
A Taxonomy of Protocol Frameworks and
Gap Analysis for Adaptive Publish/Subscribe Distributed

Realtime Embedded Systems∗

Wendell Noordhof, Joe Hoffert
Department of Computing Science

The King’s University College
9125 50 Street

Edmonton, AB T6B 2H3
wendell.noordhof@lab.kingsu.ca, joe.hoffert@kingsu.ca

ABSTRACT
The growing prevalence of distributed real-time embedded
systems in applications such as emergency response, disas-
ter recovery, and ambient assisted living necessitates the use
of protocol frameworks to support quality of service require-
ments and respond to changing environment conditions at
runtime. This paper presents a taxonomy that can be used
to classify protocol frameworks. The taxonomy includes sev-
eral features that are relevant for supporting adaptive DRE
systems. A brief overview of existing work in the area of
protocol frameworks and related network management is pro-
vided, and this work is evaluated and classified in terms
of the taxonomy. Finally, the paper analyzes the current
work on protocol frameworks within the context of adaptive
publish/subscribe distributed real-time embedded systems and
highlights the gaps found. Our results show that adaptive
protocol frameworks are (1) still an area largely addressed
by research without standardization and (2) deficient in re-
quirements for adaptive publish/subscribe DRE systems.

Keywords
protocol frameworks, adaptation, distributed realtime em-
bedded, publish/subscribe

1. INTRODUCTION
As the number and complexity of distributed systems con-

tinues to grow[6, 9], management of network access and
quality of service (QoS) accordingly increase in importance.
Some applications need to run in hardware and software en-
vironments that change at runtime, and potential problems

∗This work is supported by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Solo Discovery
Grant #155709773.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE’13, April 4-6, 201, Savannah, GA, USA
Copyright 2013 ACM 978-1-4503-1901-0/13/04 ...$15.00.

such as dynamic network topology and congestion need to
be addressed. Protocol frameworks can provide the flexibil-
ity required to leverage and evaluate standard and custom
protocols in diverse configurations and environments. Pro-
tocol frameworks can also be used to provide adaptability to
a system, via the ability to alter the protocols being used in
response to dynamic runtime conditions. This adaptability
provides management support for QoS requirements as the
environment changes. Moreover, protocol frameworks also
increase development and runtime efficiency when utilizing
multiple protocols which share common functionality.

Distributed real-time embedded (DRE) systems benefit
considerably from the use of protocol frameworks. DRE sys-
tems have many current and potential applications, ranging
from systems monitoring to communications during search
and rescue operations. However, this wide range of ap-
plicability comes with an equally wide range of challenges.
Many of these challenges arise when the DRE system is be-
ing used in a publish/subscribe (pub/sub) scenario, such as
distributed monitoring and sensing. For example, increas-
ing the number of publishers and/or subscribers can increase
congestion in the network. A protocol framework can help
manage the publishers and subscribers entering and exiting
the system and thereby support data dissemination require-
ments.

Pub/sub DRE systems deployed in changing environments
while the system is running present additional challenges.
For example, for a mobile ad hoc network (MANET), the
conditions such as signal strength and congestion would be
constantly changing, possibly resulting in degraded QoS. To
address the dynamicity of the system, the framework must
adapt at runtime, reacting to network conditions as they
are discovered. Using a protocol framework enables the sys-
tem developer to respond to these changes in the network
environment, ameliorating the challenges they present.

This paper presents a survey of existing work, a classifi-
cation scheme, and gap analysis for adaptive DRE pub/sub
systems. Section 2 discusses the different attributes of a
suitable framework for a pub/sub DRE system. Section 3
describes the current state of research in the area of protocol
frameworks, as well as relevant network algorithms and tech-
nologies, Section 4 classifies these frameworks according to
the attributes discussed in Section 2. Section 5 discusses im-
portant gaps in the current state of research, and Section 6
provides concluding remarks.

1

2. TAXONOMY OF PROTOCOL FRAME-
WORKS

Adaptive protocol frameworks are useful in a variety of
purposes and contexts, such as finding and communicating
with nodes in a wireless sensor network and handling cell
phone hand-offs from one cell tower to another. This section
presents a taxonomy that categorizes the properties common
between adaptive protocol frameworks and the properties
that differentiate them so that existing frameworks can be
compared and contrasted meaningfully.

