
Using Machine Learning to Maintain Pub/Sub System QoS in Dynamic
Environments∗

Joe Hoffert, Daniel Mack, and Douglas Schmidt
Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN

jhoffert@dre.vanderbilt.edu, dmack@isis.vanderbilt.edu, schmidt@dre.vanderbilt.edu

ABSTRACT
Quality-of-service (QoS)-enabled publish/subscribe (pub/sub) mid-
dleware provides powerful support for scalable data dissemination.
It is hard, however, to maintain specified QoS properties (such as
reliability and latency) in dynamic environments (such as disas-
ter relief operations or power grids). For example, managing QoS
manually is often not feasible in dynamic systems due to (1) slow
human response times, (2) the complexity of managing multiple in-
terrelated QoS settings, and (3) the scale of the systems being man-
aged. For certain applications the systems must be able to reflect
on the conditions of their environment and adapt accordingly.

Machine learning techniques provide a promising adaptation ap-
proach to maintaining QoS properties of QoS-enabled pub/sub mid-
dleware in dynamic environments. These techniques include deci-
sion trees, neural networks, and linear logistic regression classifiers
that can be trained on existing data to interpolate and extrapolate for
new data. By training the machine learning techniques with system
performance metrics in a wide variety of configurations, changes to
middleware mechanisms (e.g., associations of publishers and sub-
scribers to transport protocols) can be driven by machine learning
to maintain specified QoS.

This paper describes how we are applying machine learning tech-
niques to simplify the configuration of QoS-enabled middleware
and adaptive transport protocols to maintain specified QoS as sys-
tems change dynamically. The results of our work thus far show
that decision trees and neural networks can effectively classify the
best protocols to use. In particular, decision trees answer questions
about which measurements and variables are most important when
considering the reliability and latency of pub/sub systems.

Categories and Subject Descriptors
C.2.4.b [Distributed Systems]: Distributed applications

General Terms
Performance

∗This work is supported in part by the AFRL/IF Pollux project and
NSF TRUST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM 2009, December 1, 2009, Urbana Champaign, Illinois, USA.
Copyright 2009 ACM 978-1-60558-850-6/09/12 ...$5.00.

Keywords
QoS, Pub/Sub, Machine learning, Dynamic environments

1. INTRODUCTION
Emerging trends and challenges. The number and type of

distributed systems that utilize publish/subscribe (pub/sub) tech-
nologies have grown due to the advantages of performance, cost,
and scale as compared to single computers [8, 10]. Examples of
pub/sub middleware include Web Services Brokered Notification
(www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsn), the Java Message Service (JMS) (java.sun.
com/products/jms), the CORBA Event Service (www.omg.
org/technology/documents/formal/event_service.
htm), and the Data Distribution Service (DDS) (www.omg.org/
spec/DDS). These technologies support data propagation through-
out a system using an anonymous subscription model that decou-
ples event suppliers and consumers.

Pub/sub middleware is used in a wide spectrum of application
domains, ranging from shipboard computing environments to grid
computing. The middleware supports policies that affect the end-
to-end QoS of the system. Common policies across different mid-
dleware include persistence (i.e., saving data for current subscribers),
durability (i.e., saving data for subsequent subscribers), and grouped
data transfer (i.e., transmitting a group of data atomically).

While tunable policies provide fine-grained control of system
QoS, several challenges emerge when developing pub/sub systems
deployed in dynamic environments. Middleware mechanisms used
to ensure certain QoS properties for one environment configura-
tion may not be applicable for another configuration. For example,
a simple unicast protocol (such as UDP) may provide adequate la-
tency QoS when a publisher sends to a small number of subscribers.
UDP could incur too much latency, however, when used for a large
number of subscribers due to the publisher needing to send to each
individual subscriber.

Challenges also arise when managing multiple QoS policies that
interact with each other. For example, a system might specify low
latency QoS and reliability QoS, which can affect latency due to
data loss discovery and recovery. Certain transport protocols (such
as UDP) provide low overhead but no end-to-end reliability. Other
protocols (such as TCP) provide reliability but unbounded latencies
due to acknowledgment-based retransmissions. Still other proto-
cols, (such as lateral error correction protocols [1]) balance reliabil-
ity and low latency, but only provide benefits over other protocols
for specific environment configurations.

