
Software Aesthetics and Human Flourishing in the Making of 
Technology 

 
Software applications in general and software integrated systems in particular are 

rapidly becoming ubiquitous parts of our personal lives (e.g., smart phones, cars, 
appliances) as well as essential components to critical infrastructure (e.g., power grids, air 
traffic control, national security). The demand for software systems is increasing in 
number, complexity, and size as the culture becomes more accustomed to the 
pervasiveness and benefits. This increase in demand requires additional computer 
scientists, information technologists, and software developers. 

Often the perception of software development is seen as analogous to assembly 
line work (i.e., menial unskilled labor). The development process is stereotyped as 
regimented, straightforward, and purely logical. Software requirements are captured, 
systematically mapped to a design, and transformed to implementation artifacts in a 
straightforward detached manner disassociated from aesthetics. This perception is present 
in the culture which is influenced by the modernist mindset and is present in industry as 
well as at academic institutions. 

Christian thinking presents a different perspective on work in general. When God 
created human beings He included work as a part of His good creation. Humans were to 
tend the Garden of Eden. Only after the cosmic event of mankind’s Fall did work become 
perverted and a struggle. Work is not inherently a curse but rather a good gift from God 
affected by the Fall. As Dorothy Sayers states, “… work is not, primarily, a thing one 
does to live, but the thing one lives to do. It is, or it should be, the full expression of the 
worker’s faculties, the thing in which he finds spiritual, mental and bodily satisfaction, 
and the medium in which he offers himself to God.” 

The academic discipline of computing science can be broadly split into theoretical 
and applied categories. Theoretical computing science investigates the limitations of 
computation (e.g., discovering uncomputable problems, analysing general theoretical 
timeliness of software). Applied computing science investigates how to create 
computational artifacts (e.g., software, hardware) to solve a wide range of challenges in 
various domains (e.g., biology, music, information management). Humans are creative 
creatures reflecting God’s creativity. Applied computing science in general and software 
engineering in particular inherently reflect this creativity which is the focus of this paper. 

The challenge arises of integrating the work of developing software systems with 
human flourishing and the redemption of work. Several questions arise when addressing 
human flourishing and the technology of software engineering. What is a Christian 
perspective in developing software? How can humans flourish in the development of 
software? Can other disciplines inform software development concerning human 
flourishing? 

In 1994 the seminal book Design Patterns: Elements of Reusable Object-Oriented 
Software was published to disseminate good software design practices. The book 
describes several design patterns that can be used to resolve requirements within a 
particular context. In some sense, the book describes tradecraft for software development 
and documents the wisdom of experts to be leveraged by the broader software 
development community. The software design pattern concept was inspired by the 
writings of Christopher Alexander and his book A Timeless Way of Building where he 



describes patterns used in architecture and buildings. When used with discernment design 
patterns can create elegant software designs and implementations that inherently have a 
quality of beauty. As one of the authors of the Design Patterns book stated, “Erich 
Gamma shared his joy in the order and beauty of software design as coauthor of the 
classic Design Patterns.” 

An important area to consider regarding beauty and software development is the 
interaction of discipline and creativity. Some computing science students initially believe 
discipline and consistency in software development stifles creativity. However, the arts 
(e.g., dancing, painting) show that consistency and discipline actually stimulate and 
provide channels for creativity. A script for an actor does not limit the actor’s creativity 
but provides a framework within which the actor can exercise creativity. This same 
argument can be made for consistent formatting and documentation of software systems. 
Creativity is needed in addressing requirements and solving problems. Consistent 
formatting and discipline in development provide the creative framework for software 
development. 

Beauty in software development is evident when complex functionality is 
encapsulated behind a simple and elegant interface. Beauty can be found in software 
systems that are comprehensibility at the appropriate level of scope and context. The 
order and symmetry of a well-designed software system is beautiful. Computing science 
students need to be trained to detect and create this beauty which argues for a liberal arts 
education that includes instruction in the fine arts and humanities. 


