Maintaining Publish/Subscribe Middleware QoS in Dynamic
Environments *

Joe Hoffert
Adviser: Douglas C. Schmidt
Institute for Software Integrated Systems, Dept of EECS
Vanderbilt University, Nashville, TN 37203
{jhoffert}@dre.vanderbilt.edu

ABSTRACT

Quality of service (QoS)-enabled publish/subscribe (pub/-
sub) middleware provides powerful support for data dissem-
ination. It is hard, however, to maintain specified QoS prop-
erties (such as reliability and latency) in dynamic environ-
ments (such as disaster relief operations or power grids). For
example, managing QoS manually is often not feasible in dy-
namic systems due to slow human response times and the
complexity of managing multiple interrelated QoS settings.

Autonomic adaptation provides a promising approach to
maintaining QoS properties of QoS-enabled pub/sub mid-
dleware in dynamic environments. By monitoring key sys-
tem resources and environment aspects, changes to middle-
ware mechanisms (e.g., associations of publishers and sub-
scribers to transport protocols) can be made autonomically
to maintain specified QoS. This paper describes the research
we are conducting on highly configurable QoS-enabled mid-
dleware, adaptive transport protocols, system monitoring,
supervised machine learning techniques, and autonomic adap-
tation to maintain specified QoS as the system environment
and configuration dynamically changes.

Categoriesand Subject Descriptors

C.2.4.b [Distributed Systems]: Distributed applications;
C.4.f [Performance of Systems]|: Reliability, availability,
and serviceability

Keywords

Pub/sub Middleware, Event-based Distributed Systems, Real-

time and embedded systems, Quality of Service

1. INTRODUCTION

Emerging trends and challenges. The number and
type of distributed systems that utilize publish/subscribe

*This work is supported in part by the AFRL/IF Pollux
project and NSF TRUST.

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

DEBS 2009, July 6-9, 2009, Nashville, TN, USA

Copyright 2009 ACM NNN-N-NNNNN-NNN-DD/YY/DD ...$5.00.

(pub/sub) technologies are growing due to the advantages
of performance, cost, and scale as compared to single com-
puters [8, 9]. Examples of pub/sub middleware include
Web Services Brokered Notification (www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsn), the Java Mes-

sage Service (JMS) (java.sun.com/products/jms), the CORBA

Event Service (www.omg.org/technology/documents/formal/
event_service.htm), and the Data Distribution Service (DDS)
(www.omg.org/spec/DDS). These technologies support data
propagation throughout a system using an anonymous sub-
scription model that decouples event suppliers and consumers.

Pub/sub middleware is used in a wide spectrum of appli-
cation domains, ranging from shipboard computing environ-
ments to fractionated spacecraft constellations. The middle-
ware supports policies that affect the end-to-end QoS of the
system. Common policies across different middleware in-
clude persistence (i.e., saving data for current subscribers),
durability (i.e., saving data for subsequent subscribers), and
grouped data transfer (i.e., transmitting a group of data as
an atomic unit).

While tunable policies provide fine-grained control of sys-
tem QoS, several challenges emerge when developing pub/-
sub systems deployed in dynamic environments. Mecha-
nisms used by the middleware to ensure certain QoS proper-
ties for a given environment configuration may not be appli-
cable for a different environment configuration. For exam-
ple, a simple unicast protocol (such as UDP) may provide
adequate QoS regarding latency when a publisher sends to a
small number of subscribers. UDP could incur too much la-
tency, however, when used for a large number of subscribers
due to publishers sending UDP messages to each individual
subscriber.

Challenges also arise when managing multiple QoS poli-
cies that interact with each other. For example, a system
might specify low latency QoS and reliability QoS, which
can affect latency due to data loss discovery and recovery.
Certain transport protocols (again such as UDP) provide
low overhead but no end-to-end reliability. Other protocols
(such as TCP) provide reliability, but incur unbounded la-
tencies due to acknowledgment-based retransmissions. Still
other protocols balance reliability and low latency, but pro-
vide benefit over other protocols only for specific environ-
ment configurations. Determining when to modify param-
eters of a particular transport protocol or switch from one
transport protocol to another can be a complex decision.
Moreover, human intervention is often not responsive enough
to meet system timeliness requirements.

