded with many events
coming in.

A second approach is to have oneEventMonitor for each type of event. If there will be many
types of events that will be monitored and many events coming in to a component, it may make
sense to have a separateEventMonitor for each type of event. This will speed up event dispatch-
ing since events will only be passed to messages that are interested in that type of event.

This approach does add some complexity since the incoming events will need to be demulti-
plexed to their appropriateEventMonitors. Additionally, information will be needed for the
incoming events to determine where they should be sent which may increase coupling and
reduce information hiding. TheReactor pattern [4] can be helpful in demultiplexing events.
EachEventMonitor would be aConcreteEventHandler in this pattern.

• Determine default processing for events: It may be appropriate for a component to receive
events where noControlMessage is waiting for it. For this case it makes sense to define default
processing for these events. For example, incomingControlMessage events may not be replies
to otherControlMessages but instead may be initial requests themselves. In this case, it may be
appropriate to have theseControlMessages execute.EventMonitors could have the default
behavior of telling ControlMessages to run themselves if no other ControlMessages are waiting
on them. EventMonitors could also simply return whether or not the event was consumed.
Some other object could then handle default processing.

Control Message June 9, 1998 3:32 pm 8

For other components, it may never make sense to have incoming events that do not haveCon-
trolMessages waiting for them. In this case, it may be appropriate to ignore the event and
optionally report a warning or error.

Variations:

Lists of Event Types: EventMonitors can have lists of different types of suspended
ControlMessages that are only applicable for a specific type of event. This assumes certain types
of events are only applicable to certain types ofControlMessage subclasses. This can decrease
processing time at the cost of coupling theEventMonitors with concreteControlMessage classes
since nowEventMonitors must know about specificControlMessage subclasses.

Event Notification Without Consumption: Some ControlMessages may want to be made
aware of an incoming event but are not interested in consuming the event. This may occur for
monitoring purposes, for example. TheseControlMessages would be notified of the event but
would leave it for some otherControlMessage to consume. This can easily be facilitated by
adding the monitoring functionality to theControlMessage’s takingOver method. The
ControlMessage could do whatever bookkeeping it wanted to do with the event and the method’s
return value would indicate that the event was not consumed.

Event Transformation: SomeControlMessages may want to transform the event and return it
to the EventMonitor so that it instead passes the transformed event on to subsequent waiting
messages. For example, this may be desirable in the case where events are encrypted and need to
be decrypted for further processing. The decryptingControlMessage checks if the event is
decrypted. If it is, it will decrypt it and return it to theEventMonitor to pass along in place of the
original event. This can be facilitated by changing the return value of the takingOver method
from a boolean to a pointer to an event. If the return value is a NULL pointer the event has been
consumed. Otherwise, the returned event would be passed to the remaining waiting
ControlMessages.

With this approach there may need to be an ordering placed on suspendedControlMessages.
Clearly in the case of aControlMessage waiting to decrypt applicable events it should be passed
any incoming events before otherControlMessages that are expecting decrypted events. When
ControlMessages suspend themselves onEventMonitors they can pass a priority. The
EventMonitor will then know which suspended messages should be queried first when new
events arrive.

Merging ControlMessage and EventMonitor Functionality: A ControlMessage could be its
own EventMonitor. This may make sense if there is only ever a singleControlMessage waiting
for events at one time. However, it is conceptually cleaner and simpler to separate the two roles
into different objects if severalControlMessages wait for the same types of events.

12.0 Sample Code
When anEventMonitor receives an incoming event it queries all its known suspended messages.
TheEventMonitor class header and the implementation ofwaitingFor might look something like
this:

class EventMonitor {
public:

Control Message June 9, 1998 3:32 pm 9

 EventMonitor();
 virtual ~EventMonitor();

 // Check if the monitor is waiting for this event
 bool waitingFor(Event* message);

 // Add this message to the list of monitored messages
 void addMonitoring(ControlMessage* message);

 // Remove this message from the list of monitored messages
 void removeMonitoring(ControlMessage* message);

private:
 List<ControlMessage *> msgList_;
};

bool
EventMonitor::waitingFor(Event* event)
{
 // Iterate through the list of waiting messages to see if one of them wants
 // to take control of the passed-in event
 for (msgList_.begin(); !msgList_.atEnd(); msgList_++) {
 if ((*msgList_)->takingOver(event)) {
 return true;
 }
 }
 return false;
}

In this code example, theEventMonitor does not handle an unconsumed event. Instead it returns
whether or not the event was consumed. The default behavior is the responsibility of the calling
object.

When a concreteControlMessage’s takingOver method is called to query it about an incoming
event it might handle the event in the following manner:

bool
ConcreteControlMessage::takingOver(Event* event)
{
 bool takenOver = false;

 if (interestedIn(event)) {
 // Unmonitor this message
 getEventMonitor()->unmonitor(this);

 // Resume running of the control message
 resume(event);

 takenOver = true;
 }
 return takenOver;
}

When a concreteControlMessage resumes execution it can check its internal state and process
the event accordingly:

void

Control Message June 9, 1998 3:32 pm 10

ConcreteContolMessage::resume(Event* event)
{
 switch (internalState) {
 case INTERNALSTATE1:
 processInternalState1Event(event);
 break;
 case INTERNALSTATE2:
 processInternalState2Event(event);
 break;
 default:
 throw "Bad internal state for ConcreteControlMessage";
 break;
 }
}

In this code example, the valid execution states for theConcreteControlMessage is denoted by an
enumeration.

13.0 Known Uses
The ControlMessage Pattern is used in the Playground C++ class library. It is used to negotiate
connections between distributed components.[Does TCP do something similar or is it hard
coded for specific messages when handshaking?]

14.0 Related Patterns

The following patterns relate to the ControlMessage Pattern:

• TheCommand pattern [1] is used to encapsulate protocol requests and replies as objects. A key
component of theControlMessage pattern is to extendCommands to facilitate suspension and
resumption of execution.

• TheExternal Chain of Responsibility pattern [2] can be used to pass incoming events to poten-
tial receivers.

• TheStrategy pattern [1] can be used to determine how events are handled/dispatched for differ-
ent types ofEventMonitors.

• TheFactory Method pattern [1] can be used by theProtocols to create appropriate concrete
ControlMessages.

• TheIterator pattern [1] may be used in theEventMonitor to iterate through the suspendedCon-
trolMessages.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley, 1995.

[2] J. Hoffert, “Applying Patterns to Resolve Software Design Forces In Distributed Programming Envi-
ronments”,C++ Report, Vol. 10, July/August 1998

[3] K. Goldman, B. Swaminathan, P. McCartney, M. Anderson, R. Sethuraman, “The Programmers'
Playground: I/O Abstraction for User-Configurable Distributed Applications”.IEEE Transactions
on Software Engineering, 21(9):735-746, September 1995.

Control Message June 9, 1998 3:32 pm 11

[4] D. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplexing and
Event Handler Dispatching,” inPattern Languages of Program Design (J. Coplien and D. Schmidt,
eds.), Reading, MA: Addison-Wesley, 1995

