
Supporting Large-scale Continuous Stream Datacenters via Pub/Sub
Middleware and Adaptive Transport Protocols ∗

Joe Hoffert, Douglas Schmidt
Vanderbilt University, EECS Department

Nashville, TN
{jhoffert, schmidt}@dre.vanderbilt.edu

Mahesh Balakrishnan, Ken Birman
Cornell University, CS Department

Ithaca, NY
{mahesh, ken}@cs.cornell.edu

Abstract

Large-scale datacenters that handle continuous data
streams require scalable and flexible communication in-
frastructure. The scalability of publish/subscribe (pub/sub)
middleware coupled with fine-grained quality-of-service
(QoS) support and adaptive transport protocols constitutes
a promising area of research to address the challenges
of these types of large-scale datacenters. This paper de-
scribes how we are integrating pub/sub middleware with an
adaptive transport protocol framework to support compos-
able functionality for properties that—coupled with the fine-
grained QoS middlware support—can meet the required
QoS of data conferencing applications that coordinate and
manage multiple continuous data streams.

1 Introduction

Modern datacenters are an important computing plat-
form for large-scale applications in many domains, such as
homeland security, online stock trading, humanitarian re-
lief missions, and weather monitoring. The installed base
of datacenter-class inexpensive commodity servers has in-
creased dramatically in recent years, whereas the number of
relatively expensive mainframe servers has noticeably de-
clined. Modern datacenters are service-oriented and heavily
virtualized, running heterogeneous systems and software.

Today’s datacenters must also increasingly support ap-
plications with real-time QoS requirements. These real-
time datacenters process events and recover from failures
within seconds. Commodity datacenters are turbulent en-
vironments comprised of low-cost components and elicit-
ing many failure modes, ranging in scope from the loss of
packets to node crashes to large-scale facility, regional, and
national system failures.

Real-time datacenters require scalable and flexible com-
munication infrastructure. The requirement for scalability
inherently comes from the datacenter being large-scale and
needing to support numerous types of data for a plethora of

∗This work is supported in part by the NSF TRUST and AFRL Castor
and Pollux projects.

data providers and consumers. The requirement for flexibil-
ity manifests itself in several ways, including the following:

• Large-scale datacenters need flexible communication
infrastructure due to the many failure modes and com-
plexity inherent in the scale involved. Flexible com-
munication infrastructure can adapt to fluctuating de-
mands and environment changes to maintain accept-
able levels of service.

• Certain types of large-scale datacenters exacerbate the
need for flexible communication infrastructure due to
their dynamic and ad hoc nature. Examples of ad
hoc large-scale datacenters include tactical informa-
tion grids within a battlefield or emergency response
networks in the aftermath of a regional or national nat-
ural disaster.

Many publish/subscribe standards and technologies
(e.g., Web Services Brokered Notification [9], the Java
Message Service [12], and the CORBA Event Service [6])
have been developed to support large-scale data-centric dis-
tributed systems. These standards and technologies, how-
ever, do not provide fine-grained and robust quality of ser-
vice (QoS) support. Some large-scale distributed systems
(e.g., the Global Information Grid and Network-centric En-
terprise Services) require rapid response, scalability, band-
width guarantees, fault-tolerance, and reliability. These sys-
tems also need to function under stressful conditions and
over connections with less than ideal properties, such as
bursty loss, latency concerns, and route flaps.

In addition, real-time datacenters often need to support
continuous data streams that constantly generate data. Con-
tinuous data streams can be generated from sensors (e.g.,
surveillance cameras, temperature probes) as well as other
types of monitors (e.g. online stock trade feeds). These
streams differ from streamed file data (e.g., streaming the
contents of a movie) since the start and end of streamed file
data are known a priori. Streamed file data generally have
less stringent deadline and delivery requirements, instead
focusing on presenting a consistent flow of data to an appli-
cation. For example, distributed movie players can buffer
video to avoid pauses or skips.