Determining when to modify parameters of a particular transport
protocol or switch from one transport protocol to another is hard.
Moreover, human intervention is often not responsive enough for
the timeliness requirements of the system. The problem of timely

response is exacerbated by increasing the scale of the system, e.g.,
increasing the number of publishers or subscribers.

Solution approach → ADAptive Middleware And Network
Transports (ADAMANT). ADAMANT is QoS-enabled pub/sub
middleware that uses machine learning techniques to (1) adaptively
configure transport protocols and (2) manage specified QoS by re-
flecting on a system’s dynamically changing environment and adapt-
ing accordingly. By utilizing machine learning techniques trained
on data collected from multiple configurations, ADAMANT ad-
justs middleware mechanisms to provide transport protocol and pa-
rameter settings that maintain the specified QoS. The remainder
of this document describes how ADAMANT addresses key chal-
lenges of maintaining QoS for pub/sub systems in dynamic envi-
ronments via machine learning. In particular, we evaluate several
machine learning techniques for providing adaptation guidance.

2. MOTIVATING EXAMPLE
Search and rescue (SAR) operations help locate and extract sur-

vivors in a large metropolitan area after a regional catastrophe, such
as a hurricane, earthquake, or tornado. Figure 1 shows an example
SAR scenario where infrared scans along with GPS coordinates are
provided by unmanned aerial vehicles (UAVs) and video feeds are
provided by existing infrastructure cameras to receive, process, and
transmit event stream data from sensors and monitors to emergency
vehicles that can be dispatched to areas where survivors are identi-
fied. These infrared scans and video feeds are then sent to a dat-

UAV providing
infrared scan

stream

Infrastructure
camera

providing
video stream

Ad-hoc
datacenter

Rescue helicopter
Disaster victims

Figure 1: Search and Rescue Motivating Example

acenter, where they are processed by fusion applications to detect
survivors and develop three dimensional views and highly accurate
position information for rescue operations.

To motivate the need for integrating machine learning techniques
with QoS-enabled pub/sub middleware, this section describes the
following key research challenges associated with SAR operations
in dynamic environments:

2.1 Challenge 1: Timely Adaptation to Dy-
namic Environments

Due to the dynamic environment inherent in the aftermath of
a disaster, SAR operations must adjust in a timely manner as the
environment changes. If SAR operations cannot adjust quickly
enough they will fail to perform adequately given a shift in re-
sources. If resources are lost or withdrawn—or demand for infor-
mation increases—SAR operations must be configured to accom-
modate these changes with appropriate responsiveness to maintain
a minimum level of service. If resources increase or demand de-
creases, SAR operations should adjust as quickly as possible to
provide higher fidelity or more expansive coverage. Manual modi-
fication is often too slow and error-prone to maintain QoS.

2.2 Challenge 2: Managing Interacting QoS
Requirements

SAR operations must manage multiple QoS requirements that
interact with each other, e.g., data reliability so that enough data is
received to be useful and low latency for soft realtime data so that
infrared scans from UAVs or video from cameras mounted atop
traffic lights do not arrive after they are needed. The streamed data
must be received soon enough so that successive dependent data
can be used as well. For example, MPEG I frame data must be
received in a timely manner so that successive dependent B and P
frame data can be used before the next I frame makes them obso-
lete. Otherwise, not only is the data unnecessary, but sending and
processing the data has consumed limited resources.

2.3 Challenge 3: Scaling to Large Numbers of
Receivers

For a regional or national disaster, a multitude of organizations
would register interest not only in the individual video and infrared
scans for various applications, but also in the fused data for the SAR
operations. For example, fire detection applications and power grid
assessment applications can use infrared scans to detect fires and
working HVAC systems respectively. Likewise, security monitor-
ing and structural damage applications can use video stream data
to detect looting and unsafe buildings respectively. Moreover, fed-
eral, state, and local authorities would want to register interest in
the fused SAR data to monitor the status of current SAR opera-
tions.

