
Evaluating Supervised Machine Learning for Adapting Enterprise DRE Systems

Joe Hoffert and Douglas Schmidt
Vanderbilt University, EECS Department, Nashville, TN

{jhoffert, schmidt}@dre.vanderbilt.edu

Abstract—Several adaptation approaches, such as policy-based
and reinforcement learning, have been devised to ensure end-
to-end quality-of-service (QoS) for enterprise distributed sys-
tems in dynamic operating environments. Not all approaches
are applicable for distributed real-time and embedded (DRE)
systems, however, which have stringent accuracy, timeliness,
and development complexity requirements. Supervised machine
learning techniques, such as artificial neural networks (ANNs),
are a promising approach to address time complexity concerns of
adaptive enterprise DRE systems. Likewise, ANNs address the
development complexity of adaptive DRE systems by ensuring
that adaptations are appropriate for the operating environment.
This paper empirically evaluates the accuracy and timeliness of
the ANN machine learning technique for environments on which
it has been trained. Our results show ANNs are highly accurate
in determining correct adaptations and provide predictable time
complexity, e.g., with response times less than 6 μseconds.

I. INTRODUCTION

Emerging trends and challenges. Enterprise distributed
real-time and embedded (DRE) systems manage resources and
data that are vital to the ongoing objectives of organizations
or projects. Examples include shipboard computing environ-
ments, air traffic management systems, and recovery opera-
tions in the aftermath of regional or national disasters. These
enterprise DRE systems often adjust the way they operate
depending on their external environment. For example, search
and rescue missions as part of disaster recovery operations can
adjust the image resolution used to detect and track survivors
depending on the resources available (e.g., computing power,
network bandwidth) [5].

Many enterprise DRE systems autonomically (1) monitor
their environment and (2) modify their modes as the envi-
ronment changes since manual adjustment is too slow and
error prone. For example, a shift in network reliability can
prompt quality-of-service (QoS)-enabled middleware, such as
the OMG Data Distribution Service (DDS) (www.omgwiki.
org/dds), to change mechanisms (such as the transport used
to deliver data) since some transports provide better reliability
than others in some environments. Likewise, cloud computing
applications where elastically allocated resources (e.g., CPU
speeds and memory) cannot be characterized accurately a
priori may need to adjust to available resources (such as using
compression algorithms optimized for given CPU power and
memory) at system startup. If adjustments take too long the
mission(s) the system implements could be jeopardized.

One way to adapt enterprise DRE systems autonomically
involves the use of policy-based approaches [1] that externalize
and codify logic to determine the behavior of managed sys-
tems. Policy-based approaches provide deterministic response
times to perform appropriate adjustments given changes in

the environment and can be optimized to ensure efficient
performance. The complexity of developing and maintaining
policy-based approaches for enterprise DRE systems can be
unacceptably high and compromise trustworthiness, however,
since developers must determine which policies are applicable
for certain environmental properties. Moreover, developers
must manage how the policies interact to provide needed
adjustments.

Machine learning techniques support algorithms that allow
systems to adjust behavior based on empirical data, e.g., inputs
from the environment. These techniques can be used to support
autonomic adaptation by learning appropriate adjustments
to various operating environments. Unlike policy-based ap-
proaches, however, machine learning techniques automatically
recognize complex sets of environment properties and make
appropriate decisions accordingly.

Conventional machine learning techniques, such as deci-
sion trees and reinforcement learning, have been used to
address autonomic adaptation for non-DRE systems [3]. These
techniques are not well-suited for enterprise DRE systems,
however, since they do not provide bounded times when
determining adjustments [4]. Some techniques, such as re-
inforcement learning [6], explore the solution space until an
appropriate solution is found, regardless of the elapsed time.
Other techniques, such as decision trees, have time complex-
ities that are dependent upon the specific data and cannot be
determined a priori. Moreover, decision trees may contain
branches that are much longer than others, which can make
the determination of appropriate adaptations unpredictable—
an undesirable quality in DRE systems.

Solution approach → Overfitted machine learning to
guide QoS-enabled middleware adaptation. Machine learn-
ing uses guidance from past known environments to handle
new and unknown environments. This generality sacrifices
some accuracy, however, that would otherwise be provided
for known environments. Machine learning techniques that
are specialized for the environments they have seen—and on
which they have been trained—are said to be overfitted [2],
which reduces development complexity and makes the accu-
racy comparable to policy-based approaches.

This paper describes an overfitted machine learning ap-
proach we tailored to reduce the complexity of developing
autonomically adaptive enterprise DRE systems. In particular,
we are tuning an artificial neural network (ANN) [7] (which
is a technique modeled on the interaction of neurons in the
human brain) to retain as much information about specific
environment configurations and adjustments as possible (e.g.,
greatly increasing the number of connections between input



environment characteristics and output adjustments typically
used in an ANN). Our ADAptive Middleware And Network
Transports (ADAMANT) work presented in this paper inte-
grates the ANN machine learning technique with the DDS
QoS-enabled middleware to ensure accurate, timely, and pre-
dictable adaptation to operating environment changes, such
as an increase in the data sending rate or number of data
receivers.

