
1

Maintaining QoS for Publish/Subscribe Middleware via Autonomic Adaptation

Joe Hoffert and Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

{jhoffert, schmidt}@dre.vanderbilt.edu

Abstract—Quality of Service (QoS)-enabled Publish/Subscribe
(pub/sub) middleware provides powerful support for data dissem-
ination. It is hard, however, to maintain specified QoS properties
(such as reliability and latency) in dynamic environments (such as
disaster relief operations or power grids). For example, managing
QoS manually is not feasible in dynamic systems due to slow
human response times and the complexity of managing multiple
interrelated QoS settings.

Autonomic adaptation provides a promising approach to main-
taining QoS properties of QoS-enabled pub/sub middleware in
dynamic environments. By monitoring key system resources and
environment aspects, changes to middleware mechanisms (e.g.,
associations of publishers and subscribers to transport protocols)
can be made autonomically to maintain specified QoS. This
paper describes the research we are conducting on highly con-
figurable QoS-enabled middleware, adaptive transport protocols,
system monitoring, supervised machine learning techniques, and
autonomic adaptation to maintain specified QoS as the system
environment and configuration dynamically changes.

I. INTRODUCTION

Emerging trends and challenges. The number and
type of distributed systems that utilize publish/subscribe
(pub/sub) technologies have grown due to the advantages
of performance, cost, and scale as compared to single
computers [1], [2]. Examples of pub/sub middleware in-
clude Web Services Brokered Notification (www.oasis-open.
org/committees/tc home.php?wg abbrev=wsn), the Java Mes-
sage Service (JMS) (java.sun.com/products/jms), the CORBA
Event Service (www.omg.org/technology/documents/formal/
event service.htm), and the Data Distribution Service (DDS)
(www.omg.org/spec/DDS). These technologies support data
propagation throughout a system using an anonymous sub-
scription model that decouples event suppliers and consumers.

Pub/sub middleware is used in a wide spectrum of appli-
cation domains, ranging from shipboard computing environ-
ments to fractionated spacecraft constellations. The middle-
ware supports policies that affect the end-to-end QoS of the
system. Common policies across different middleware include
persistence (i.e., saving data for current subscribers), durability
(i.e., saving data for subsequent subscribers), and grouped data
transfer (i.e., transmitting a group of data as an atomic unit).

While tunable policies provide fine-grained control of sys-
tem QoS, several challenges emerge when developing pub/sub
systems deployed in dynamic environments. Mechanisms used
by the middleware to ensure certain QoS properties for a
given environment configuration may not be applicable for
a different environment configuration. For example, a simple
unicast protocol, such as UDP, may provide adequate QoS
regarding latency when a publisher sends to a small number of
subscribers. UDP could incur too much latency, however, when

used for a large number of subscribers due to the publisher
needing to send to each individual subscriber.

Challenges also arise when managing multiple QoS policies
that interact with each other. For example, a system might
specify low latency QoS and reliability QoS, which can
affect latency due to data loss discovery and recovery. Certain
transport protocols, such as UDP, provide low overhead but no
end-to-end reliability. Other protocols, such as TCP, provide
reliability but unbounded latencies due to acknowledgment-
based retransmissions. Still other protocols balance reliability
and low latency, but provide benefit over other protocols only
for specific environment configurations. Determining when to
modify parameters of a particular transport protocol or switch
from one transport protocol to another can be a complex de-
cision. Moreover, human intervention might not be responsive
enough for the timeliness requirements of the system.

Research approach. The remainder of this document
describes the research we are conducting to address the
challenges of maintaining QoS in dynamic environments by
integrating and enhancing the following technologies: (1) QoS-
enabled pub/sub middleware, (2) adaptive transport protocols,
(3) environment monitoring, (4) supervised machine learning,
and (5) autonomic adaptation of transport protocols to manage
specified QoS within dynamic environments.

II. MOTIVATING EXAMPLE - SEARCH AND RESCUE (SAR)
OPERATIONS FOR DISASTER RECOVERY

To motivate the need for autonomic adaptation of QoS-
enabled pub/sub middleware, this section describes the re-
search challenges associated with search and rescue (SAR)
operations. These operations help locate and extract survivors
in a large metropolitan area after a regional catastrophe, such
as a hurricane, earthquake, or tornado. SAR operations utilize
unmanned aerial vehicles (UAVs), existing operational mon-
itoring infrastructure (e.g., building or traffic light mounted
cameras intended for security or traffic monitoring), and
(temporary) datacenters to receive, process, and transmit event
stream data from sensors and monitors to emergency vehicles
that can be dispatched to areas where survivors are identified.