2.4 Challenge 4: Specifying Standardized and
Robust QoS

SAR applications should be developed with the focus on appli-
cation logic rather than on complex or custom formats for speci-
fying QoS. Time spent learning a customized or complex format
for QoS is time taken from developing the SAR application itself.
Moreover, learning a custom format will not be applicable for other
applications that use a different QoS format. Application develop-
ers also need support for a wide range of QoS to handle dynamic
environments.

3. OVERVIEW OF RELATED WORK
This section analyzes related research efforts in light of the chal-

lenges presented in Section 2.
Support for adaptive middleware. The Mobility Support Ser-

vice (MSS) [3] provides a software layer on top of pub/sub mid-
dleware to enable endhost mobility. The purpose of MSS is to sup-
port the movement of clients between access points of a system
using pub/sub middleware. In this sense, MSS adapts the pub/sub
middleware used in a mobile environment. Mobile clients notify
MSS when mobility starts and ends. MSS buffers messages and
manages connections while the client moves to a different access
point. MSS is designed to support multiple pub/sub technologies,
e.g., implementations of JMS, and adapt to the technology-specific
characteristics.

MSS is solely focused on supporting mobility of pub/sub, how-
ever, and therefore does not address Challenge 2 in Section 2.2.
Moreover, MSS fails to address Challenge 4 in Section 2.4 since it
does not present a standardized and robust interface for QoS.

Gridkit [5] is a middleware framework that supports reconfig-
urability of applications dependent upon the condition of the en-
vironment and the functionality of registered components. Gridkit
focuses on grid applications which are highly heterogeneous in na-
ture. For example, these applications will run on many types of
computing devices and across different types of networks.

To register components, application developers use Gridkit’s API
which is based on binding contracts. Gridkit then uses the contract
information along with a context engine to determine which com-
ponents to include in the application. The context engine takes into
account the context of the host machines, e.g., battery life, network
connectivity.

Gridkit focuses on reconfiguration for installing an application
and does not address Challenge 1 in Section 2.1. Within Grid-
kit no consideration is given to making timely adaptations based
on the environment changing for a single application installation.
Moreover, Gridkit fails to address Challenge 4 in Section 2.4 as it
provides no standardized QoS specification.

David and Ledoux have developed SAFRAN [4] to enable appli-
cations to become context-aware themselves so that they can adapt
to their contexts. SAFRAN provides reactive adaptation policy
infrastructure for components using an aspect-oriented approach.
SAFRAN follows the structure of a generic AOP system by sup-
porting (1) a base program which corresponds to a configuration of
components, (2) point-cuts which are invoked in response to inter-
nal events (e.g., invocations on interfaces) and external events (e.g.,
change in system resources), (3) advices which define functionality
to be executed for point-cuts, and (4) adaptation which uses adap-
tation policies to link join points to advices.

The SAFRAN component framework, however, only provides
development support of maintaining specified QoS. The adaptive
policies and component implementation are the responsibility of
the application developer. Moreover, SAFRAN does not specifi-
cally address Challenge 3 in Section 2.3 since it does not focus on
scalability. SAFRAN also does not address Challenge 4 in Sec-
tion 2.4 since it provides no standard QoS specification.

Machine learning in support of autonomic adaptation. Vi-
enne and Sourrouille [12] present the Dynamic Control of Behavior
based on Learning (DCBL) middleware that incorporates reinforce-
ment machine learning in support of autonomic control for QoS
management. Reinforcement machine learning not only allows
DCBL to handle unexpected changes but also reduces the overall
system knowledge required by the system developers. System de-
velopers provide an XML description of the system, which DCBL
then uses together with an internal representation of the managed
system to select appropriate QoS dynamically.

DCBL’s customized QoS specification, however, does not ad-
dress Challenge 4 in Section 2.4 and DCBL focuses on single com-
puters rather than addressing scalable distributed systems, as out-
lined with Challenge 3 in Section 2.3. Moreover, DCBL requires
developers to specify in an XML file the selection of operating
modes given a QoS level along with execution paths, which leaves
handling Challenge 2 in Section 2.2 to developers.