II. MOTIVATING EXAMPLE - SEARCH AND RESCUE (SAR)
OPERATIONS FOR DISASTER RECOVERY

To motivate the need for overfitting machine learning
techniques, this section describes the challenges associated
with search and rescue (SAR) operations. SAR operations
are part of disaster recovery enterprise DRE systems which
manage relief efforts in the aftermath of a disaster, such
as a hurricane, earthquake, or tornado. SAR operations help
locate and extract survivors in a large metropolitan area after
a regional catastrophe. SAR operations use unmanned aerial
vehicles (UAVs), existing operational monitoring infrastructure
(e.g., building or traffic light mounted cameras intended for
security or traffic monitoring), and (temporary) datacenters to
receive, process, and transmit event stream data from sensors
and monitors to emergency vehicles that can be dispatched to
areas where survivors are identified.

Figure 1 shows an example SAR scenario where infrared
scans along with GPS coordinates are provided by UAVs and
video feeds are provided by existing infrastructure cameras.
These infrared scans and video feeds are then sent to a
datacenter, where they are processed by fusion applications to
detect survivors. Once a survivor is detected the application
can develop a three dimensional view and highly accurate
position information so that rescue operations can commence.

UAV providing infrared scan stream

Infrastructure camera providing video stream

Ad-hoc 
datacenter

Rescue helicopter

Disaster
victims

Fig. 1. Search and Rescue Motivating Example

III. KEY CHALLENGES OF ENTERPRISE DRE SYSTEMS

Below we summarize key challenges that arise when devel-
oping autonomic enterprise DRE systems, such as the SAR
motivating example in Section II.

A. Challenge 1: Reduction of Development Complexity
Developing autonomic behavior can incur high complexity

due to the number and type of relevant environmental condi-
tions. For example, the number of data receivers can affect the
optimal transport protocols and parameter settings used since
some protocols provide adequate QoS for a small number of
receivers whereas other protocols provide adequate QoS for a
larger number of receivers. Codifying this knowledge requires
developers to manually (1) determine the appropriate protocol

for a given environment and (2) map this determination
accurately into implementation artifacts (e.g., source code).
The manual management of mapping between environment
and protocol is tedious and error-prone, which increases de-
velopment complexity and reduces system trustworthiness.

B. Challenge 2: Timely Adaptation to Dynamic Environments
Due to the dynamic environment inherent in enterprise DRE

systems, application operations (such as image compression
to reduce network traffic or disseminating data with both
timeliness and reliability properties) must adjust in a bounded
timely—ideally constant time—manner as the environment
changes. Operations that cannot adjust quickly and in a
bounded amount of time will fail to perform adequately when
resources change, e.g., if resources are lost or withdrawn—
or demand for information increases—operations must be
configured to accommodate these changes with appropriate
responsiveness to maintain a minimum level of service. If
resources increase or demand decreases, operations should
adjust as quickly as possible to provide higher fidelity or more
expansive coverage. Manual modification is often too slow and
error-prone to maintain QoS.

C. Challenge 3: Accurate Adaptation to Dynamic Environ-
ments

Application operations in enterprise DRE systems must
be able to adjust to changes in the environment accurately.
As changes in enterprise DRE systems occur (e.g., increases
in networking capability, requests for data from additional
senders and receivers, etc.), the system should take advantage
of additional resources or provide access to additional data
producers and consumers while maintaining or increasing
QoS. For a given environment configuration, the enterprise
DRE system must accurately implement adjustments that are
appropriate to the operating environment.

IV. SOLUTION APPROACH - OVERFITTING MACHINE

LEARNING TECHNIQUES

Our solution approach overfits machine learning techniques
to increase accuracy in determining appropriate adjustments,
such as adjustments to transport protocols to support QoS in
dynamic environments. This approach enables enterprise DRE
systems to autonomically adjust to their environments. More-
over, we leverage techniques that provide the time complexity
assurance needed for enterprise DRE systems.