1



We call applications that synchronize multiple contin-
uous data streams data conferencing applications. These
types of applications have requirements for (1) timeliness,
which is inherent in continuous data streams and (2) relia-
bility, which involves receiving enough data so that they are
usable. Moreover, conferencing applications imply multi-
ple senders and receivers since more than one continuous
data stream is sent and potentially many receivers receive
the data streams. A challenge for supporting data confer-
encing applications is to develop technologies that are com-
patible with commercial-off-the-shelf (COTS) middleware
technologies and yet can also achieve the required level
real-time QoS.

To address this challenge we are combining QoS-
enabled middleware with adaptive transport protocols to
provide timely and reliable data delivery. In particu-
lar, we are developing the ADAptive Middleware And
Network Transports (ADAMANT) platform, which inte-
grates the Ricochet++ transport protocol framework with
OpenDDS [5].

Ricochet++ is a framework for composing transport pro-
tocols built upon the properties provided by the Ricochet
transport protocol [1], a scalable reliable multicast proto-
col that was recently developed by Cornell. OpenDDS
is an open-source implementation of the Data Distribution
Service (DDS) [7] middleware that enables applications to
communicate by publishing information they have and sub-
scribing to information they need in a timely manner. By
integrating Ricochet++ and OpenDDS, ADAMANT pro-
vides fine-grained QoS control and a powerful standard-
ized pub/sub atop a multicast protocol that is more scal-
able and efficient than the standard DDS Real-Time Pub-
lish/Subscribe (RTPS) [8] protocol.

The remainder of this paper is structured as follows: Sec-
tion 2 presents a motivating example of a representative data
conferencing application; Section 3 details our solution ap-
proach for ADAMANT; and Section 4 presents concluding
remarks.

2 Motivating Example: A Data Conferencing
Application for Search-and-Rescue Mis-
sions

To motivate ADAMANT, this section describes a data
conferencing application that detects and locates survivors
as part of disaster relief efforts. The application needs to
coordinate and synchronize a video data stream from one
platform (e.g., a videocamera mounted atop a building) and
a thermal scan data stream from another platform (e.g., a
thermal imaging camera attached to an unmanned aerial ve-
hicle). Not only are there multiple senders of continuous
data, but there are also potentially many receivers of the
data, e.g., a helicopter performing rescue operations, local

disaster relief headquarters, and Federal Emergency Man-
agement Agency (FEMA) headquarters.

The senders and receivers of data for a particular search-
and-rescue mission must compete for infrastructure support
with other search-and-rescue missions and with other tasks.
These tasks occur in a coordinated and concurrent manner
as part of the disaster relief efforts. The coordination and
concurrency emphasizes the need for scalability. The time-
liness and reliability requirements for processing continu-
ous data streams emphasizes the need for flexible and fine-
grained QoS support.

Other data conferencing applications with similar data
stream requirements include tracking the prices of multiple
stocks within a stock trading system, synchronizing medi-
cal telemetry data for a wireless medical emergency room
within a combat support hospital used during humanitar-
ian missions, and monitoring national or global weather via
data streams from multiple sensors and applications.

3 Solution Approach: ADAMANT

This section describes how ADAMANT integrates
OpenDDS with the latest version of the Ricochet++ trans-
port protocol framework. In addition, it provides overviews
of Ricochet++, the DDS standard, and the OpenDDS open-
source DDS implementation. By combining DDS’s exten-
sive QoS policies and standardized API with Ricochet++’s
scalable multicast transport protocol, ADAMANT provides
a powerful and flexible development platform for pub/sub-
based data conferencing applications.

3.1 Overview of the Ricochet++ Transport Proto-
col Framework

The Ricochet++ transport protocol framework originally
started as the Ricochet transport protocol developed at Cor-
nell University. Ricochet uses a bi-modal multicast protocol
and a novel type of forward error correction (FEC) called
lateral error correction (LEC) to provide QoS and scalabil-
ity guarantees. Ricochet supports (1) time-critical multicast
for high data rates with strong probabilistic delivery guar-
antees and (2) low-latency error detection along with low-
latency error recovery.

Ricochet++ is a transport protocol framework developed
to support various transport protocol properties. These
properties include NAK-based reliability, ACK-based relia-
bility, several FEC codes (e.g., XOR, Reed-Solomon, Tor-
nado), and specification of FEC at the sender, the receiver,
or within a multicast group. These properties can be com-
posed dynamically at run-time to achieve greater flexibility
and support autonomic adaptation.