Tock et al [11] utilize machine learning for data dissemination
in their work on Multicast Mapping (MCM). MCM hierarchically
clusters data flows so that multiple topics are mapped onto a sin-
gle session and multiple sessions are mapped onto a single reliable
multicast group. MCM’s approach manages the scarce availabil-
ity of multicast addresses in large-scale systems. MCM leverages
machine learning to adapt as user interest and message rate change
during the day. MCM is just designed to address the scarce resource
of IP multicast addresses in large-scale systems, however, rather
than Challenge 2 in Section 2.2 or Challenge 4 in Section 2.4.

Autonomic adaption of service level agreements. Herssens et
al. [6] describe work that centers around autonomically adapting
service level agreements (SLAs) when the context of the specified
service changes. This work acknowledges that both offered and
the requested QoS for Web services might vary over the course
of the interaction and accordingly modifies the SLA between the

client and the server as appropriate. This work does not address
Challenge 1 in Section 2.1, but rather negotiates the QoS agreement
to fit the dynamic environment.

Autonomic adaption of networks. The Autonomic Real-time
Multicast Distribution System (ARMDS) [2] is a framework that
focuses on decreasing excessive variance in service quality for mul-
ticast data across the Internet. The framework supports the auto-
nomic adaptation of the network nodes forming the multicast graph
so that the consistency of service delivery is enhanced. ARMDS
does not address Challenge 2 in Section 2.2, however, nor does it
address Challenge 4 in Section 2.4.

4. ADAMANT OVERVIEW AND RESULTS
This section describes ADAMANT, our experimental setup, and

the results for evaluating machine learning techniques in provid-
ing adaptation guidance to select the most appropriate protocol and
configuration settings for a particular dynamic environment.

4.1 Overview of ADAMANT
The ADAMANT QoS-enabled pub/sub middleware uses machine

learning techniques to adjust the underlying transport protocols and
associated parameter settings to maintain specified end-to-end QoS.
ADAMANT addresses the challenges presented in Section 2 to re-
solve gaps in related work described in Section 3 via the following
integrated techniques.

• The Adaptive Network Transports (ANT) framework ad-
dresses Challenge 1 in Section 2.1 and Challenge 2 in Section 2.2
by providing the flexibility to maintain interrelated QoS even within
dynamic environments. For some environment configurations one
particular transport protocol provides the required QoS. For other
environment configurations a different transport protocol provides
the specified QoS. ANT not only supports fine grained control of
a protocol’s parameters, but also switching from one protocol to
another to provide the adaptation needed within dynamic environ-
ments. Moreover, ANT works to address Challenge 3 in Section 2.3
by supplying appropriate transport protocols and protocol settings
as the number of senders and receivers in the system fluctuate.

We chose ANT due to its infrastructure for composing trans-
port protocols. ANT builds upon the properties provided by the
scalable reliable multicast-based Ricochet transport protocol [1]. It
also provides a modular framework whereby protocol modules can
be tuned, enhanced, and replaced to maintain specified QoS.

• Machine learning techniques help address Challenge 1 in
Section 2.1 and Challenge 2 in Section 2.2 by selecting in a timely
manner an appropriate transport protocol and protocol parameters
given specified QoS and a particular environment configuration.
Machine learning can interpolate and extrapolate its learning based
on the current environment configuration, which might not have
been included originally. Thus, machine learning provides increased
flexibility over manual or policy driven approaches.

The first learning technique investigated is a decision tree (DT).
This algorithm attempts to create a tree where a set of decisions
leads down to a leaf node that can accurately classify a new exam-
ple. A DT will attempt to produce the shortest and smallest tree
possible while maintaining accuracy by looking for features that
best split the data as completely as possible and use them closer to
the root. DTs are designed for data sets with more than a binary set
of classes, i.e., where there are more than two possible classifica-
tions of an appropriate transport protocol and parameter settings.

The second technique we investigated is an Artificial Neural Net-
work (ANN). ANNs work well on sets with a small number of fea-
tures and can produce highly accurate results with medium sized
data sets. ANNs also can generally produce results in less time

than other machine learning techniques. The learning produced
when using ANNs is not as accessible as a DT, however, since the
factors that are used and the importance placed on each factor are
difficult to present in a human understandable form.

The third technique we investigated is a Linear Logistic Regres-
sion Classifier (LLRC), which uses a weighting of the various col-
lected metrics to determine the appropriate protocol and parame-
ters. The results from LLRCs have increased comprehensibility as
compared to ANNs since how the environment configuration influ-
ences the selection of transport protocol and parameter settings is
less opaque. Moreover, LLRCs can be optimized to reduce the time
to determine an optimal protocol and settings.