Figure 1 shows an example SAR scenario where infrared
scans along with GPS coordinates are provided by UAVs and
video feeds are provided by existing infrastructure cameras.
These infrared scans and video feeds are then sent to a
datacenter, where they are processed by fusion applications to
detect survivors. Once a survivor is detected the application
can develop a three dimensional view and highly accurate
position information so that rescue operations can commence.

There are several key challenges that arise with SAR
operations in dynamic environments.



2

UAV providing 
infrared scan 

stream

Infrastructure
camera

providing
video stream

Ad-hoc
datacenter

Rescue helicopter
Disaster victims

Fig. 1. Search and Rescue Motivating Example

A. Challenge 1: Timely Adaptation to Dynamic Environments

Due to the dynamic environment inherent in the aftermath
of a disaster SAR operations must adjust in a timely manner
as the environment changes. If SAR operations cannot adjust
quickly enough they will fail to perform adequately given
a shift in resources. If resources are lost or withdrawn—or
demand for information increases—SAR operations must be
configured to accommodate these changes with appropriate
responsiveness to maintain a minimum level of service. If re-
sources increase or demand decreases, SAR operations should
take advantage of these as quickly as possible to provide higher
fidelity or more expansive coverage. Manual modification is
often too slow and error-prone to maintain QoS.

B. Challenge 2: Managing Interacting QoS Requirements

SAR operations must manage multiple QoS requirements
that interact with each other, e.g., data reliability so that
enough data is received to be useful and low latency for soft
realtime data so that infrared scans from UAVs or video from
cameras mounted atop traffic lights do not arrive after they
are needed. The streamed data must be received soon enough
so that successive dependent data can be used as well. For
example, MPEG I frame data must be received in a timely
manner so that successive dependent B and P frame data
can be used before the next I frame makes them obsolete.
Otherwise, not only is the data unnecessary, but sending and
processing the data has consumed limited resources.

C. Challenge 3: Scaling to Large Numbers of Receivers

For a regional or national disaster, a multitude of organiza-
tions would register interest not only in the individual video
and infrared scans for various applications, but also in the
fused data for the SAR operations. For example, fire detection
applications and power grid assessment applications can use
infrared scans to detect fires and working HVAC systems
respectively. Likewise, security monitoring and structural dam-
age applications can use video stream data to detect looting
and unsafe buildings respectively. Moreover, federal, state, and
local authorities would want to register interest in the fused
SAR data to monitor the status of current SAR operations.

D. Challenge 4: Specifying Standardized and Robust QoS

SAR applications should be developed with the focus on
application logic rather than on complex or custom formats

for specifying QoS. Time spent learning a customized or
complex format for QoS is time taken from developing the
SAR application itself. Moreover, learning a custom format
will not be applicable for other applications that use a different
QoS format. Application developers also need support for a
wide range of QoS to handle dynamic environments.

III. OVERVIEW OF RELATED WORK

This section analyzes related research efforts in light of the
challenges presented in Section II.

Machine learning in support of autonomic adaptation.
Vienne and Sourrouille [3] present the Dynamic Control of
Behavior based on Learning (DCBL) middleware that incorpo-
rates reinforcement machine learning in support of autonomic
control for QoS management. Reinforcement machine learning
not only allows DCBL to handle unexpected changes but also
reduces the overall system knowledge required by the system
developers. System developers provide an XML description of
the system, which DCBL then uses together with an internal
representation of the managed system to select appropriate
QoS dynamically.

DCBL provides a customized QoS specification that does
not address Challenge 4 in Section II-D. DCBL focuses on
single computers rather than addressing scalable distributed
systems, as outlined with Challenge 3 in Section II-C. More-
over, DCBL requires developers to specify in an XML file
the selection of operating modes given a QoS level along
with execution paths, which leaves handling Challenge 2 in
Section II-B to developers.

Infrastructure for autonomic computing. Grace et al. [4]
describe an architecture metamodel for adapting components
that implement coordination for reflective middleware dis-
tributed across peer devices. This work also investigates sup-
porting reconfiguration types in various environmental con-
ditions. The proposed architecture metamodel, however, only
provides proposed infrastructure for autonomic adaptation and
reconfiguration and does not directly address the challenges in
Section II.

Valetto et al. [5] developed network features in support of
service awareness to enable autonomic behavior. Their work
targets communication services within a Session Initiation
Protocol (SIP) enabled network to communicate monitoring,
deployment, and advertising information. As an autonomic
computing infrastructure, however, this work does not directly
address any of the challenges in Section II.