Research approach. The remainder of this document

describes the research we are conducting to address the chal-
lenges of maintaining QoS in dynamic environments by in-
tegrating and enhancing (1) QoS-enabled pub/sub middle-
ware, (2) adaptive transport protocols, (3) environment mon-
itoring, (4) supervised machine learning, and (5) autonomic
adaptation of transport protocols. Section 2 shows the chal-
lenges in more detail. Section 3 presents related work and
the shortcomings of this work for the challenges presented.
Section 4 outlines our proposed research to fully address the
challenges. Section 5 details the status of our current re-
search. Section 6 presents concluding remarks.

2. MOTIVATING EXAMPLE - SEARCH AND
RESCUE (SAR) OPERATIONSFOR DIS
ASTER RECOVERY

To motivate the need for autonomic adaptation of QoS-
enabled pub/sub middleware, this section describes the re-
search challenges associated with search and rescue (SAR)
operations. These operations help locate and extract sur-
vivors in a large metropolitan area after a regional catas-
trophe, such as a hurricane, earthquake, or tornado. SAR
operations utilize unmanned aerial vehicles (UAVs), exist-
ing operational monitoring infrastructure (e.g., building or
traffic light mounted cameras intended for security or traffic
monitoring), and (temporary) datacenters to receive, pro-
cess, and transmit event stream data from sensors and mon-
itors to emergency vehicles that can be dispatched to areas
where survivors are identified.

Figure 1 shows an example SAR scenario where infrared
scans along with GPS coordinates are provided by UAVs
and video feeds are provided by existing infrastructure cam-
eras. These infrared scans and video feeds are then sent

L4

A

UAYV providing

inf " Infrastructure
infrared scan
camera
stream Ad-hoc rovidin
datacenter P 9

video stream

|

Rescue helicopter
Disaster victims

Figure 1: Search and Rescue Motivating Example

to a datacenter, where they are processed by fusion appli-
cations to detect survivors. Once a survivor is detected the
application can develop a three dimensional view and highly
accurate position information so that rescue operations can
commence.

Several challenges that arise with SAR operations in dy-
namic environments are summarized below. Section 4 then
describes research techniques we are using to address these
challenges.

21 Challenge 1: Timely Adaptation to Dy-
namic Environments

Due to the dynamic environment inherent in the after-
math of a disaster SAR operations must adjust in a timely
manner as the environment changes. If SAR operations
cannot adjust quickly enough they will fail to perform ad-
equately given a shift in resources. If resources are lost or
withdrawn—or demand for information increases—SAR op-
erations must be configured to accommodate these changes
with appropriate responsiveness to maintain a minimum level
of service. If resources increase or demand decreases, SAR
operations should take advantage of these as quickly as pos-
sible to provide higher fidelity or more expansive coverage.
Manual modification is often too slow and error-prone to
maintain QoS.

2.2 Challenge 2. Managing Interacting QoS
Requirements

SAR operations must manage multiple QoS requirements
that interact with each other, e.g., data reliability so that
enough data is received to be useful and low latency for soft
realtime data so that infrared scans from UAVs or video
from cameras mounted atop traffic lights do not arrive after
they are needed. The streamed data must be received soon
enough so that successive dependent data can be used as
well. For example, MPEG I frame data must be received
in a timely manner so that successive dependent B and P
frame data can be used before the next I frame makes them
obsolete. Otherwise, not only is the data unnecessary, but
sending and processing the data has consumed limited re-
sources.

2.3 Challenge 3: Scalingto L arge Numbers of
Receivers

For a regional or national disaster, a multitude of orga-
nizations would register interest not only in the individual
video and infrared scans for various applications, but also in
the fused data for the SAR operations. For example, fire de-
tection applications and power grid assessment applications
can use infrared scans to detect fires and working HVAC sys-
tems respectively. Likewise, security monitoring and struc-
tural damage applications can use video stream data to de-
tect looting and unsafe buildings respectively. Moreover,
federal, state, and local authorities would want to register
interest in the fused SAR data to monitor the status of cur-
rent SAR operations.

2.4 Challenge4: Specifying Standardized and
Robust QoS

SAR applications should be developed with the focus on
application logic rather than on complex or custom formats
for specifying QoS. Time spent learning a customized or
complex format for QoS is time taken from developing the
SAR application itself. Moreover, learning a custom format
will not be applicable for other applications that use a differ-
ent QoS format. Application developers also need support
for a wide range of QoS to handle dynamic environments.