• The OMG Data Distribution Service (DDS) middleware (www.
omg.org/spec/DDS) addresses the scalability of Challenge 3 in
Section 2.3 by decoupling data senders from data receivers. DDS
enables applications to communicate by publishing information they
have and subscribing to information they need in a timely manner.
DDS is standards-based anonymous QoS-enabled pub/sub middle-
ware for exchanging data in event-based distributed systems. It
provides a global data store in which publishers and subscribers
write and read data, respectively.

DDS provides flexibility and modular structure by decoupling:
(1) location, via anonymous publish/subscribe, (2) redundancy, by
allowing any numbers of readers and writers, (3) time, by pro-
viding asynchronous, time-independent data distribution, and (4)
platform, by supporting a platform-independent model that can be
mapped to different platform-specific models.

The DDS architecture consists of two layers: (1) the data-centric
pub/sub (DCPS) layer that provides APIs to exchange topic data
based on chosen QoS policies and (2) the data local reconstruction
layer (DLRL) that makes topic data appear local. Our work focuses
on DCPS since it is more broadly supported than the DLRL.

The DCPS entities in DDS include Topics, which describe the
type of data to be written or read; Data Readers, which subscribe
to the values or instances of particular topics; and Data Writers,
which publish values or instances for particular topics. Various
properties of these entities can be configured using combinations
of the 22 QoS policies. Moreover, Publishers manage groups of
data writers and Subscribers manage groups of data readers.

Additionally, utilizing DDS addresses the QoS standardization
of Challenge 4 in Section 2.4. Table 1 summarizes the DDS QoS
policies. DDS provides 22 QoS policies applicable to various entity
types. Each QoS policy has ∼2 attributes with the majority of the
attributes having a large number of possible values, e.g., an attribute
of type long or character string.

Figure 2 also shows how we integrated and enhanced the Open-
DDS implementation (www.opendds.org) of the OMG Data
Distribution Service (DDS) with ANT, which supports various trans-
port protocol properties, such as NAK-based and ACK-based reli-
ability and flow control. ADAMANT leverages ANT to appropri-
ately modify transport protocols and parameters settings as needed
to maintain QoS.

OpenDDS provides a standards-based anonymous QoS-enabled
pub/sub middleware for exchanging data in event-based distributed
systems. It provides a global data store in which publishers and
subscribers write and read data, respectively, so applications can
communicate by publishing information they have and subscribing
to information they need in a timely manner. OpenDDS supports
various transport protocols, including TCP, UDP, IP multicast, and
reliable multicast. OpenDDS also provides a pluggable transport
framework that allows integration of custom transport protocols
within OpenDDS. We chose the OpenDDS implementation due to
(1) its source code being freely available, facilitating modification

DDS QoS Policy Description
User Data Attaches application data to DDS entities
Topic Data Attaches application data to topics
Group Data Attaches application data to publishers,

subscribers
Durability Determines if data outlives the time when written

or read
Durability
Service

Details how durable data is stored

Presentation Delivers data as group and/or in order
Deadline Determines rate at which periodic data is

refreshed
Latency Budget Sets guidelines for acceptable end-to-end delays
Ownership Controls writer(s) of data
Ownership
Strength

Sets ownership of data

Liveliness Sets liveness properties of topics, data readers,
data writers

Time Based Filter Mediates exchanges between slow consumers
and fast producers

Partition Controls logical partition of data dissemination
Reliability Controls reliability of data transmission
Transport Priority Sets priority of data transport
Lifespan Sets time bound for “stale” data
Destination
Order

Sets whether data sender or receiver determines
order

History Sets how much data is kept to be read
Resource Limits Controls resources used to meet requirements
Entity Factory Sets enabling of DDS entities when created
Writer Data
Lifecycle

Controls data and data writer lifecycles

Reader Data
Lifecycle

Controls data and data reader lifecycles

Table 1: DDS QoS Policies

and experimentation and (2) its pluggable transport framework al-
lowing integration of OpenDDS with the ANT framework.