• Relevant network layer(s). Protocol frameworks
typically only address certain network layers. For exam-
ple, some frameworks provide support for developing and
managing protocols for the link layer (e.g., link layer for
MANETS). Some frameworks provide support for protocols
at the network layer (e.g., IP unicast, IP multicast). Other
frameworks provide support at the transport layer at the
end hosts (e.g., TCP, UDP). Some frameworks provide sup-
port at the application layer (e.g., security and management
policies for distributed systems).

The emphasis on different network layers ameliorates the
complexity of developing protocols at that particular layer.
Depending on the network layer of interest some frameworks
will not be applicable. However, the functionality provided
by frameworks supporting lower level network functionality
(e.g., link layer functionality) can be leveraged by frame-
works supporting higher level network functionality (e.g.,
application layer functionality).

• Accessibility. Some protocols frameworks only need
to run in user space and are generally accessible to any user
or developer. These frameworks focus on transport and ap-
plication protocols since they do not require the permissions
needed to access the lower network layers (i.e., network, link,
and physical layers). Lack of access to the lower network lay-
ers also limits the kinds of protocols that can be developed
and the flexibility of designing protocols at any layer of the
network stack. The lower network layers already provide
certain functionality (e.g., transmitting data from one link
to another) that the protocol in user-space can use but not
modify.

Some protocol frameworks require that they run in kernel
space in order to access and modify IP header information.
These kinds of frameworks require that the implementer of
the protocols and user of the framework have special ac-
cess privileges (e.g., root access). Having this kind of privi-
lege allows access to restricted resources which can improve
performance and allow greater flexibility in protocol design.
However, development in kernel space provides greater op-
portunities for resources to be misused and for the computer
systems to be compromised. Moreover, developers might not
always have kernel space access in order to make the neces-
sary protocol framework modifications.

Some protocol frameworks require access to the network
infrastructure itself. These frameworks provide functional-
ity below the network layer (e.g., at the link layer) and so
need to be able to run in and access the network elements
(i.e., routers, switches). Like frameworks that run in kernel
space and require special permissions for deployment, these
frameworks require access to the network elements. These
elements also need to support modification and extension of
the software running in them.

• Static vs. dynamic adaptability. Some protocol

frameworks have been developed to support modification of
protocols during development time. For these frameworks
the application developer makes code changes to modify the
protocol that is being used. This approach provides for more
predictability in the deployed framework and applications
using the framework. For example, the amount of resources
needed (e.g., memory, network bandwidth) can be better
predicted and managed since the protocol used is known at
deployment time.

Some protocol frameworks allow modification of protocols
while the system is running. These frameworks support mul-
tiple protocols at deployment time and are able to handle
switching from one protocol to another or making modifica-
tions to the existing protocol to change its behavior. These
types of frameworks allow greater protocol flexibility for an
executing system. These frameworks also support adaptive
behaviors as the operating environment changes.

Protocol frameworks that support dynamic modifications
can also be split into frameworks that provide fine-grained
transitions and frameworks that provide coarse-grained tran-
sitions. Frameworks that provide coarse-grained transitions
typically suspend all functionality while the transition is
made from one protocol to another. Frameworks that pro-
vide fine-grained transitions will support incremental modi-
fication of the protocols (e.g., supporting functionality com-
mon between the protocol being transitioned to and the pro-
tocol being transitioned from). These frameworks can also
allow both the protocol being transitioned from and the pro-
tocol being transitioned to to run at the same time during
the transitional period.

• Supported implementations. Some adaptive pro-
tocol frameworks have been developed purely as research
projects and proofs of concepts. These frameworks provide
insights into the possibilities of adaptive protocol frame-
works. These frameworks also allow researchers the free-
dom to explore areas that have not been the area of focus
for industrial or commercial uses.

Some adaptive protocol frameworks have been developed
with industrial and commercial challenges in mind and have
supported implementations. Therefore, these frameworks
are more likely to be used in commercial and industrial ap-
plications. Correspondingly, the commercial and industrial
sponsors are motivated to keep these frameworks up to date
with the latest hardware and software changes (e.g., up-
grades of CPU, operating system, and network elements).