3. OVERVIEW OF RELATED WORK

This section analyzes related research efforts in light of
the challenges presented in Section 2.
3.1 Adaptive Middleware

Mobility Support Service (MSS). MMS [3] provides
a software layer on top of pub/sub middleware to enable

endhost mobility. The purpose of MSS is to support the
movement of clients between access points of a system using
pub/sub middleware. In this sense, MSS adapts the pub/-
sub middleware to be used in a mobile environment.

Mobile clients notify MSS when mobility starts and ends.
MSS buffers messages and manages connections while the
client moves to a different access point. MSS is designed
to support multiple pub/sub technologies (e.g., implemen-
tations of JMS) and adapt to the technology-specific char-
acteristics. MSS solely focuses on supporting pub/sub mo-
bility, however, and therefore does not address Challenge 2
in Section 2.2. Moreover, MSS does not address Challenge
4 in Section 2.4 since it does not present a standardized and
robust interface for QoS.

Gridkit. Gridkit [5] is a middleware framework that sup-
ports reconfigurability of applications dependent upon the
condition of the environment and the functionality of reg-
istered components. Gridkit focuses on grid applications
which are highly heterogeneous in nature. For example,
these applications will run on many types of computing de-
vices and will operate across different types of networks.

To register components, application developers use Grid-
kit’s API which is based on binding contracts. Gridkit then
uses the contract information along with a context engine
to determine which components to include in the applica-
tion. The context engine takes into account the context of
the host machines, e.g., battery life, network connectivity.

Gridkit focuses on reconfiguration for installing an appli-
cation, however, and does not address Challenge 1 in Sec-
tion 2.1. Within Gridkit no consideration is given to mak-
ing timely adaptations based on environment changing for
a single application installation. Moreover, Gridkit fails to
address Challenge 4 in Section 2.4 as it provides no stan-
dardized QoS specification.

SAFRAN. David and Ledoux have developed SAFRAN [4]
to enable applications to become context-aware themselves
so that they can adapt to their contexts. SAFRAN pro-
vides reactive adaptation policy infrastructure for compo-
nents using an aspect-oriented approach. SAFRAN follows
the structure of a generic AOP system by supporting (1)
a base program which corresponds to a configurations of
components, (2) point-cuts which are invoked in response to
internal events (e.g., invocations on interfaces) and external
events (e.g., change in system resources), (3) advices which
define functionality to be executed for point-cuts, and (4)
adaptation which uses adaptation policies to link join points
to advices.

The SAFRAN component framework, however, only pro-
vides development support of maintaining specified QoS.
The adaptive policies and component implementation are
the responsibility of the application developer. Moreover,
SAFRAN does not specifically address Challenge 3 in Sec-
tion 2.3 since it does not focus on scalability. Additionally,
SAFRAN does not address Challenge 4 in Section 2.4 since
it provides no standard QoS specification.

3.2 MachineLearningin Support of Autonomic

Adaptation

Vienne and Sourrouille [11] present the Dynamic Control
of Behavior based on Learning (DCBL) middleware that in-
corporates reinforcement machine learning in support of au-
tonomic control for QoS management. Reinforcement ma-
chine learning not only allows DCBL to handle unexpected

changes but also reduces the overall system knowledge re-
quired by the system developers. System developers provide
an XML description of the system, which DCBL then uses
together with an internal representation of the managed sys-
tem to select appropriate QoS dynamically.

DCBL provides a customized QoS specification that does
not address Challenge 4 in Section 2.4. DCBL focuses on
single computers rather than addressing scalable distributed
systems, as outlined with Challenge 3 in Section 2.3. More-
over, DCBL requires developers to specify in an XML file
the selection of operating modes given a QoS level along
with execution paths, which leaves handling Challenge 2 in
Section 2.2 to developers.

3.3 Infrastructure for Autonomic Computing

Grace et al. [6] describe an architecture metamodel for
adapting components that implement coordination for re-
flective middleware distributed across peer devices. This
work also investigates supporting reconfiguration types in
various environmental conditions. The proposed architec-
ture metamodel, however, only provides proposed infrastruc-
ture for autonomic adaptation and reconfiguration and does
not directly address the challenges in Section 2.

Valetto et al. [10] developed network features in support
of service awareness to enable autonomic behavior. Their
work targets communication services within a Session Initi-
ation Protocol (SIP) enabled network to communicate mon-
itoring, deployment, and advertising information. As an au-
tonomic computing infrastructure, however, this work does
not directly address any of the challenges in Section 2.