• The Waikato Environment for Knowledge Analysis (Weka)
is data mining software (www.cs.waikato.ac.nz/ml/weka)
leverages key metrics captured from the ADAMANT prototype as
shown in Figure 2. We use Weka to analyze ADAMANT’s behav-
ior for various transport protocols. Specifically, Weka captures (1)
data update latency times (i.e., the time from when the data writer
writes the data to the time the data reader receives the data), (2)
the number of updates received compared to the number of updates
sent, and (3) network bandwidth usage statistics (e.g., total bytes
on the network and min/max/avg bandwidth usage).

Pluggable Transport
Framework

UDP IP
Multicast

TCP

ppppppppppppp
rameworkkkkkkkkkkk

ANT

RicochetModule

IPMulticastModule

NakModule

AckModule

FlowControlModule

Reliable
Multicast

Metrics
data files

. ..

Offline
classifier and
ML analyzer

Key: Data flow

Transport Protocol Plugin

Figure 2: ADAMANT System Architecture

We chose the Weka data mining software due to its intuitive in-

terface, ease of use, robust analysis tools, and support for a wide
range of machine learning techniques. These techniques include
decision trees, multilayer perceptrons, and support vector machines.
We input collected metrics and configuration information for the
environment and transport protocol used into Weka. We have clas-
sified and analyzed the data using the various machine learning
techniques to determine which techniques provide the best guid-
ance in selecting a transport protocol for a given environment.

4.2 Evaluation Setup
To evaluate the behavior of ADAMANT with various transport

protocols and protocol configuration setttings, we ran experiments
and collected metrics using the Emulab network testbed (www.
emulab.net). Emulab provides computing platforms and net-
work resources that can be easily configured with the desired com-
puting platform, OS, network topology, and network traffic shap-
ing. It also provides facilities to capture network bandwidth usage.

Table 2 outlines the points of variability for the Emulab exper-
iments. The NAKcast timeout period configures the amount of

Point of Variability Values
of data receivers 3 - 25
Frequency of sending data 10Hz, 25 Hz, 50 Hz, 100Hz
% end-host network loss 0 to 5 %
Processor speed 850 MHz, 3 GHz
Network speed 100 Mb/s, 1 Gb/s
Protocols used NAKcast, Ricochet
NAKcast timeout 0.5, 0.1, 0.05, 0.025 seconds
Ricochet R value 4, 8
Ricochet C value 3, 6

Table 2: Emulab Experiment Variables
time that elapses before a receiver notifies the sender of lost pack-
ets. The Ricochet R value determines the number of packets re-
ceived by an individual receiver before error correction data is sent
to other receivers. The Ricochet C value determines the number
of receivers to which an individual receiver sends error correction
data. Table 3 outlines the data that is being collected to classify and
evaluate middleware performance.

Metrics Units
Number of data updates received integer
Latency of data updates microseconds
Std. deviation of latency microseconds
Maximum network bandwidth usage bytes/sec
Minimum network bandwidth usage bytes/sec
Average network bandwidth usage bytes/sec
Network bandwidth usage bytes
ReLate2 value integer

Table 3: Metrics Captured from Experiments

The ReLate2 value [7] is a metric that evaluates both reliability
determined by the number of packets received by an application
and packet latency. ReLate2 is calculated by multiplying the aver-
age latency by the percent packet loss.

4.3 Empirical Evaluations of Machine Learn-
ing Techniques for ADAMANT

This section presents our analysis of the experimental data and
the results of the machine learning techniques described in Sec-
tion 4.1. For each experiment we subsampled the collected data by
selecting the transport protocol and settings that performed the best
for an experiment run. We then used the machine learning tech-
niques described in Section 4.1 on the subsampled data from all the
experiments. The evaluation of the machine learning techniques
included two criteria: (1) basic accuracy, which is the number of
correctly learned protocols and protocol parameters for a given en-
vironment configuration divided by the total overall number of pro-
tocols and protocol parameters and (2) area under the curve, which

plots sensitivity (i.e., true positive rate) vs. specificity (i.e., false
negative rate) of the learning technique. These two criteria provide
more complete analysis of the results vs. using a single criterion.