• Events vs. interfaces for protocol composition.
Some protocol frameworks are architected for protocol com-
position and development via inheritance of programmatic
interfaces. These frameworks provide a set of classes that
protocol developers can use to implement and/or extend
the framework’s base functionality. This interface approach
makes it easier to manage the protocols that have been de-
veloped since the behavior of these protocols can be analyzed
statically by evaluating the code. The approach also lends
itself more naturally to a request/response or client/server
protocol since the method invocations of the interfaces in-
herently leverage the client/server paradigm.

Some protocol framework architectures provide publica-
tion and subscription of events to connect the flow of data
for a protocol. These frameworks predefine the events that
the protocol developer can leverage to connect functionality
together to produce the desired protocol. Moreover, these
frameworks make dynamic composition of protocols easier

2

and provide greater flexibility in the composition of proto-
cols.

However, frameworks that leverage publication and sub-
scription of events make analysis of the protocol composition
harder. The developer must manage the flow of events (i.e.,
connect the publication and subscription of the appropriate
events) to ensure correct protocol behavior. Keeping track
of the flow between protocol modules that comprise a pro-
tocol can be challenging since any event can be published or
subscribed to by any module. In addition, if the framework
supports dynamic reconfiguration of event subscriptions, the
flow of events becomes harder to track and manage.

• Dependence on other technologies. Some protocol
frameworks incorporate third party technologies to provide
functionality. These frameworks are able to leverage previ-
ous work which provides for faster development or higher
level abstractions. These frameworks also introduce depen-
dencies on the supporting technologies. Whenever updates
are required for the framework, updates for the supporting
technologies are also needed.

Some frameworks are self-contained. These frameworks
provide all the functionality themselves and do not require
third party technology. These frameworks eliminate the de-
pendencies on third party technology which can increase the
complexity of management and development. These frame-
works typically only need support from language interpreters
or compilers.

• Support for custom protocols. Some protocol frame-
works provide building blocks or protocol modules so that
custom protocols can be constructed and supported within
the framework. At a minimum, these frameworks provide
a base level of functionality such as sending out and receiv-
ing data from the network. These frameworks also provide
support for developing custom protocol modules as well as
support for connecting the modules together to determine
the protocol functionality. The modules can be connected
together either via events or common interfaces.

Some frameworks are designed to resolve challenges with
currently existing protocols rather than support the creation
of new custom protocols. These frameworks provide a com-
mon interface for different protocols or protocol modules to
raise the level of abstraction depending on the development
environment. These kinds of frameworks are also developed
to decrease overhead and optimize performance. This ab-
straction then makes application development easier since
the details of a particular operating platform are hidden.

3. PROTOCOL FRAMEWORKS
This section provides a brief overview of various protocol

framework approaches considered. This section highlights
distinguishing aspects of each approach. This overview is
leveraged in Section 4 where the paper taxonomizes the ap-
proaches based on the categories described in Section 2.

• HORUS. HORUS [14] is a network group communi-
cation framework, designed for system, protocol, and con-
figuration flexibility. HORUS can be configured to provide
various services such as encryption or reliable transmission.
These configurations allow application developers to easily
extend the abilities of their programs simply by routing net-
work access through HORUS. This ease of configuration pre-
vents time and energy being wasted by unnecessarily rewrit-
ing existing code.

• MANET Service Discovery. Existing service discov-

ery solutions are primarily designed for wired networks and
consequently are unsuitable for MANETS, due to resource
constraints and the lack of central infrastructure. The solu-
tion discussed by Florés-Cortes et al. [5] involves discovering
common elements of existing service discovery middleware
and consolidating these elements into a component frame-
work. The component framework reduces the cost of each
protocol via component and code reuse, and greatly eases
the burden of configuration.

• Network Processors. Yong Jun et al. [16] work to-
wards developing a software framework that would allow for
network processors (NPs) to be easily programmed. NPs
have an extremely high level of architectural heterogene-
ity, incorporating general purpose and specialized proces-
sors, varying memory interactions, and severe resource and
performance constraints. The focus is on maintaining con-
ceptual uniformity across platforms while also taking ad-
vantage of the unique characteristics of different hardware
configurations to maintain optimal performance for the pro-
tocols used.