3.4 Autonomic Adaption of ServiceLevel Agree-
ments

Herssens et al. [7] describe work that centers around au-
tonomically adapting service level agreements (SLAs) when
the context of the specified service changes. This work ac-
knowledges that both offered and the requested QoS for Web
services might vary over the course of the interaction and ac-
cordingly modifies the SLA between the client and the server
as appropriate. This work does not address Challenge 1 in
Section 2.1, but rather negotiates the QoS agreement to fit
the dynamic environment.

3.5 Autonomic Adaption of Networks

The Autonomic Real-time Multicast Distribution System
(ARMDS) [2] is a framework that focuses on decreasing ex-
cessive variance in service quality for multicast data across
the Internet. The framework supports the autonomic adap-
tation of the network nodes forming the multicast graph
so that the consistency of service delivery is enhanced. The
framework includes (1) high level descriptions of policies and
objectives, (2) a multicast topology management protocol
supported by network nodes, (3) measurement and moni-
toring infrastructure, and (4) a control component that au-
tonomously manipulates the protocol and infrastructure to
reduce variance. ARMDS does not address Challenge 2 in
Section 2.2, however, nor does it address Challenge 4 in Sec-
tion 2.4.

4. RESEARCH APPROACH

This section describes how our research combines and en-
hances the following technologies to resolve the challenges
presented in Section 2 and address the gaps in related work
described in Section 3.

App Moniton

Jopic Topic @ T
v ') " 1 3
/ : Domain r \
Data Data Data X _
Writer, Reader, Reader, Autonomic

Adaptation

Controller
[Publlsher] [Subscnber
Data Data Data
erter Writer, Reader,
e
Mon Mon
Publisher Subscriber

Adaptive Network
Transport Protocols

Key:

—— Control interaction between subsystems Protocol Optimizer

----------- Assoc. between reader/writer and topic (Machine Learning)

Figure 2: ADAMANT Architecture

e Standard QoS-enabled pub/sub middleware addresses
the scalability of Challenge 3 in Section 2.3 by decoupling
data senders from data receivers. Applications interested in
published data can receive it any time without knowledge of
the data sender. Moreover, standard QoS-enabled middle-
ware addresses the QoS standardization of Challenge 4 in
Section 2.4.

e Supervised machine learning helps address Challenge 1
in Section 2.1 and Challenge 2 in Section 2.2 by selecting
in a timely manner an appropriate transport protocol and
protocol parameters given specified QoS and a particular en-
vironment configuration. The machine learning component
includes features for several different environment configura-
tions and supervised training, such as decision trees, multi-
layer perceptrons, and support vector machines, to learn the
correct protocol and parameters. The machine learning will
interpolate and extrapolate its learning based on the cur-
rent environment configuration, which might not have been
included in the supervised training.

e Adaptive network transport protocols work to address
Challenge 1 in Section 2.1 and Challenge 2 in Section 2.2
by providing the infrastructure flexibility to maintain inter-
related QoS even within dynamic environments. For some
environment configurations one particular transport proto-
col provides the required QoS. For other environment con-
figurations a different transport protocol provides the speci-
fied QoS. Adaptive network transport protocols support not
only fine grained control of a protocol’s parameters but also
switching from one protocol to another to provide the adap-
tation needed within dynamic environments.

e Environment monitoring works to address Challenge 1
in Section 2.1 by providing environment configuration in-
formation. Relevant environment configuration values are
monitored as needed such as the number of subscribers, the
percentage of network packet loss, and the sending rate of
the data. Our architecture leverages the pub/sub middle-
ware that is being autonomically adapted by creating a mon-
itoring topic. The adaptation infrastructure then uses this
topic to disseminate monitoring information to interested
subscribers. In our architecture, the subscriber interested in
the monitoring data is the autonomic adaptation controller.

e Autonomic adaptation addresses Challenge 1 in Sec-
tion 2.1 and Challenge 2 in Section 2.2 by (1) subscribing to
the monitoring topic and querying relevant values from the

environment monitoring, (2) determining when QoS is not
being met, (3) activating the machine learning component
which will determine an appropriate transport protocol and
parameters, (3) retrieving the recommended protocol set-
tings, and (4) transitioning the adaptive network transport
protocols to use the recommended settings.