4.3.1 Subsampling the Data
Since ADAMANT is concerned with reliability and latency, we

focus on the ReLate2 value discussed in Section 4.2 to provide rel-
evant subsampling. For a given environment configuration we se-
lected the transport protocol and parameter settings that performed
the best, i.e., had the lowest ReLate2 value. For a set of 5 exper-
iment runs for each environment configuration with varying trans-
port protocols and parameter settings, the protocol and settings that
performed the best remained. More specifically, 5 data points are
left per experimental setup when including only the data from the
protocol and parameters that produced the lowest ReLate2 value
for the 5 runs. Across all experiment configurations, the collected
metrics were reduced to roughly 150 data points that we used to
train the machine learning techniques.

With this reduction, the learning techniques can start to select the
most appropriate transport protocol and parameters settings. Using
the training data the machine learning will accurately identify a
protocol that produced the lowest ReLate2 values. Conversely, the
machine learning will identify when a protocol and its parameter-
ization will offer the best ReLate2 values, given an environment
configuration.

4.3.2 Analysis of Results
To explore which protocols and protocol parameters perform best

under different configuration environments, we used the three ma-
chine learning techniques described in Section 4.1. The techniques
utilized the reduced data set where the best performing protocols
and protocol parameters were selected. All three techniques were
trained using n-fold cross validation, where each fold partitions the
data into a training set and testing set. The cross validation then
averages the accuracy of the technique over all n folds, which pro-
vides greater coverage and increases the technique’s robustness.

We selected 10 as the number of folds. The learning techniques
were then trained and tested on each of the 10 folds. Since the
reduced data points are not evenly distributed among the different
experiment variables, n-fold cross validation is the best approach
to maximizing data coverage while not skewing the learning results
toward a particular transport protocol or parameter setting [9].

We used two metrics for evaluating the effectiveness of a ma-
chine learning technique. The first metric is the basic accuracy
(also known as 1-loss accuracy) which captures how well the tech-
nique determines the appropriate protocol and parameters. Basic
accuracy has its greatest utility when the number of different en-
vironment configurations and protocols used for experiments are
evenly distributed across all the types of experiments. The experi-
mental data we collected, however, was not evenly distributed, i.e.,
there were some protocol parameters that were used in more envi-
ronment configurations than others. For example, we ran more ex-
periments with NAKcast having a timeout value of 0.025 seconds
than with a timeout value of 0.5 seconds.

The second metric for evaluating the effectiveness of machine
learning techniques to determine appropriate protocols and param-
eters is the area under the curve (AUC), which plots sensitivity vs.
specificity. For comparison, a learning technique that would select
a transport protocol and parameters at random would graph as a
straight line with a slope of 1 and the AUC would be 0.5. As a
learning technique improves, its AUC increases. AUC attempts to
provide some balance between learning techniques for ADAMANT
since ADAMANT requires more complexity than a simple boolean
yes/no response from the learning technique, i.e., the specific trans-

port protocol and parameters to use. Moreover, a higher AUC value
provides an indication of greater robustness.

Applying the three machine learning techniques outlined in Sec-
tion 4.1 on the reduced set of 150 data points, we see clear differ-
ences in the results. The DT produced the best basic accuracy for
determining appropriate transport protocols and parameters at 87%
and the worst AUC score at .925. The ANN produced an accuracy
that was lower at 85.3%, but provided the highest AUC at .966.
The LLRC posted the lowest accuracy at 80% but also a higher
AUC than DT at .935.

In general, all three techniques provide high accuracy results.
While the differences in accuracy between the techniques are low,
they are still significant. In machine learning with high levels of
accuracy, a non-trivial amount of effort is required to modify a less
accurate technique to match a more accurate technique. Our re-
sults indicate that ANNs are the most robust learning technique
for ADAMANT, but DTs post a higher base accuracy. In particu-
lar, DTs exhibit some brittleness in being able to handle new, un-
trained environment configurations, whereas ANNs are more likely
to provide ADAMANT resiliency for environment configurations
not previously encountered. We are collecting more data to explore
this assessment. LLRC appears to provide the worst results with
the lowest base accuracy and only slightly better AUC than DTs.