• Service Interface. Rütti et al. [13] focus on optimiz-
ing the protocol frameworks themselves. They put forward
the idea that service interfaces would allow protocol frame-
works to be more effective than the more commonly used
event-based abstraction. The main benefit of service inter-
faces would be reducing the burden on programmers, as the
services restrict the way different protocol modules can be
plugged in. This restriction prevents common network pro-
gramming errors, such as subscribing a module to an incor-
rect event. In addition, dynamically swapping protocols is
made easier because a module can be monitoring the service
through which communications pass in order to determine
the optimal time to switch.

• Altitude-Based Architecture. Another approach is
given by Chen et al [3]. They address the limitations of the
current network stack in terms of inter-layer communica-
tion and the way this reduces extensibility. Their proposed
replacement, Altitude Based Architecture (ABA) consists
of a vertical element, the Protocols Administrator (PA), to
which all the included protocols are attached, according to
their layer’s altitude and their protocol ID. The PA routes
frames between protocols, allowing for easy insertion of new
elements to extend the framework’s functionality.

• Distributed Protocol Stacks. Kliazovich and Gra-
nelli propose distributed protocol stacks (DPSs) [7] which
are a response to the increasing heterogeneity of modern net-
works. As MANETs and distributed systems become more
important and widely deployed, the traditional TCP/IP net-
work stack becomes less effective. DPSs use cross-layering to
enable a greater degree of intra-stack communication, which
increases the potential flexibility of each individual layer.
In addition, DPSs are designed to function with the assis-
tance of agent-based networking, wherein discreet functional
blocks are removed from the network stack and deployed
in routers or switches, allowing easier performance of tasks
such as network congestion detection or packet acknowledg-
ment.

Kliazovich and Granelli argue that the TCP/IP network
stack is becoming less well suited to the architecture of the
Internet as heterogeneity becomes the new norm. One of
the solutions they discuss is cross-layering, wherein network
layers are less atomic and more involved with each other’s
functionality. Another is agent-based networking, in which

3

software agents external to the stack can be used for such
tasks as congestion detection or caching. Both approaches
involve abandoning or modifying the traditionally rigid net-
work stack.

• EPFramework. Xu et al. [15] focus their efforts on de-
veloping a network stack architecture called EPFramework
to optimize the operation of embedded systems. They pro-
pose a system abstraction layer, which would standardize
system calls across different systems, making the framework
more portable. Another feature is the connection layer,
which serves to improve maintainability, manage multiple
connections to the stack and enable access control. This
work also includes a communication interface layer, which
smooths transactions between the stack and the application
layer. This feature helps manage the heterogeneous nature
of embedded systems. An implementation of SocketLib is
included to optimize interactions with the BSD socket API.

• MANETkit. MANETkit [12] uses component frame-
works (CFs) to define different ad hoc routing protocols.
The CFs are built using the Control Forward State design
pattern, meaning that each CF contains a control element
that manages forwarding rules, a forward element that man-
ages interactions with the network and other CFs, and a
state element that maintains relevant protocol-specific state
information. A system CF manages interaction with the
operating system and handles events, and MANET protocol
CFs serve to define the protocols. Plugins can be used to
augment the functionality of protocols as needed, and these
are also implemented with ManetProtocol CFs.

• λMAC framework. The λMAC framework [10] is in-
tended to maintain a high level of uniformity between differ-
ent implementations of medium access control (MAC) pro-
tocols. MAC protocols are responsible for packet transmis-
sion and acknowledgment, performed in similar ways across
all different MAC protocols. Consequently, having each
protocol implement this functionality results in significant
code duplication and potential for bugs. The λMAC frame-
work handles these functions, leaving individual MAC pro-
tocols primarily responsible for transmission timing, which
is the most heterogeneous feature of MAC protocols. The in-
creased uniformity granted by the λMAC framework allows
for significantly easier protocol swapping and adaptation.

• Dynamic Service Replication. Service replication is
a method used to make network services more scalable and
likely to be available at any given time. Unfortunately, repli-
cation also significantly complicates reconfiguration, either
introducing service inconsistency or resulting in a period of
unavailability. Dynamic Service Replication (DSR) [2] at-
tempts to eliminate these problems while also avoiding the
failing of other solutions in adding steady-state complexity
to reduce reconfiguration complexity. The reconfiguration
process of DSR roughly follows the following sequence: sus-
pend initial configuration, take a snapshot of the current
configuration’s state, transfer the state to the new configu-
ration, resume operating with the new configuration.