5. CURRENT STATUSAND PLAN

Figure 3 shows how we integrated and enhanced the OpenDDS

implementation (www.opendds.org) of the OMG Data Dis-
tribution Service (DDS) standard (www.omg.org/spec/DDS)
with the Adaptive Network Transports (ANT) framework.
Additionally, Figure 3 highlights the capture of key met-
rics into data files and the offline classification of middle-
ware behavior using the WEKA 3 data mining software
(www.cs.waikato.ac.nz/ml/weka).

OpenDDS is standards-based anonymous QoS-enabled pub/-

sub middleware for exchanging data in event-based distributed
systems. It provides a global data store in which publishers
and subscribers write and read data, respectively, so ap-
plications can communicate by publishing information they
have and subscribing to information they need in a timely
manner. OpenDDS provides support for various transport
protocols including TCP, UDP, IP multicast, and reliable
multicast. OpenDDS also provides a pluggable transport
framework that allows integration of custom transport pro-
tocols within OpenDDS.

We chose OpenDDS due to its open-source availability
(which facilities modification and experimentation) and its
support for a pluggable transport framework that allows ap-
plication developers to create custom transport protocols
for sending/receiving data. We chose the ANT framework

0N

Apphcanon OpenDDS Appkcation —

DCPS Publishar DCPS Subscnber Metrics

Euo_s TS data files \
Diata
Wiiiter RQH(’(—I
'WEKA

ubP .1 Pluggable Transport Multlcast
‘._ i Framewurku u

The University
. of Waikato
ANT L offline
h classifier and
Reliable
Multicast

Key: ————> Dataflow

‘ u Transport Protocol Plugin

ML analyzer

Figure 3: Current Research Prototype

due to its infrastructure for composing transport protocols.
ANT builds upon the properties provided by the scalable re-
liable multicast-based Ricochet transport protocol [1]. ANT
also provides a modular framework whereby protocol mod-
ules can be tuned, enhanced, and replaced to maintain spec-
ified QoS. Some of the modules supported by ANT include
(1) an IP multicast module to efficiently disseminate data
from one publisher to multiple subscribers, (2) NAKcast, a

NAK-based reliable multicast module, and (3) a Ricochet
module which provides a trade-off between latency and re-
liability. NAKcast and Ricochet also allow modification of
parameters to affect latency, reliability, and bandwidth us-
age.

We chose the Weka data mining software due to its user-
friendly interface, ease of use, robust analysis tools, and
support for a wide range of machine learning techniques.
These techniques include decision trees, multilayer percep-
trons, and support vector machines. We are capturing (1)
data update latency times (i.e., the time from when the data
writer writes the data to the time the data reader receives
the data), (2) the number of updates received compared to
the number of updates sent, and (3) network bandwidth us-
age statistics (e.g., total bytes on the network, min/max/avg
bandwidth usage). We input these collected metrics and
configuration information for the environment and transport
protocol used into Weka. We are classifying and analyzing
the data using the various machine learning techniques to
determine which techniques provide the best guidance in se-
lecting a transport protocol for a given environment.

As shown in Figure 4 we are currently running exper-
iments and collecting metrics using the Emulab network
testbed (www.emulab.net). Emulab provides computing plat-
forms and network resources that can be easily configured
with the desired computing platform, OS, network topology,
and network traffic shaping. Moreover, Emulab provides fa-
cilities to capture network bandwidth usage.

(>

Pr—
OpenDDS

Recei_ver Pluggable Transport
metrics Framework ﬂ
ANT

Pluggable Transport , , .

Framework ﬂ .
ANT / LAN /".\‘

G—
Nelwork

’ OpenDDS
Receiver
metrics

OpenDDS

metrics Pluggable Transport
Framework ﬂ
ANT
Figure 4: Emulab Experimental Setup

Table 1 outlines the points of variability for the Emulab
experiments while Table 2 outlines the data that is being
collected to classify and evaluate middleware performance.
The NAKcast timeout value listed in Table 1 is the value
in seconds that NAKcast waits before it sends out nega-
tive acknowledgments for data packets that is has detected
are missing. The Ricochet R value listed in Table 1 is the
number of packets that Ricochet receives before it sends out
recovery information to the other receivers.