While it appears ADAMANT might leverage ANNs initially with
LLRC being the least useful in determining appropriate protocols
and parameters, the results from DTs answer and raise interesting
questions. Due to the nature of DTs, one can look at the implica-
tions the tree finds about the features. As shown in Figure 3, the
tree utilizes relatively few features, e.g., the amount of bandwidth
used in bytes, the controlled variable of packet loss, and the con-
trolled variable of number of receivers in the environment. While
some of the controlled variables of # of receivers, % packet loss,
and sending rate are used, the most important discriminator of the
measured environment is the bandwidth usage.

Figure 3: Initial Decision Tree

5. CONCLUDING REMARKS
Developers of QoS-enabled pub/sub middleware and applica-

tions face a number of challenges in dynamic environments. To
address these challenges ADAMANT combines QoS-enabled pub/-
sub middleware with adaptive transport protocols and machine learn-
ing. This combination of technologies provides a basis for main-
taining specified QoS even in dynamic environments. The results
presented in this paper indicate that for dynamic environments de-
cision trees and artificial neural networks are promising approaches

for classifying the best protocols and protocol parameters to use.
In particular, decision trees provide human readable details about
which variables are most important to consider. Our future work
will empirically evaluate the most appropriate techniques for ADAM-
ANT under various dynamic environment conditions.

6. REFERENCES
[1] M. Balakrishnan, K. Birman, A. Phanishayee, and S. Pleisch.

Ricochet: Lateral error correction for time-critical multicast.
In NSDI 2007: Fourth Usenix Symposium on Networked
Systems Design and Implementation, Boston, MA, 2007.

[2] B. Brynjulfsson, G. Hjalmtysson, K. Katrinis, and
B. Plattner. Autonomic network-layer multicast service
towards consistent service quality. In AINA ’06: Proceedings
of the 20th International Conference on Advanced
Information Networking and Applications, pages 494–498,
Washington, DC, USA, April 2006. IEEE Computer Society.

[3] M. Caporuscio, A. Carzaniga, and A. Wolf. Design and
evaluation of a support service for mobile, wireless
publish/subscribe applications. Software Engineering, IEEE
Transactions on, 29(12):1059–1071, Dec. 2003.

[4] P.-C. David and T. Ledoux. Software Composition, chapter
An Aspect-Oriented Approach for Developing Self-Adaptive
Fractal Components, pages 82–97. Springer LNCS, Berlin /
Heidelberg, 2006.

[5] P. Grace, G. Coulson, G. S. Blair, and B. Porter. Deep
middleware for the divergent grid. In Middleware ’05:
Proceedings of the ACM/IFIP/USENIX 2005 International
Conference on Middleware, pages 334–353, New York, NY,
USA, 2005. Springer-Verlag New York, Inc.

[6] C. Herssens, S. Faulkner, and I. J. Jureta. Context-driven
autonomic adaptation of sla. In ICSOC ’08: Proceedings of
the 6th International Conference on Service-Oriented
Computing, pages 362–377, Berlin, Heidelberg, 2008.
Springer-Verlag.

[7] J. Hoffert, A. Gokhale, and D. C. Schmidt. Evaluating
Transport Protocols for Real-time Event Stream Processing
Middleware and Applications. In Proceedings of the 11th
International Symposium on Distributed Objects,
Middleware, and Applications (DOA ’09), Vilamoura,
Algarve-Portugal, Nov. 2009.

[8] Y. Huang and D. Gannon. A comparative study of web
services-based event notification specifications. Proceedings
of the International Conference on Parallel Processing
Workshops, 0:7–14, 2006.

[9] M. Stone. Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statistical Society
B, 36(1):111–147, 1974.

[10] S. Tarkoma and K. Raatikainen. State of the Art Review of
Distributed Event Systems. Technical Report C0-04,
University of Helsinki, 2006.

[11] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.
Hierarchical clustering of message flows in a multicast data
dissemination system. In Proceedings of Parallel and
Distributed Computing and Systems (PDCS 2005), Nov.
2005.

[12] P. Vienne and J.-L. Sourrouille. A middleware for autonomic
qos management based on learning. In SEM ’05:
Proceedings of the 5th international workshop on Software
engineering and middleware, pages 1–8, New York, NY,
USA, 2005. ACM.

