
Rethinking Reliable Transport for the Datacenter

Mahesh Balakrishnan∗, Joe Hoffert†, Ken Birman∗, Douglas Schmidt†

{mahesh, ken}@cs.cornell.edu {jhoffert, schmidt}@dre.vandebilt.edu
∗Cornell University, Ithaca, NY †Vanderbilt University, Nashville, TN

1 Introduction
Datacenter applications are inherently networked sys-
tems, distributed over multiple physical machines for scal-
ability and availability. The predominant communication
pattern within datacenters is multicast, where a packet is
simultaneously sent to multiple nodes. However, the net-
work communication options available today within dat-
acenters are severely limited — typically, application de-
velopers choose between using TCP sockets or building
custom application-level protocols over UDP. Research
into high-performance protocols for clustered environ-
ments has failed to produce implementations that are used
in the real world. We believe that the deployment failure
of new transport options stems from their intrinsic design
characteristics:

• Transport protocols are generic — each one tries to
provide a one-size-fits-all solution for communica-
tion. For example, TCP provides exactly the same
semantics for any application that uses it.

• Transport protocols are monolithic — each one has
a completely different code-base, even if most of it
is identical to existing protocols. For example, many
TCP implementations differ only in the control loop
they use.

• Transport protocols are opaque — they hide their in-
ternals from the applications that use them. For ex-
ample, TCP exposes no information to the applica-
tion regarding the status of an individual packet.

• Transport protocols are static — they stick to a fixed
set of mechanisms, varying only the parameters to
these using simple control loops. For example, TCP
uses the same basic reliability and flow control de-
vices in different settings, altering only the behavior
of the window size curve dynamically.

In this white paper, we describe the design of Ric-
ochet++, a new transport layer for datacenter applica-
tions. We argue that such a layer must have three ma-
jor properties: modularity, gray-box design and adaptiv-
ity. Modularity provides the mechanism through which

the layer can flexibly morph between different implemen-
tations and mechanisms on-the-fly. Gray-box design pro-
vides the mechanism through which the layer exposes in-
formation to external subsystems in an explicit and well-
defined manner. These two properties combine to enable
adaptivity — the behavior of the network layer can be de-
termined by external decision-making tools which range
in complexity from control loops to sophisticated machine
learning algorithms.

2 Design Principles
Modularity: Two decades of research into reliable mul-
ticast has resulted in a plethora of different protocols —
and the realization that no single solution works for all
applications and workloads. At the heart of the many dif-
ferent reliable multicast protocols are a small number of
core mechanisms [1] — positive and negative acknowl-
edgments, sender or receiver retransmissions, and for-
ward error correction. Prior work has looked at instantiat-
ing different multicast protocols using layerings of simple
building blocks [3].

We extend the idea of modular protocols further by al-
lowing arbitrary compositions of modules to interact in
non-layered fashion; in a sense, we have multiple stacks
existing in parallel. The data path between the sender
and the receiver of a packet branches off into many dif-
ferent modules. For example, at the receiver an incom-
ing packet could be sent to multiple modules — the NAK
module, which generates a negative acknowledgment and
despatches it back to the sender; the receiver-based FEC
module, which creates an XOR from the packet to send
to some other receiver; and the sender-based FEC mod-
ule, which uses it to recover missing packets using XORs
sent by the sender. These modules interact using a cen-
tral eventing queue to obviate threading and locking inef-
ficiencies, and use a managed memory subsystem to en-
sure that a single copy of the packet is safely shared across
the different modules.

The key advantage of a modular network architecture
is the ability to run multiple protocols in parallel — and
to compare their relative performance in real-time. This
opens the door to changing protocols on the fly depending



on performance, whether through manual intervention or
automatic/autonomic mechanisms.

Gray-Box Design: Network stacks have traditionally
been closed ‘black boxes’; the most notable example is
TCP/IP, which provides almost no explicit feedback to
the end application. Datacenter applications are usually
high-performance systems written by intermediate or ex-
pert developers. Consequently, we believe that providing
fine-grained feedback to applications on network condi-
tions and protocol performance can have enormous ad-
vantages. For example, a replicated data store can use in-
formation about slow receivers to eject replicas from the
group, or to shift load away from the problem receivers to
healthy nodes.

A real-world example of how gray-box exposure can
benefit system design is given by the SMFS mirroring so-
lution [4] developed at Cornell. SMFS runs over a com-
munication layer that uses sender-based Forward Error
Correction for reliability — the sender generates and in-
jects XORs of outgoing packets into the data stream, and
the receiver can use these XORs to recover lost data pack-
ets. SMFS requires the communication layer to expose
the number of XORs generated for any sent data packet.
It uses this information to compute the expected ‘reliabil-
ity’ of each data packet – the probability that it has been
received successfully by the remote mirror. Accordingly,
SMFS can then return from writes to the application once
the expected reliability of the write is high enough, in con-
trast to waiting for the remote mirror to acknowledge the
receipt of the packet. In practice, SMFS achieves orders of
magnitude better performance compared to standard mir-
roring solutions, without sacrificing reliability.

Adaptivity: As datacenters get larger and more com-
plex, the ability to selectively switch between protocols
- and to dynamically parameterize them - becomes crit-
ical for high-performance applications. With the advent
of utility computing platforms, applications are expected
to run within highly virtualized containers, contending for
processor and network resources. Protocol stacks for such
settings will need to be highly adaptive, running different
protocols in response to different conditions — for exam-
ple, alternating between sender-based and receiver-based
FEC based on which nodes are more heavily loaded; or
using NAKs at high data rates and ACKs at low data rates.

There has been tremendous interest in recent times in
the use of machine learning techniques to build adaptive
systems. One approach involves measuring the perfor-
mance of different ‘solutions’ and extrapolating the re-
sults — where a solution represents a particular config-
uration of the network stack. An implementation of such
an approach would exist outside Ricochet++ and mandate
the policy of adaptation. The mechanism of adaptation
is provided by the first two properties of the framework
— modularity and gray-box design. Modularity allows

different protocols to be easily composed and instanti-
ated on-the-fly, providing the mechanism through which
a network subsystem can change from one protocol to the
other. Gray-box design allows for the separation of this
mechanism from the policy of adaptation — the decision
to switch from one protocol to another can be made by an
entirely separate system which uses gray-box interfaces to
obtain performance information from the network subsys-
tem.

3 Conclusion
We argue that a next-generation communication stack for
datacenters must exhibit three key properties. First, it
must be constructed in modular fashion, with different
modules that compose together to form protocols. Sec-
ond, it must expose gray-box information to applications,
providing detailed information that can be used to infer
protocol performance and network health. Third, it must
use adaptive techniques to change its performance on the
fly as system load and capacity fluctuate. Building a net-
work layer with these properties is the first step to en-
abling truly adaptive datacenter systems. We are currently
writing an implementation of the Ricochet++ system in
C++ — the code is available at an open-source reposi-
tory [2].

References
[1] M. Balakrishnan, K. Birman, A. Phanishayee, and

S. Pleisch. Ricochet: Lateral error correction for time-
critical multicast. In NSDI, 2007.

[2] M. Balakrishnan and J. Hoffert. Ricochet++ Open Source
Repository, 2008. http://sourceforge.net/projects/ricochet-
mcast/.

[3] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using ensemble.
Software–Practice and Experience, 28(9), August 1998.

[4] H. Weatherspoon, L. Ganesh, T. Marian, M. Balakrishnan,
and K. Birman. Smoke and mirrors: Shadowing files at a
geographically remote location. In Submission.