For example, if Ricochet’s R value is 4 then Ricochet will

Point of Variability
of data receivers 3-25
Frequency of sending data 10Hz, 25 Hz, 50 Hz, 100Hz
% end-host network loss 0tob %
Processor speed 850 MHz, 3 GHz
Network speed 100 Mb/s, 1 Gb/s
Protocols used NAKcast, Ricochet
NAKcast timeout 0.5, 0.1, 0.05, 0.025
seconds
Ricochet R value 4, 8

Table 1: Emulab Experiment Variables

Values

Metrics
Number of data updates received
Latency of data updates
Network bandwidth usage

Units
integer
microseconds
bytes, bytes/sec

Table 2: Metrics Captured from Experiments

wait until it receives 4 data packets before it creates and
sends out a recovery packet based on the 4 data packets
received. Ricochet also provides a parameter to adjust the
number of receivers that receive the recovery packet. Cur-
rently we are using the default value of 3 but plan to run
experiments where this value is varied as well.

Figures 5, 6, and 7 show that capturing reliability met-
rics (in the number of updates received), latency times, and
network bandwidth usage showcases important trade-offs
between transport protocols in general and NAKcast and
Ricochet in particular. Modifying NAKcast’s timeout value
directly affects the latency of recovered data, the amount
of network bandwidth used, and to a low probability the
number of updates received. Likewise, modifying Ricochet’s
R and C values has an direct impact on the latency of re-
covered data, the number of data updates received, and the
network bandwidth used.

OO0 ‘
£0000
3 £a0a5 e b . |—+—MAKcast 0.5 100Hz
1 MAKeast 0.1 100H
3 59990 — —_— —=—NAKras z
¢ 50985 Ricohet R=4 100Hz
? gggsg Ricochet R=8 100Hz
_‘E 59570 —+— MNAKcast 0.5 10Hz
5 so9Es —e— MNAKcast 0.1 10Hz
55560 ——Ricochet R=4 10Hz
59855 T T T T —— Ricochet R=8 10Hz
1 4 5

3
Experiment

Figure 5: Updates Received for NAKcast w/ time-
outs of 0.5, 0.1 sec; Ricochet w/ R=4, R=8; sending
rates of 10Hz, 100Hz; 3 receivers, 1% endhost packet
loss

Moreover, the protocol itself has an effect on the distri-
bution of the latency times since NAKcast sends out NAKSs
only when needed while Ricochet regularly send out recov-
ery packets. Since we are capturing the raw latency times we
can use statistical methods on these times to provide fine-
grained analysis of the middleware’s behavior as outlined in
Figure 8.

We are also integrating ANT with the OpenSplice DDS
implementation (www.opensplice.com) due to its (1) recent
availability as open source, (2) robust QoS and scalability
support, (3) commercial and military deployments, and (4)
support for a network plug-in framework that provides an
efficient C API and allows application developers to cus-
tomize transport protocols via an XML configuration file.
We plan to run identical ADMANT experiments as was done
with OpenDDS. Collecting metrics using both OpenDDS

:

£000 —— - = !
5 resee i _________.J--——_'_____—- —e— Nakcast 0.5 100Hz
-3: S000 =— NAKcast 0.1 100Hz
H 4000 e Ricochet R=4 100Hz
i A T T — Ricochet R=8 100Hz
£ som S —e— NAkKcast 0.5 10Hz
2 —e— NAKcast 0.1 10Hz
> 2000 ~— Ricachet R=4 10Hz
= — . A . —" —— Ricochet R=8 10Hz

1000 —— :

0
1 2 4 5
Experiment

Figure 6: Average Update Latency Times for

NAKcast w/ timeouts of 0.5 and 0.1 sec; Ricochet
w/ R=4, R=8; sending rates of 10Hz, 100Hz; 3 re-
ceivers, 1% endhost packet loss

160000 1

g 140000 —— NAKcast 0.5 100Hz
Z 1000 —s— NAKcast 0.1 100Hz
g E 100000 Ricochet R=4 100Hz
= § 80000 Ricochet R=8 100Hz
Eé 60000 —w—NAKcast 0.5 10Hz
= 40000 —s— MNAKcast 0.1 10Hz
£ 20000 —— Ricochet R=4 10Hz

0 ——s a - Y —-—'Rtrnchet R=8 10Hz

1 2 3 4 5
Experiment

Figure 7: Average Network Bandwidth Usage for
NAKcast w/ timeouts of 0.5 and 0.1 sec; Ricochet
w/ R=4, R=8; sending rates of 10Hz, 100Hz; 3 re-
ceivers, 1% endhost packet loss