4. CLASSIFICATION OF FRAMEWORKS
This section of the paper uses the taxonomy developed in

Section 2 to classify the frameworks presented in Section 3.
This classification helps to clarify the properties of existing
protocol frameworks.

• HORUS. HORUS is mainly an application layer frame-
work, though it does support some functionality from lower

layers. It can be embedded in the kernel of a system, run in
user space, or split between user and kernel space. HORUS
also has the ability to be reconfigured dynamically. However,
this reconfiguration is done at a very coarse-grained level.
HORUS suspends all protocol services while the reconfigu-
ration is performed. Moreover, HORUS has a dependency
on the Ocaml [8] programming language.

• MANET Service Discovery. The MANET service
discovery framework designed by Florés-Cortes et al. is also
based in the application layer, and it operates primarily in
user space. This framework does not have dynamic reconfig-
uration, needing a restart to implement new settings. The
discovery framework requires an underlying component tech-
nology such as OpenCOM [4] to implement its protocols.

• Network Processors. This is a programming frame-
work designed primarily around the link and network lay-
ers. It has only static adaptability and is accessible by a
network administrator. Due to its low level nature, the net-
work processor framework is not dependent on any other
specific technologies. Since the framework is primarily in-
tended as a network processor abstraction, it does not have
explicit support for customized protocols.

• Service Interface. The service interface framework is
primarily used in the application layer, though both users
and the kernel can take advantage of it. The service interface
framework has support for customized network protocols
since protocol modules can interact with any other protocol
module to create the protocol with the desired properties.
Service interfaces allow for an increased level of dynamic
adaptability in protocol frameworks since protocol modules
can be dynamically bound together to produce a protocol.
SAMOA, which is an experimental framework based on the
service interface approach, requires the Java Party [11] and
JDOM [1] technologies.

• Altitude Based Architecture. Altitude-based ar-
chitecture (ABA) focuses on communication between stack
layers so it cannot be classified in a single layer. However,
application, transport, and network layers are the main fo-
cus of this research. ABA has a very course reconfiguration
granularity, requiring session managers to set up each session
individually. Since there is no publicly available implemen-
tation, it is difficult to evaluate ABA’s dependencies. ABA
supports construction of customized protocols.

• Distributed Protocol Stacks. The distributed pro-
tocol stacks architecture operates on the link and network
layers, allowing for greater consistency across network com-
ponents like routers and switches. It can be manipulated by
a network administrator or be integrated into an operating
system kernel. However, this architecture has only static
reconfigurability since its emphasis is less on protocols and
more on distributed processing. The interface-based design
allows for customized protocols. No publicly available im-
plementation is provided with this research.

• EPFramework. EPFramework is primarily a trans-
port layer framework, with some activity taking place on the
network layer. Since its goal is to abstract away the kernel
functions, elements of EPFramework are accessible to both
the user and the kernel. However, this goal was pursued
to the exclusion of adaptability, so EPFramework can only
be reconfigured statically. EPFramework uses interfaces to
provide access to the functions it is abstracting. It does not
explicitly rely on any third party software and has no built
in support for custom protocols.

4

Protocol
Framework

Relevant
Networking
Layer(s)