Autonomic adaption of service level agreements.
Herssens et al. [6] describe work that centers around au-
tonomically adapting service level agreements (SLAs) when
the context of the specified service changes. This work ac-
knowledges that both offered and the requested QoS for Web
services might vary over the course of the interaction and
accordingly modifies the SLA between the client and the
server as appropriate. This work does not address Challenge
1 in Section II-A, but rather negotiates the QoS agreement to
fit the dynamic environment.

Autonomic adaption of networks. The Autonomic Real-
time Multicast Distribution System (ARMDS) [7] is a frame-
work that focuses on decreasing excessive variance in service



3

quality for multicast data across the Internet. The framework
supports the autonomic adaptation of the network nodes form-
ing the multicast graph so that the consistency of service
delivery is enhanced. The framework includes (1) high level
descriptions of policies and objectives, (2) a multicast topol-
ogy management protocol supported by network nodes, (3)
measurement and monitoring infrastructure, and (4) a control
component that autonomously manipulates the protocol and
infrastructure to reduce variance. ARMDS does not address
Challenge 2 in Section II-B, however, nor does it address
Challenge 4 in Section II-D.

IV. PROPOSED RESEARCH
A. Approach

The proposed research combines and enhances the following
technologies to resolve the challenges presented in Section II
and address the gaps in related work described in Section III.
• Standard QoS-enabled pub/sub middleware addresses the

scalability of Challenge 2 in Section II-C by decoupling
data senders from data receivers. Applications interested in
published data can receive it any time without knowledge of
the data sender. Moreover, standard QoS-enabled middleware
addresses the QoS standardization of Challenge 4 in Sec-
tion II-D.
• Supervised machine learning helps address Challenge 1

in Section II-A and Challenge 2 in Section II-B by selecting
in a timely manner an appropriate transport protocol and
protocol parameters given specified QoS and a particular
environment configuration. The machine learning component
includes features for several different environment configu-
rations and supervised training to learn the correct protocol
and parameters. The machine learning will interpolate and
extrapolate its learning based on the current environment
configuration, which might not have been included in the
supervised training.
• Adaptive network transports works to address Challenge

1 in Section II-A and Challenge 2 in Section II-B by provid-
ing the infrastructure flexibility to maintain interrelated QoS
even within dynamic environments. For some environment
configurations one particular transport protocol provides the
required QoS. For other environment configurations another
transport protocol provides the specified QoS. Adaptive net-
work transports that support not only fine tuning a protocol’s
parameters but also switching from one protocol to another
provide functionality needed in dynamic environments.
• Environment monitoring works to address Challenge

1 in Section II-A by providing environment configuration
information. Relevant environment configuration values are
monitored as needed such as the number of subscribers, the
percentage of network packet loss, and the sending rate of the
data. These monitored values are input to the machine learning
component to determine an appropriate network transport and
accompanying parameters.
• Autonomic adaptation addresses Challenge 1 in Sec-

tion II-A and Challenge 2 in Section II-B by (1) querying
relevant values from the environment monitoring, (2) activat-
ing the machine learning component which will determine an
appropriate transport protocol and parameters, (3) retrieving

the recommended protocol settings, and (4) transitioning the
adaptive network transports to use the recommended settings.

B. Current Status and Plan

Our current work has integrated and enhanced the OpenDDS
implementation (www.opendds.org) of the OMG Data Dis-
tribution Service (DDS) standard (www.omg.org/spec/DDS)
with the Adaptive Network Transports (ANT) framework.
OpenDDS is standards-based anonymous QoS-enabled pub/-
sub middleware for exchanging data in event-based distributed
systems. It provides a global data store in which publishers and
subscribers write and read data, respectively, so applications
can communicate by publishing information they have and
subscribing to information they need in a timely manner.

We chose the OpenDDS implementation due to its (1)
source code being freely available, which facilities modifi-
cation and experimentation, and (2) support for a pluggable
transport framework that allows application developers to
create custom transport protocols for sending/receiving data.
We chose the ANT framework due to its infrastructure for
composing transport protocols. ANT builds upon the proper-
ties provided by the scalable reliable multicast-based Ricochet
transport protocol [8]. ANT also provides a modular frame-
work whereby protocol modules can be tuned, enhanced, and
replaced to maintain specified QoS.

Our recent work [9] has evaluated the performance of
the transport protocols integrated with OpenDDS in various
environment configurations. We are using the data from these
performance evaluations as input for supervised machine
learning techniques, e.g., neural networks, decision trees. We
will evaluate these techniques to see which most appropriately
meets the research challenges.