40000 =
= 35000 . |——NAKcast 0.5 100Hz
_‘g 20000 — —— | —=—NAKcast 0.1 100Hz
S 25000 Ricochet R=4 100Hz
: Ricochet R=8 100Hz
@ . —=— NAKcast 0.5 10Hz
E‘ IE[ED e |+ NAKeast0.1 101z
= o - - - - a | —— Ricochet R=4 10Hz
- o —— Ricochet R=8 10Hz
1 3 4 5
Experiment

Figure 8: Latency Std Deviation for NAKcast w/
timeouts of 0.5 and 0.1 sec; Ricochet w/ R=4, R=8;
sending rates of 10Hz, 100Hz; 3 receivers, 1% end-
host packet loss

and OpenSplice will provide additional variability to the ma-
chine learning and classification thus increasing its robust-
ness. In addition, OpenSplice’s support of the Real-time
Pub/Sub (RTPS) protocol allows comparison of NAKcast
and Ricochet with RTPS.

6. CONCLUDING REMARKS

Developers of QoS-enabled pub/sub systems face a num-
ber of challenges when developing their applications for dy-
namic environments. To address these challenges, we are re-
searching the use of QoS-enabled pub/sub middleware with
adaptive transport protocols, environment monitoring, ma-
chine learning, and autonomic adaptation. This combina-
tion of technologies provides a unique basis for maintaining
specified QoS within changing environments.

SDS

7.
(1]

(10]

(11]

REFERENCES

Mahesh Balakrishnan, Ken Birman, Amar
Phanishayee, and Stefan Pleisch. Ricochet: Lateral
error correction for time-critical multicast. In NSDI
2007: Fourth Usenix Symposium on Networked
Systems Design and Implementation, Boston, MA,
2007.

Bjorn Brynjulfsson, Gisli Hjalmtysson, Kostas
Katrinis, and Bernhard Plattner. Autonomic
network-layer multicast service towards consistent
service quality. In AINA ’06: Proceedings of the 20th
International Conference on Advanced Information
Networking and Applications, pages 494-498,
Washington, DC, USA, April 2006. IEEE Computer
Society.

M. Caporuscio, A. Carzaniga, and A.L. Wolf. Design
and evaluation of a support service for mobile, wireless
publish/subscribe applications. Software Engineering,
IEEE Transactions on, 29(12):1059-1071, Dec. 2003.
Pierre-Charles David and Thomas Ledoux. Software
Composition, chapter An Aspect-Oriented Approach
for Developing Self-Adaptive Fractal Components;
pages 82-97. Springer LNCS, Berlin / Heidelberg,
2006.

Paul Grace, Geoff Coulson, Gordon S. Blair, and
Barry Porter. Deep middleware for the divergent grid.
In Middleware ’05: Proceedings of the
ACM/IFIP/USENIX 2005 International Conference
on Middleware, pages 334-353, New York, NY, USA,
2005. Springer-Verlag New York, Inc.

Paul Grace, Geoff Coulson, Gordon S. Blair, and
Barry Porter. A distributed architecture meta-model
for self-managed middleware. In ARM ’06:
Proceedings of the 5th workshop on Adaptive and
reflective middleware (ARM ’06), page 3, New York,
NY, USA, 2006. ACM.

Caroline Herssens, Stéphane Faulkner, and Ivan J.
Jureta. Context-driven autonomic adaptation of sla.
In ICSOC ’08: Proceedings of the 6th International
Conference on Service-Oriented Computing, pages
362-377, Berlin, Heidelberg, 2008. Springer-Verlag.
Yi Huang and Dennis Gannon. A comparative study
of web services-based event notification specifications.
Proceedings of the International Conference on
Parallel Processing Workshops, 0:7-14, 2006.

Sasu Tarkoma and Kimmo Raatikainen. State of the
Art Review of Distributed Event Systems. Technical
Report C0-04, University of Helsinki, 2006.
Giuseppe Valetto, Laurent Walter Goix, and
Guillaume Delaire. Towards service awareness and
autonomic features in a sip-enabled network. In
Autonomic Communication, pages 202-213, Berlin,
Heidelberg, 2006. Springer-Verlag.

Patrice Vienne and Jean-Louis Sourrouille. A
middleware for autonomic qos management based on
learning. In SEM ’05: Proceedings of the 5th
international workshop on Software engineering and
middleware, pages 1-8, New York, NY, USA, 2005.
ACM.