Accessibility Adaptability Supported
Implementation

Framework
Composition

Dependence
on Other
Technologies

Support
for
Custom
Protocols

HORUS Application
+ Transport

User+Root Dynamic1 No Interfaces Yes Yes

Manet Service
Discovery

Application User Static No Interfaces Yes Yes

Network
Processor

Network Netadm Static No Interfaces No No

Service
Interface

Application User+Root Dynamic No Interfaces Yes Yes

Altitude-Based
Architecture

Application
+ Transport
+ Network

User+Root Dynamic1 No Events No Yes

Distributed
Protocol
Stacks

Link +
Network

Root+
Netadm

Static No Interfaces No Yes

EPFramework Transport +
Network

User+Root Static No Interfaces No No

Manetkit Network Root Static No Events Yes Yes
MAC Link Root +

Netadm
Static No Events +

Interfaces
No No

1 The dynamic adaptability provided is very coarse grained in that the framework stops, reconfigures, and
restarts.

Figure 1: Classification of Protocol Frameworks

• MANETkit. MANETkit’s focus on routing protocols
means that MANETkit is largely restricted to the network
layer, as well as being entirely within the domain of the ker-
nel. MANETkit has only static reconfigurability and is con-
figured via publication and subscription of events. MANET-
kit relies on OpenCOM [4] for its component frameworks
and provides support for custom protocols. The protocols
can be configured at run-time, and are built with the same
modular components as MANETkit itself. MANETkit is
currently not publicly available.

• λMAC framework. λMAC operates in the link layer,
as it is an enhanced version of existing MAC addressing
protocols. Its functions are root access only and it has static
reconfigurability. λMAC uses both events and interfaces and
does not provide support for custom protocols. It is intended
to unify existing MAC protocols rather than support new or
custom ones. λMAC is currently not publicly available, and
its software dependencies are not explicitly defined.

5. ANALYZING GAPS
Certain functionality is desired for protocol frameworks

that support adaptive pub/sub DRE systems. Below are
listed important gaps in the current research in this area.

• Timeliness. Timeliness is a concern for DRE systems.
In particular, the amount of time taken to complete any
functionality must be bounded. Adaptive DRE pub/sub sys-

tems are therefore concerned with (1) the responsiveness of
the program or framework to adapt to a given environment,
and (2) the timeliness of the data that the network protocols
provide. However, none of the frameworks evaluated are de-
signed to explicitly address the bounded timeliness needed
for DRE systems and do not provide latency guarantees.

• Transition Management for QoS Optimization.
Most of the frameworks discussed in Section 3 placed very
little emphasis on protocol and configuration transitions dur-
ing system execution. The majority of the frameworks re-
viewed have only static reconfiguration. The frameworks
that provided dynamic reconfiguration did not address how
to best transition from one protocol to another.

With adaptive DRE systems, QoS concerns are as impor-
tant as functional concerns. For a given environment one
protocol can provide substantially better QoS than another
protocol. Moreover, QoS can be impacted by how a proto-
col framework transitions from one protocol to another. For
example, if the system needs to transition between proto-
cols, the common functionality between the two protocols
can be maintained to reduce the transition time. Addition-
ally, the parts of the protocols not in common can be turned
off and on at different times to maximize QoS (e.g., starting
up the new protocol while the old protocol is still running).
None of the frameworks surveyed provide this needed level
of transition management.

• Interface Standardization. The reviewed protocol

5

frameworks have taken several different approaches to in-
terfacing with the system developer. While the reviewed re-
search is advancing the development of protocol frameworks,
the lack of common interfaces impairs the development of
systems that use the protocol frameworks. Standardized in-
terfaces would ease the development of systems that utilize
protocol frameworks and eliminate the timeconsuming and
error-prone learning curve for using various protocol frame-
works. Standardization of programmatic interfaces between
layers would also be beneficial.

• Group Communication Support. Group communi-
cation support is an essential feature when dealing with DRE
systems, as their primary benefit comes from their ability
to disseminate information from a variety of sources. This
benefit is nullified if the system is splintered into individual
elements. Consequently, a protocol framework intended for
a pub/sub DRE context must include some sort of group
communication support.

6. CONCLUDING REMARKS
Our findings reflect two primary problems with existing

work. The first problem is a lack of existing support. Sev-
eral projects fill some of the gaps we have identified, but
no project fills all the gaps. Moreover, most projects are
not actively maintained. In order for progress to be made
in the area of adaptive networking, it is important that the
development of software keep pace with the growth of the
industry at large.

Secondly, the existence of a standard would be greatly
beneficial to expanding work on adaptive networking soft-
ware, especially within specific network layers. Currently,
projects pursue their goals by whatever method those in-
volved perceive to be the best. This allows for relatively
quick progress to be made, but inhibits integration of ele-
ments from multiple different projects. This shortcoming
will become more pronounced as relevant software and con-
cepts appear. Hence, the lack of standards in this area is a
major hurdle standing in the way of commercialized adap-
tive networking.