Our overfitting approach tunes an ANN to retain a high
degree of information about specific environment configura-
tions and adjustments, e.g., increasing the number of hidden
nodes used in an ANN. Hidden nodes are the computational
components that provide connections between the relevant
properties of the operating environment (e.g., CPU speed,
network reliability) with the adjustments needed for those
environments. As the ANN learns, it strengthens or weakens
the connections between inputs, hidden nodes, and outputs
to provide appropriate adjustments. Increasing the number
of hidden nodes increases the level of detail that the ANN
maintains. Our approach resolves the challenges presented in
Section II as follows:



• Overfitted machine learning techniques address Challenge
1 in Section III-A by decreasing the development complexity
involved with codifying adjustments for multiple configu-
rations of operating environments. Policy-based approaches
for autonomic adaptation place the complexity burden on
application developers, who must manually maintain operating
environment configurations, appropriate adjustments needed,
and the mapping between the configurations and the ad-
justments. Moreover, developers must accurately codify this
mapping in their implementations. Overfitted machine learning
techniques relieve developers of this burden since they manage
the complexity via training to react appropriately, such as the
appropriate transport protocol and parameter settings as an
operating environment changes.
• Machine learning techniques that utilize a static number

of equations for learning address Challenge 2 in Section III-B
by providing predictable time complexities for determining
appropriate adjustments. In particular, we apply overfitted
ANNs to QoS-enabled middleware to support enterprise DRE
systems by incorporating the appropriate transport protocol ad-
justments according to feedback provided while the technique
is trained. When an ANN is used in an enterprise DRE system,
the time to determine an appropriate adjustment is bounded by
the constant number of equations involved.
• Overfitting the machine learning technique addresses

Challenge 3 in Section III-C by increasing the technique’s
accuracy. Our approach increases the accuracy of determining
appropriate adjustments for specific operating environments
by increasing the number of hidden nodes that connect the
operating environment properties, such as CPU speed and
network bandwidth, with the appropriate adjustments, such as
transport protocols to support QoS. Specifically, overfitting an
ANN provides accuracy equal to policy-based approaches.

V. EXPERIMENTAL RESULTS

The section presents the results of experiments we con-
ducted using an ANN to determine development complex-
ity, timeliness, and accuracy in selecting an appropriate
ADAMANT configuration given a particular operating envi-
ronment. The experimental input data used to train the ANN
include ADAMANT with multiple properties of the operating
environment varied (e.g., CPU speed, network bandwidth,
DDS implementation, percent data loss in the network), along
with multiple properties of the application being varied (e.g.,
number of receivers, sending rate of the data), as would be
expected with SAR operations.

We collected 394 inputs from previous experiments where
an input consists of data values that determine a particular
operating environment (e.g., CPU speed, network bandwidth,
number of data receivers, sending rate). We also provided
the expected output to the ANN, i.e., the transport protocol
that provided the best QoS with respect to data reliability,
average latency, and jitter (i.e., standard deviation of the
latency of network packets). An example of one of the 394
inputs is the following: 3 data receivers, 1% network loss,
25Hz data sending rate, 3GHz CPU, 1Gb network, using the

OpenSplice DDS implementation, and specifying reliability
and average latency as the QoS properties of interest. Based on
our experiments, the corresponding output would be the NAK-
based multicast protocol with a 1 ms retransmission timeout.

A. Evaluating the Development Complexity of Policy-based
Approaches

Policy-based approaches support a straightforward way to
determine optimal transport protocols for a given operating
environment. These approaches can direct the system to alter
its behavior after certain operating conditions are checked and
met. Figure 2 shows an example where the application checks
for the following environment properties applicable to the
experimental data we collected relevant to SAR operations:

Fig. 2. Policy-based Example

(1) percentage loss in the network (i.e., network_loss_percent),
(2) number of data receivers (i.e., num_receivers), (3) the rate
of publishing data (i.e., sending_rate), (4) the CPU processing
speed (i.e., CPU_speed), (5) the random-access memory avail-
able (i.e., RAM), (6) the network bandwidth provided (i.e.,
net_bw), (7) the DDS implementation used (i.e., DDS_impl),
and (8) the QoS properties of interest (i.e., metric).

Policy-based approaches can be optimized since the bound-
ed number of (1) conditions that are checked and (2) the
behaviors used to direct the system are explicitly identified.
For example, a switch statement or nested if statements in
a programming language can be used to implement policy-
based approaches, as shown in Figure 2. In general, policy-
based approaches can provide bounded times in searching for
an adaptation solution and therefore address the boundedness
evaluation criterion of Challenge 2 in Section III-B for adap-
tation approaches (e.g., switch statements can be optimized
for predictable performance). Policy-based approaches also
are highly accurate for known solutions since developers can
codify the exact behavior needed for a known environment,
thereby addressing Challenge 3 in Section III-C.

Accidental complexity increases, however, when the condi-
tions and responses for policy-based approaches are managed
manually. Of the 8 properties shown in Figure 2, 6 properties
can take an infinite range of potential values which cause an
infinite number of combinations to be checked. Moreover, if
the policies need to be modified the chance of introducing
an error increases with the number of properties considered
along with the number of ranges of values for each property.
Policy-based approaches thus do not address the accidental
development complexity criterion for adaptation approaches,
whereas ANNs manage this complexity automatically as part
of its learning thus enhancing system trustworthiness.