Architectural enhancements have since been made to
Ricochet to define the Ricochet++ composable transport
protocol framework. The framework provides low-level

2



transport protocol properties (e.g., NAK-based vs. ACK-
based, sender-side forward error correction vs. receiver-side
forward error correction) that can be selected and combined
to meet the QoS needs of a particular application.

3.2 Overview of the Data Distribution Service

DDS is an Object Management Group (OMG) specifi-
cation that defines a standard architecture for exchanging
data in distributed pub/sub systems. DDS supports a logical
global data store in which publishers and subscribers write
and read data, respectively. Moreover, DDS provides flexi-
bility and modular structure by decoupling: (1) location, via
anonymous publish/subscribe, (2) redundancy, by allowing
any numbers of readers and writers, (3) time, by providing
asynchronous, time-independent data distribution, and (4)
platform, by supporting a platform-independent model that
can be mapped to different platform-specific models. Ex-
amples of these platform-specific models include C++ run-
ning on VxWorks or Java running on Real-time Linux.

DDS QoS Policy Description
Durability Determines if data outlives the time

when written or read
Deadline Determines rate at which periodic

data is refreshed
Latency
Budget

Sets guidelines for acceptable
end-to-end delays

Liveliness Sets liveness properties of topics,
data readers, data writers

Time
Based
Filter

Mediates exchanges between slow
consumers and fast producers

Reliabil-
ity

Controls reliability of data
transmission

Transport
Priority

Sets priority of data transport

Lifespan Sets time bound for “stale” data

Table 1. ADAMANT DDS QoS Policies

In addition, DDS provides a rich set of QoS policies
to provide fine-grain control. DDS provides 22 QoS poli-
cies with most QoS policies having attributes with a large
number of possible values, e.g., an attribute of type long or
character string to support even finer-grained control. Ta-
ble 1 summarizes the DDS QoS policies most relevant to
ADAMANT.

3.3 Overview of OpenDDS

OpenDDS is an open-source implementation of DDS
that supports a pluggable transport framework. This frame-
work allows OpenDDS to use custom transport protocols
for data transport. We chose OpenDDS for our DDS im-
plementation due to (1) the source code being freely avail-

able and (2) support for incorporating customized trans-
port protocols via its pluggable transport framework (PTF).
OpenDDS is built on top of the ADAPTIVE Communica-
tion Framework (ACE) [10] and shares some functionality
(such as an IDL compiler) with The ACE ORB (TAO) [11].
OpenDDS’s PTF uses design patterns (such as Strategy [3]
and Service Configurator [4]) to provide flexibility and del-
egate responsibility to the protocol only when applicable.

For example, a custom protocol subclasses from the
TransportSendStrategy class to determine how the protocol
should send data when a data writer writes out topic data.
Likewise, a custom protocol subclasses from the Trans-
portReceiveStrategy class to determine how data should be
handled once it is received. The Service Configurator pat-
tern allows application developers to specify the transport
protocols that should be included in the application. The
protocols can be included either statically when the applica-
tion is built or dynamically when the application is loaded
or while it is running.

Transport protocols are associated with publishers and
subscribers since these are the DDS entities that handle
sending and receiving data. Currently within the OpenDDS
PTF application developers must manage the coordination
of a data reader or data writer with the publisher or sub-
scriber respectively that provides the desired transport prop-
erties. For example, if the application requires that a data
writer use reliable communication developers must manu-
ally associate the data writer with the publisher using a reli-
able transport.

A better solution is to leverage the DDS reliability QoS
policy to specify reliable communication. The middleware
would then automatically select a transport protocol with
the desired reliability properties, e.g. TCP. Custom trans-
port protocols could register their properties with the frame-
work so that they could be selected appropriately.

3.4 ADAMANT

As shown in Figure 1, application-/domain-specific
transport protocols can be composed using Ricochet++ and
used by OpenDDS via its PTF. For example, application de-
velopers can create a custom transport protocol that uses ac-
knowledgments from the receiver, forward error correction
(FEC) information from the sender, and XOR encoding for
FEC. Alternatively, developers can create a custom trans-
port protocol that uses negative acknowledgments from the
receiver, FEC information from receiver to other receivers,
and Reed-Solomon encoding for FEC.