Overall, we found several pieces of work related to pro-
tocol frameworks. These ranged from specific protocol im-
plementations to overhauls of the entire network stack. Our
taxonomy identifies some strengths of existing work, includ-
ing support for non-standard protocols. However, we also
reveal several important but absent features and areas for
future work, most notably a lack of fine grained control over
transitions from one protocol to another.

7. REFERENCES
[1] Wes Biggs and Harry Evans. Simplify xml

programming with jdom, May 2001.

[2] Ken Birman, Dahliai Malkh, and Robbert van
Renesse. Virtually synchronous methodology for
dynamic service replication. Technical report,
Microsoft Research Silicon Valley, 2010.

[3] Tian Chen, Liu Wenyu, Wang Yi, and Huaien Luo. A
uniform host protocol framework planning to change.
In VTC Spring’08, pages 2730–2734, 2008.

[4] Geoff Coulson, Gordon Blair, Paul Grace, Francois
Taiani, Ackbar Joolia, Kevin Lee, Jo Ueyama, and
Thirunavukkarasu Sivaharan. A generic component

model for building systems software. ACM Trans.
Comput. Syst., 26(1):1:1–1:42, March 2008.

[5] Carlos A. Flores-Cortés, Gordon S. Blair, and Paul
Grace. A multi-protocol framework for ad-hoc service
discovery. In Proceedings of the 4th international
workshop on Middleware for Pervasive and Ad-Hoc
Computing (MPAC 2006), MPAC ’06, pages 10–, New
York, NY, USA, 2006. ACM.

[6] Yi Huang and D. Gannon. A comparative study of
web services-based event notification specifications. In
Parallel Processing Workshops, 2006. ICPP 2006
Workshops. 2006 International Conference on, pages
pp. 7–14, Los Alamitos, CA, USA, August 2006. IEEE
Computer Society.

[7] D. Kliazovich and F. Granelli. Distributed protocol
stacks: A framework for balancing interoperability
with optimization. In Communications Workshops,
2008. ICC Workshops ’08. IEEE International
Conference on, pages 241 – 245, 2008.

[8] Yaron Minsky. Ocaml for the masses. Commun. ACM,
54(11):53–58, November 2011.

[9] M. Tamer Özsu and Patrick Valduriez. Principles of
Distributed Database Systems. Springer New York,
New York, NY, USA, 3rd edition, 2011.

[10] Tom Parker, Gertjan Halkes, Maarten Bezemer, and
Koen Langendoen. The λmac framework: redefining
mac protocols for wireless sensor networks. Wirel.
Netw., 16(7):2013–2029, October 2010.

[11] Michael Philippsen and Matthias Zenger. Javaparty -
transparent remote objects in java. Concurrency:
Practice and Experience, 9(11):1225–1242, November
1997.

[12] Rajiv Ramdhany, Paul Grace, Geoff Coulson, and
David Hutchison. Manetkit: supporting the dynamic
deployment and reconfiguration of ad-hoc routing
protocols. In Proceedings of the 10th
ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’09, pages 1:1–1:20, New
York, NY, USA, 2009. Springer-Verlag New York, Inc.

[13] Olivier Rütti, Pawe�l T. Wojciechowski, and André
Schiper. Service interface: a new abstraction for
implementing and composing protocols. In Proceedings
of the 2006 ACM symposium on Applied computing,
SAC ’06, pages 691–696, New York, NY, USA, 2006.
ACM.

[14] Robbert van Renesse, Kenneth P. Birman, and Silvano
Maffeis. Horus: a flexible group communication
system. Commun. ACM, 39(4):76–83, April 1996.

[15] Hongzhe Xu, Xiaohui Peng, Li Yue, and Chen Ming.
Research in a framework of embedded network
protocol stack and application. In Proceedings of the
2008 IEEE Pacific-Asia Workshop on Computational
Intelligence and Industrial Application - Volume 01,
PACIIA ’08, pages 768–771, Washington, DC, USA,
2008. IEEE Computer Society.

[16] Wang YongJun and Huang QingYuan. Research of
flexible protocol development software framework
based on network processor. In Proceedings of the
2006 International Conference on Hybrid Information
Technology - Volume 01, ICHIT ’06, pages 270–277,
Washington, DC, USA, 2006. IEEE Computer Society.

6