REFERENCES

[1] Y. Huang and D. Gannon, “A comparative study of web services-
based event notification specifications,” Proceedings of the International
Conference on Parallel Processing Workshops, vol. 0, pp. 7–14, 2006.

[2] S. Tarkoma and K. Raatikainen, “State of the Art Review of Distributed
Event Systems,” University of Helsinki, Tech. Rep. C0-04, 2006.

[3] P. Vienne and J.-L. Sourrouille, “A middleware for autonomic qos
management based on learning,” in SEM ’05: Proceedings of the 5th
international workshop on Software engineering and middleware. New
York, NY, USA: ACM, 2005, pp. 1–8.

[4] P. Grace, G. Coulson, G. S. Blair, and B. Porter, “A distributed architec-
ture meta-model for self-managed middleware,” in ARM ’06: Proceedings
of the 5th workshop on Adaptive and reflective middleware (ARM ’06).
New York, NY, USA: ACM, 2006, p. 3.

[5] G. Valetto, L. W. Goix, and G. Delaire, “Towards service awareness and
autonomic features in a sip-enabled network,” in Autonomic Communi-
cation. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 202–213.

[6] C. Herssens, S. Faulkner, and I. J. Jureta, “Context-driven autonomic
adaptation of sla,” in ICSOC ’08: Proceedings of the 6th Interna-
tional Conference on Service-Oriented Computing. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 362–377.

[7] B. Brynjulfsson, G. Hjalmtysson, K. Katrinis, and B. Plattner, “Autonomic
network-layer multicast service towards consistent service quality,” in
AINA ’06: Proceedings of the 20th International Conference on Advanced
Information Networking and Applications. Washington, DC, USA: IEEE
Computer Society, April 2006, pp. 494–498.

[8] M. B. et al, “Ricochet: Lateral error correction for time-critical multicast,”
in NSDI 2007: Fourth Usenix Symposium on Networked Systems Design
and Implementation, Boston, MA, 2007.

[9] F. Wolf, J. Balasubramanian, A. Gokhale, and D. C. Schmidt, “Com-
ponent Replication based on Failover Units,” in To Appear in the
Proceedings of the 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA ’09), Aug
2009.



4

Joe Hoffert is a Ph.D. student (advanced standing) in the
Department of Electrical Engineering and Computer Science
at Vanderbilt University. His research focuses on enhancing
productivity and flexibility of QoS-enabled pub/sub middle-
ware. As part of this research he has developed the Dis-
tributed QoS Modeling Language (DQML) which is a domain-
specific modeling language (DSML) to manage the complexi-
ties of QoS configurations for distributed pub/sub middleware.
DQML addresses key challenges of pub/sub middleware,
including (1) managing QoS policy configuration variability,
(2) developing semantically compatible configurations, and (3)
correctly transforming QoS policy configurations from design
to implementation. DQML also reduces developer effort by as
much as 54% when compared to manual methods.

Mr. Hoffert previously worked for Boeing in the area
of model-based integration of embedded systems and high-
fidelity flight simulation. Within Boeing’s Phantom Works
R&D organization he developed an instrumentation interface
to provide metrics feedback from real-time embedded avionics
systems. Within Boeing’s Center for Integrated Defense Simu-
lation he developed a scalable and high fidelity framework for
distributed and network-centric operations simulations. This
work included publishing and subscribing of information and
intelligent filtering of data to maximize networking resources.

Prior to working at Boeing, he was a research associate at
Washington University in St. Louis where he worked in (1)
the Distributed Object Computing (DOC) group enhancing the
ADAPTIVE Communication Environment (ACE) to portably
use a POSIX-like C wrapper for POSIX functionality, (2)
the Applied Research Laboratory enhancing ACE to leverage
ATM technologies, and (3) the Distributed Programming En-
vironment group developing the Programmer’s Playground, a
software library and run-time support system to ease develop-
ment of distributed applications.

He has over 15 years of industry experience in the areas of
object-oriented technologies and over 5 years industry experi-
ence with distributed, realtime, and embedded (DRE) systems.
He has 9 refereed publications. Additional information is
available at http://www.dre.vanderbilt.edu/∼jhoffert/cv.html.

Mr. Hoffert received his B.A. in Math/C.S. from Mount
Vernon Nazarene College (OH) and his M.S. in C.S. from the
University of Cincinnati (OH). He entered Vanderbilt’s Ph.D.
program in the fall of 2006 and expects to receive his Ph.D.
in late 2011/early 2012.

SDG