Ricochet++ also provides tunable settings within the
composable modules. For example, settings for the FEC
module include the number of packets sent for error correc-
tion (r) and the number of packets to be corrected in case of
loss (c) as typical of FEC protocols. The FEC module can
also be tuned by the amount of interleaving (i) it provides

3



Pluggable Transport 
Framework
gable Transport
Frameworkkkkk

XOR encoding

FEC-sender

ACK-based

Reed-Solomon encoding

FEC-receiver

NAK-based

++

Custom protocol 1 Custom protocol 2

Figure 1. ADAMANT Overview

which makes the protocol resilient to burstiness. Settings
for the NAK-based reliability module include timeouts and
window size for the sender.

4 Concluding Remarks
We are currently evaluating the behavior and perfor-

mance characteristics of various configurations of DDS and
its QoS policies with the Ricochet++ transport protocol
framework. These configurations will include the standard
DDS transport protocol (RTPS) and the protocols composed
using Ricochet++. To date, the Ricochet++ framework has
been implemented with support for rudimentary compos-
able modules, e.g., IP multicast, NAK-based reliability. Ad-
ditional modules are being developed to supply the trans-
port protocol properties described in Section 3.1. We have
developed and tested the OpenDDS classes necessary to
plug Ricochet++ into OpenDDS along with example ap-
plications that send and receive text messages, as well as
MPEG video data.

We are incorporating ADAMANT into the DDSBench
benchmarking environment [2] to expedite the evaluation of
various properties such as throughput and latency. We are
using Emulab software (www.emulab.net) to define net-
work topology and link properties for environments appli-
cable to large-scale datacenters. We are also classifying var-
ious ADAMANT configurations based on the observed be-
havior. This classification will guide the development of
autonomic adaptive behavior so that ADAMANT can au-
tomatically modify its configuration based on application
needs and changes in application environments.

References

[1] Mahesh Balakrishnan, Ken Birman, Amar Phan-
ishayee, and Stefan Pleisch. Ricochet: Lateral error

correction for time-critical multicast. In NSDI 2007:
Fourth Usenix Symposium on Networked Systems De-
sign and Implementation, Boston, MA, 2007.

[2] C. Esposito, S. Russo, and D. Di Crescenzo. Perfor-
mance assessment of omg-compliant data distribution
middleware. In 22nd IEEE International Parallel and
Distributed Processing Symposium, Miami, Florida,
USA, April 2008.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[4] Prashant Jain and Douglas C. Schmidt. Service Con-
figurator: A Pattern for Dynamic Configuration of
Services. In Proceedings of the 3rd Conference on
Object-Oriented Technologies and Systems. USENIX,
June 1997.

[5] Object Computing Incorporated. OpenDDS. http:
//www.opendds.org, 2007.

[6] Object Management Group. Event Service Specifi-
cation Version 1.1, OMG Document formal/01-03-01
edition, March 2001.

[7] Object Management Group. Data Distribution Ser-
vice for Real-time Systems Specification, 1.2 edition,
January 2007.

[8] Object Management Group. The Real-time Publish-
Subscribe Wire Protocol DDS Interoperability Wire
Protocol Specification. Object Management Group,
OMG Document formal/2008-04-09 edition, April
2008.

[9] Organization for the Advancement of Structured In-
formation Standards. Web Services Brokered Notifica-
tion Version 1.3, OASIS Document wsn-ws_brokered-
_notification-1.3-spec-os edition, October 2006.

[10] Douglas C. Schmidt and Stephen D. Huston. C++
Network Programming, Volume 2: Systematic Reuse
with ACE and Frameworks. Addison-Wesley, Read-
ing, Massachusetts, 2002.

[11] Douglas C. Schmidt, Bala Natarajan, Aniruddha
Gokhale, Nanbor Wang, and Christopher Gill. TAO:
A Pattern-Oriented Object Request Broker for Dis-
tributed Real-time and Embedded Systems. IEEE Dis-
tributed Systems Online, 3(2), February 2002.

[12] SUN. Java Messaging Service Specification. java.
sun.com/products/jms/, 2002.

4