B. Evaluating the Accuracy of ANNs
Our first step to using an ANN was to train it on the 394

inputs described in Section V. We used the Fast Artificial Neu-
ral Network (FANN) library (leenissen.dk/fann) as our ANN
implementation due to its configurability, documentation, ease
of use, and open-source availability. FANN offers extensive
configurability for the neural network including the number
of hidden nodes that connect the inputs with the output.

We ran training experiments with the ANN using different
numbers of hidden nodes to determine the most accurate ANN.
For a given number of hidden nodes we trained the ANN 10
different times. The weights of the ANN determine how strong
connections are between nodes. The weights are randomly
initialized and these initial values have an effect on how well
and how quickly the ANN learns.

Figure 3 shows the accuracies for the ANN configured with
6, 12, 24, and 36 hidden nodes over 10 training runs. Figure 3

82
84
86
88
90
92
94
96
98

100
102

1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

 (%
)

Training Run

ANN Accuracy

36 hidden nodes
24 hidden nodes
12 hidden nodes
6 hidden nodes

Fig. 3. Accuracy of ANN with 6, 12, 24, & 36 hidden nodes

also shows the effect of random initial weights on the accuracy
of the ANN since the accuracy can vary across training runs.
Accuracy was determined by querying the ANN with the data
on which it was trained.

A 100% accurate classification was generated at least once
with all hidden node configurations. The ANN with 24 hidden
nodes provided the best accuracy across all the training runs
even compared to using 36 hidden nodes—100% accuracy
all but 2 times out of 10. We are therefore using the ANN
configured with 24 hidden nodes to ensure accuracy for known
environments and to minimize the difference between the
expected and actual outputs for a single input configuration.

C. Evaluating the Timeliness of ANNs
As described in Challenge 2 in Section III-B, the datacenter

for the SAR operations requires timely configuration adjust-
ments. This section provides timing information for the ANN
when queried for an optimal transport protocol. We used a
3 GHz CPU with 2GB of RAM running the Fedora Core 6
operating system with real-time extensions. Timeliness was
determined by querying the ANN with all 394 inputs on which
it was trained. A high resolution timestamp was taken before
and after each call made to the ANN.

Figures 4 and 5 show the average response times and
standard deviation of the response times, respectively, for 10
separate experiments where for each experiment we query the
ANN for each of the 394 inputs. The figures show that the

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(

s)

Classification Run

Average ANN Response Times

6 hidden nodes 12 hidden nodes
24 hidden nodes 36 hidden nodes

Fig. 4. ANN average response times (μseconds)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(

s)

Classification Run

Std Deviation ANN Response Times

6 hidden nodes 12 hidden nodes

24 hidden nodes 36 hidden nodes

Fig. 5. Standard deviation for ANN response times (μseconds)

ANN provides timely and consistent responses. As expected,
the response times using more hidden nodes are slower than
response times with fewer hidden nodes. The increase in
latency is less than linear, however (e.g., response times using
12 hidden nodes are less than twice that using 6 hidden nodes).

VI. CONCLUDING REMARKS

The empirical results in this paper show how overfitted
ANNs help address the development complexity (which af-
fects trustworthiness), timeliness, and accuracy of adaptive
enterprise DRE systems. For example, we used the FANN
library to accurately determine which protocol to use to
support the desired QoS in a given operating environment.
We are also researching more generalized machine learning to
handle adaptation in unknown environments, as described at
www.dre.vanderbilt.edu/~jhoffert/ADAMANT.

REFERENCES

[1] A. Choudhary. Policy based management in the global information grid.
International Journal of Internet Protocol Technology, 3(1):72–80, 2008.

[2] T. Dietterich. Overfitting and undercomputing in machine learning. ACM
Comput. Surv., 27(3):326–327, 1995.

[3] A. Hess et al. Principles, Systems and Applications of IP Telecommu-
nications. Services and Security for Next Generation Networks, chapter
Automatic Adaptation and Analysis of SIP Headers Using Decision Trees.
Springer Berlin / Heidelberg, 2008.

[4] J. Hoffert et al. Adapting and Evaluating Distributed Real-time and
Embedded Systems in Dynamic Environments. In Proceedings of the 1st
International Workshop on Data Dissemination for Large scale Complex
Critical Infrastructures (DD4LCCI 2010), Valencia, Spain, April 2010.

[5] N. Shankaran et al. Hierarchical control of multiple resources in
distributed real-time and embedded systems. Real-Time Systems, April
2007.

[6] X. Bu et al. A reinforcement learning approach to online web systems
auto-configuration. In Proceedings of the 2009 29th IEEE International
Conference on Distributed Computing Systems, pages 2–11, Washington,
DC, USA, 2009. IEEE Computer Society.

[7] D. Patterson. Artificial Neural Networks: Theory and Applications.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.


